¼¼°èÀÇ À¯ÀüÀÚ ¿¹Ãø Åø ½ÃÀå
Gene Prediction Tools
»óǰÄÚµå : 1780866
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 459 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,180,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,541,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

À¯ÀüÀÚ ¿¹Ãø Åø ¼¼°è ½ÃÀåÀº 2030³â±îÁö 4¾ï 6,280¸¸ ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 1¾ï 5,960¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â À¯ÀüÀÚ ¿¹Ãø Åø ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 19.4%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 4¾ï 6,280¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ¼ÒÇÁÆ®¿þ¾î À¯ÇüÀº CAGR 20.9%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 3¾ï 4,960¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¼­ºñ½º À¯ÇüÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 15.5%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 4,350¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 25.7%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ À¯ÀüÀÚ ¿¹Ãø Åø ½ÃÀåÀº 2024³â¿¡ 4,350¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 1¾ï 570¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 25.7%¸¦ ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 14.3%¿Í 17.6%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 15.5%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ À¯ÀüÀÚ ¿¹Ãø Åø ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

À¯ÀüÀÚ ¿¹Ãø ÅøÀº ¾î¶»°Ô À¯Àüü ¿¬±¸¸¦ °­È­Çϴ°¡?

À¯ÀüÀÚ ¿¹Ãø ÅøÀº À¯Àüü ¿¬±¸ÀÇ ÇÙ½ÉÀ¸·Î, °úÇÐÀÚµéÀº DNA ¼­¿­ ³» À¯ÀüÀÚ¸¦ ½Äº°Çϰí, À¯ÀüÀû ±â´ÉÀ» ºÐ¼®Çϰí, ÁøÈ­Àû °ü°è¸¦ ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °è»ê µµ±¸´Â °í±Þ ¾Ë°í¸®Áò, ±â°èÇнÀ ¸ðµ¨, »ý¹°Á¤º¸ÇÐ ±â¼úÀ» »ç¿ëÇÏ¿© ´Ü¹éÁúÀ» ¾ÏȣȭÇÏ´Â À¯ÀüÀÚ, Á¶Àý ¿ä¼Ò, ºñ¾Ïȣȭ RNA ¼­¿­À» ¿¹ÃøÇÕ´Ï´Ù. À¯Àüü µ¥ÀÌÅͰ¡ °è¼Ó È®´ëµÊ¿¡ µû¶ó À¯ÀüÀÚ ¿¹Ãø ÅøÀº À¯ÀüÇÐ, »ý¸í°øÇÐ, Á¤¹ÐÀÇ·á ºÐ¾ßÀÇ ¹ß°ßÀ» °¡¼ÓÈ­ÇÏ´Â µ¥ ÇʼöÀûÀÎ ¿ä¼Ò°¡ µÇ°í ÀÖ½À´Ï´Ù.

Â÷¼¼´ë ¿°±â¼­¿­ ºÐ¼®(NGS) µ¥ÀÌÅÍÀÇ °¡¿ë¼ºÀÌ ³ô¾ÆÁü¿¡ µû¶ó, ¹æ´ëÇÑ À¯Àüü µ¥ÀÌÅͼ¼Æ®¸¦ ³ôÀº Á¤È®µµ·Î ó¸®ÇÒ ¼ö ÀÖ´Â °í±Þ À¯ÀüÀÚ ¿¹Ãø ¼ÒÇÁÆ®¿þ¾î¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¿¬±¸ÀÚµéÀº À¯Àüü ÁÖ¼®, Áúº´ °ü·Ã À¯ÀüÀÚ ½Äº°, À¯ÀüÀÚ Á¶Àý ³×Æ®¿öÅ© Ž»ö¿¡ ÀÌ·¯ÇÑ ÅøÀ» Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, AI¸¦ žÀçÇÑ À¯ÀüÀÚ ¿¹Ãø ¸ðµ¨Àº À¯ÀüÀÚ ÁÖ¼®ÀÇ Á¤È®µµ¸¦ ³ôÀ̰í, »õ·Î¿î À¯Àü ¿ä¼ÒÀÇ ¹ß°ßÀ» °¡´ÉÇϰÔÇÔÀ¸·Î½á À¯Àüü ¿¬±¸¿¡ º¯È­¸¦ °¡Á®¿À°í ÀÖ½À´Ï´Ù. À¯Àüü ±â¼úÀÇ ¹ßÀü°ú ÇÔ²² À¯ÀüÀÚ ¿¹Ãø ÅøÀº ¸ÂÃãÇü ÀÇ·á, ½Å¾à °³¹ß, ÇÕ¼º»ý¹°ÇÐ ÀÀ¿ë ºÐ¾ßÀÇ ¹ßÀü¿¡ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.

À¯ÀüÀÚ ¿¹Ãø ±â¼úÀÇ ÇýÅÃÀ» °¡Àå ¸¹ÀÌ ¹Þ´Â °úÇÐ ºÐ¾ß´Â?

ÇコÄÉ¾î ¹× Á¦¾à »ê¾÷Àº À¯ÀüÀÚ ¿¹Ãø ÅøÀÇ ÁÖ¿ä ¼öÇýÀÚ Áß ÇϳªÀ̸ç, ÀáÀçÀû ½Å¾à Ÿ°Ù ¹ß±¼, Áúº´ ±âÀü ÀÌÇØ, À¯ÀüÀÚ ±â¹Ý Ä¡·á¹ý °³¹ß¿¡ ÀÌ·¯ÇÑ ±â¼úÀ» »ç¿ëÇϰí ÀÖ½À´Ï´Ù. Á¤¹ÐÀÇ·á¿¡ Á¢¸ñµÇ°í ÀÖ´Â ¿¹Ãø À¯ÀüüÇÐÀº ÀÓ»óÀǰ¡ °³ÀÎÀÇ À¯ÀüÀÚ ÇÁ·ÎÆÄÀÏÀ» ±â¹ÝÀ¸·Î ¸ÂÃãÇü Ä¡·á¸¦ ÇÒ ¼ö ÀÖµµ·Ï ÇØÁÝ´Ï´Ù. ¶ÇÇÑ, À¯ÀüÀÚ ¿¹Ãø ÅøÀº ¾Ï°ú °ü·ÃµÈ µ¹¿¬º¯ÀÌ ½Äº°À» ¿ëÀÌÇÏ°Ô ÇÏ¿© Ç¥Àû Ä¡·áÁ¦ ¹× ¸é¿ªÄ¡·áÁ¦ °³¹ß·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù.

³ó¾÷ ºÐ¾ß¿¡¼­´Â À¯ÀüÀÚ ¿¹Ãø ±â¼úÀ» ÅëÇØ ÀÛ¹° °úÇÐÀÚµéÀÌ ¼öÈ®·®, °¡¹³ ÀúÇ×¼º, ÇØÃæ ÀúÇ×¼º µîÀ» À¯¹ßÇÏ´Â À¯ÀüÀÚ¸¦ ½Äº°ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ½Ä¹° À¯ÀüüÀÇ À¯ÀüÀÚ ±â´ÉÀ» ¿¹ÃøÇÔÀ¸·Î½á ¿¬±¸ÀÚµéÀº ´ë±Ô¸ð ÇöÀå ½ÃÇè ¾øÀ̵µ À¯ÀüÀÚ °³·® ÀÛ¹°À» °³¹ßÇÒ ¼ö ÀÖ½À´Ï´Ù. ÇÕ¼º»ý¹°ÇÐ ºÐ¾ß¿¡¼­µµ ¹ÙÀÌ¿À¿¬·á »ý»ê, ¹ÙÀÌ¿À¸®¸ðµ¨¸µ, »ê¾÷¿ë È¿¼Ò °³¹ßÀ» À§ÇØ ¹Ì»ý¹° À¯Àüü¸¦ ¿£Áö´Ï¾î¸µÇϱâ À§ÇØ À¯ÀüÀÚ ¿¹Ãø ÅøÀÌ È°¿ëµÇ°í ÀÖ½À´Ï´Ù. °è»ê»ý¹°ÇÐÀÌ °è¼Ó ¹ßÀüÇÔ¿¡ µû¶ó À¯ÀüÀÚ ¿¹Ãø ÅøÀº ´Ù¾çÇÑ °úÇÐ ºÐ¾ß¿¡ ÅëÇÕµÇ¾î ´Ù¾çÇÑ ºÐ¾ßÀÇ Çõ½ÅÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

À¯ÀüÀÚ ¿¹ÃøÀÇ Ãֽбâ¼ú Çõ½ÅÀº ¹«¾ùÀΰ¡?

À¯ÀüÀÚ ¿¹Ãø ÅøÀº »ó´çÇÑ ±â¼ú Çõ½ÅÀ» ÅëÇØ Á¤È®¼º, È¿À²¼º, È®À强À» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ¸Ó½Å·¯´×°ú AI ±â¹Ý ¸ðµ¨À» ÅëÇØ º¹ÀâÇÑ À¯Àüü°¡³ª ÁÖ¼®ÀÌ ºÎÁ·ÇÑ À¯Àüü¿¡¼­µµ ÄÚµù À¯ÀüÀÚ¿Í ºñÄÚµù À¯ÀüÀÚ¸¦ °ËÃâÇÒ ¼ö ÀÖ´Â ´É·ÂÀÌ Çâ»óµÇ¾ú½À´Ï´Ù. µö·¯´× ¾Ë°í¸®ÁòÀº ÇöÀç ¹æ´ëÇÑ À¯Àüü µ¥ÀÌÅͼ¼Æ®¸¦ ºÐ¼®ÇÏ¿© Àü·Ê ¾ø´Â Á¤È®µµ·Î ±â´ÉÀû À¯ÀüÀÚ ¿ä¼Ò¸¦ ½Äº°ÇÒ ¼ö ÀÖ½À´Ï´Ù.

¶ÇÇÑ, Ŭ¶ó¿ìµå ±â¹Ý À¯ÀüÀÚ ¿¹Ãø Ç÷§ÆûÀº µ¥ÀÌÅÍ Ã³¸®¿¡ Çõ¸íÀ» °¡Á®¿ÔÀ¸¸ç, ¿¬±¸ÀÚµéÀº ´ë±Ô¸ð ÄÄÇ»ÆÃ ÀÎÇÁ¶ó ¾øÀ̵µ ´ë±Ô¸ð À¯Àüü ºÐ¼®À» ¼öÇàÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. À¯ÀüÀÚ ¿¹Ãø°ú ´ÜÀÏ ¼¼Æ÷ ½ÃÄö½Ì ±â¼úÀÇ ÅëÇÕÀº ÀÌ·¯ÇÑ µµ±¸ÀÇ ±â´ÉÀ» ´õ¿í È®ÀåÇÏ¿© À¯ÀüÀÚ ¹ßÇö ÆÐÅÏÀ» º¸´Ù »ó¼¼ÇÏ°Ô Å½»öÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº À¯ÀüÀÚ ¿¹ÃøÀ» ¿¬±¸Àڵ鿡°Ô ´õ¿í Ä£¼÷ÇÏ°Ô ¸¸µé°í, À¯ÀüüÇÐ ¹× ºÐÀÚ»ý¹°ÇÐ ºÐ¾ßÀÇ ¹ß°ßÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù.

À¯ÀüÀÚ ¿¹Ãø Åø ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

À¯ÀüÀÚ ¿¹Ãø Åø ½ÃÀåÀÇ ¼ºÀåÀº À¯Àüü ¿¬±¸¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡, ¹ÙÀÌ¿ÀÀÎÆ÷¸Åƽ½º ºÐ¾ß¿¡¼­ÀÇ AI µµÀÔ Áõ°¡, Á¤¹ÐÀÇ·á¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡ µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. Àΰ£ À¯Àüü ÇÁ·ÎÁ§Æ® ¹× ´Ù¾çÇÑ ±¹°¡ À¯Àüü ÇÁ·ÎÁ§Æ®¿Í °°Àº ´ë±Ô¸ð ½ÃÄö½Ì ÇÁ·ÎÁ§Æ®°¡ È®´ëµÊ¿¡ µû¶ó °í±Þ À¯ÀüÀÚ ÁÖ¼® µµ±¸¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Á¦¾à ¾÷°è°¡ ½Å¾à °³¹ß ¹× ¹ÙÀÌ¿À¸¶Ä¿ ½Äº°À» À§ÇØ À¯ÀüÀÚ ¿¹Ãø¿¡ ÀÇÁ¸Çϰí ÀÖ´Â °ÍÀÌ ½ÃÀå ¼ºÀåÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

¶ÇÇÑ, Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ°ú AI ±â¹Ý À¯Àüü ºÐ¼®ÀÇ ¹ßÀüÀ¸·Î À¯ÀüÀÚ ¿¹Ãø ÅøÀÇ È®À强°ú È¿À²¼ºÀÌ Çâ»óµÇ¾î Àü ¼¼°è ¿¬±¸ÀÚµéÀÌ º¸´Ù ½±°Ô ÀÌ¿ëÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ³ó¾÷, ÇÕ¼º»ý¹°ÇÐ, »ý¸í°øÇÐ ºÐ¾ß¿¡¼­ °è»ê»ý¹°ÇÐÀÌ ÅëÇյǰí ÀÖ´Â °Íµµ À¯ÀüÀÚ ¿¹Ãø ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. À¯Àüü µ¥ÀÌÅͰ¡ °è¼Ó Áõ°¡ÇÏ°í ¹ÙÀÌ¿ÀÀÎÆ÷¸Åƽ½ºÀÇ ¿ª·®ÀÌ ¹ßÀüÇÔ¿¡ µû¶ó À¯ÀüÀÚ ¿¹Ãø Åø ½ÃÀåÀº È®´ëµÇ°í À¯ÀüÇÐ, ÀÇÇÐ ¹× ±âŸ ºÐ¾ß¿¡¼­ ȹ±âÀûÀÎ ¹ß°ßÀ» ÃËÁøÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ºÎ¹®

À¯Çü(¼ÒÇÁÆ®¿þ¾î À¯Çü, ¼­ºñ½º À¯Çü), ¹æ¹ý(°æÇèÀû ¹æ¹ý, AB Initio ¹æ¹ý, ±âŸ ¹æ¹ý), ¿ëµµ(Drug Discovery °³¹ß ¿ëµµ, Áø´Ü °³¹ß ¿ëµµ, ±âŸ ¿ëµµ), ÃÖÁ¾ ¿ëµµ(Çмú ¿¬±¸ ¿ëµµ, »ê¾÷ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM ¹× ¾÷°è °íÀ¯ÀÇ SLMÀ» Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹üÀ» µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Gene Prediction Tools Market to Reach US$462.8 Million by 2030

The global market for Gene Prediction Tools estimated at US$159.6 Million in the year 2024, is expected to reach US$462.8 Million by 2030, growing at a CAGR of 19.4% over the analysis period 2024-2030. Software Type, one of the segments analyzed in the report, is expected to record a 20.9% CAGR and reach US$349.6 Million by the end of the analysis period. Growth in the Services Type segment is estimated at 15.5% CAGR over the analysis period.

The U.S. Market is Estimated at US$43.5 Million While China is Forecast to Grow at 25.7% CAGR

The Gene Prediction Tools market in the U.S. is estimated at US$43.5 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$105.7 Million by the year 2030 trailing a CAGR of 25.7% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 14.3% and 17.6% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 15.5% CAGR.

Global Gene Prediction Tools Market - Key Trends & Drivers Summarized

How Are Gene Prediction Tools Enhancing Genomic Research?

Gene prediction tools have become a cornerstone of genomic research, enabling scientists to identify genes within DNA sequences, analyze genetic functions, and understand evolutionary relationships. These computational tools use advanced algorithms, machine learning models, and bioinformatics techniques to predict protein-coding genes, regulatory elements, and non-coding RNA sequences. As genomic data continues to expand, gene prediction tools have become essential for accelerating discoveries in genetics, biotechnology, and precision medicine.

The increasing availability of next-generation sequencing (NGS) data has driven the demand for sophisticated gene prediction software that can process vast genomic datasets with high accuracy. Researchers rely on these tools to annotate genomes, identify disease-associated genes, and explore gene regulatory networks. Additionally, AI-powered gene prediction models are transforming genomic research by improving the accuracy of gene annotation and enabling the discovery of novel genetic elements. As genomic technologies evolve, gene prediction tools are playing a critical role in advancing personalized medicine, drug discovery, and synthetic biology applications.

Which Scientific Fields Are Benefiting the Most from Gene Prediction Technologies?

The healthcare and pharmaceutical industries are among the primary beneficiaries of gene prediction tools, using these technologies to identify potential drug targets, understand disease mechanisms, and develop gene-based therapies. Predictive genomics is increasingly being integrated into precision medicine, allowing clinicians to tailor treatments based on an individual’s genetic profile. Additionally, gene prediction tools are facilitating the identification of cancer-related mutations, leading to the development of targeted therapies and immunotherapies.

In agriculture, gene prediction technologies are enabling crop scientists to identify genes responsible for yield, drought resistance, and pest resistance. By predicting gene functions in plant genomes, researchers can develop genetically improved crops without the need for extensive field trials. The field of synthetic biology is also leveraging gene prediction tools to engineer microbial genomes for biofuel production, bioremediation, and industrial enzyme development. As computational biology continues to advance, gene prediction tools are being integrated into a wide range of scientific disciplines, driving innovation across multiple sectors.

What Are the Latest Technological Innovations in Gene Prediction?

Gene prediction tools have undergone significant technological advancements, improving accuracy, efficiency, and scalability. Machine learning and AI-driven models have enhanced the ability to detect coding and non-coding genes, even in complex or poorly annotated genomes. Deep learning algorithms are now capable of analyzing vast genomic datasets to identify functional gene elements with unprecedented precision.

Additionally, cloud-based gene prediction platforms have revolutionized data processing, enabling researchers to conduct large-scale genomic analysis without requiring extensive computational infrastructure. The integration of gene prediction with single-cell sequencing technologies has further expanded the capabilities of these tools, allowing for more detailed exploration of gene expression patterns. These innovations are making gene prediction more accessible to researchers and accelerating discoveries in genomics and molecular biology.

What Factors Are Fueling the Growth of the Gene Prediction Tools Market?

The growth in the gene prediction tools market is driven by several factors, including increasing investments in genomic research, the rising adoption of AI in bioinformatics, and the growing need for precision medicine. The expansion of large-scale sequencing projects, such as the Human Genome Project and various national genome initiatives, has created a demand for advanced gene annotation tools. The pharmaceutical industry’s reliance on gene prediction for drug discovery and biomarker identification has further propelled market growth.

Additionally, advancements in cloud computing and AI-driven genomic analysis have improved the scalability and efficiency of gene prediction tools, making them more accessible to researchers worldwide. The growing integration of computational biology in agriculture, synthetic biology, and biotechnology is also driving demand for gene prediction technologies. As genomic data continues to grow and bioinformatics capabilities advance, the market for gene prediction tools is expected to expand, facilitating groundbreaking discoveries in genetics, medicine, and beyond.

SCOPE OF STUDY:

The report analyzes the Gene Prediction Tools market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Type (Software Type, Services Type); Method (Empirical Methods, AB Initio Methods, Other Methods); Application (Drug Discovery & Development Application, Diagnostics Development Application, Other Applications); End-Use (Academic & Research End-Use, Industrial End-Use)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 36 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â