¼¼°èÀÇ Çö󽺹̵å Á¤Á¦ ½ÃÀå
Plasmid Purification
»óǰÄÚµå : 1777436
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 471 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,239,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,719,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ Çö󽺹̵å Á¤Á¦ ½ÃÀåÀº 2030³â±îÁö 35¾ï ´Þ·¯¿¡ À̸¦ Àü¸Á

2024³â¿¡ 19¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â Çö󽺹̵å Á¤Á¦ ¼¼°è ½ÃÀåÀº 2024-2030³â°£ CAGR 11.2%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 35¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ Á¦Ç°Àº CAGR 12.8%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 23¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¼­ºñ½º ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£Áß CAGR 8.6%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 5¾ï 740¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR15.4%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ Çö󽺹̵å Á¤Á¦ ½ÃÀåÀº 2024³â¿¡ 5¾ï 740¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 7¾ï 3,980¸¸ ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 15.4%·Î ÃßÁ¤µË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î¼­´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 7.9%¿Í 10.0%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 8.9%¸¦ ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù.

¼¼°èÀÇ Çö󽺹̵å Á¤Á¦ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

Çö󽺹̵å Á¤Á¦ ½ÃÀåÀº À¯ÀüÀÚ Ä¡·á, mRNA ¹é½Å »ý»ê, ¼¼Æ÷¹è¾ç ¸é¿ªÄ¡·á¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ºü¸£°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. Çö󽺹̵å DNA(pDNA)´Â À¯Àü°øÇÐ, ¹ÙÀÌ·¯½º º¤ÅÍ Á¦Á¶, CRISPR À¯Àüü ÆíÁý¿¡¼­ Áß¿äÇÑ ±¸¼º¿ä¼ÒÀ̸ç, ±× Á¤Á¦´Â ¹ÙÀÌ¿À ÀǾàǰ Á¦Á¶¿¡¼­ ÇʼöÀûÀÎ ´Ü°èÀÔ´Ï´Ù. »ý¸í°øÇÐ-±â¾÷°ú ¿¬±¸±â°üÀÌ ÀÓ»ó Àû¿ëÀ» À§ÇØ °í¼øµµ, ³»µ¶¼Ò ¾ø´Â Çö󽺹̵带 ã´Â °¡¿îµ¥, Å©·Î¸¶Åä±×·¡ÇÇ, ¿©°ú, ÀÚµ¿ Á¤Á¦ ±â¼úÀÇ Çõ½ÅÀÌ ¾÷°è¸¦ º¯È­½Ã۰í ÀÖ½À´Ï´Ù.

½ÃÀåÀÇ ÁÖ¿ä µ¿ÇâÀº ½ºÄÉÀÏ·¯ºíÇϰí GMP¸¦ ÁؼöÇÏ´Â Çö󽺹̵å Á¤Á¦ ±â¼úÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. À¯ÀüÀÚº£½º ÀǾàǰÀÌ ÀüÀÓ»ó ¿¬±¸¿¡¼­ ´ë±Ô¸ð »ó¾÷È­·Î ÀüȯÇÏ´Â °¡¿îµ¥, ±âÁ¸ÀÇ ¾ËÄ®¸® ¿ëÇØ º£½º Á¤Á¦¹ýÀº °í¼öÀ²ÀÇ ÀÚµ¿È­µÈ ±ÔÁ¦ Áؼö °øÁ¤À¸·Î ´ëüµÇ°í ÀÖ½À´Ï´Ù. Çö󽺹̵å DNA ±â¹Ý ¹é½Å, ºñ¹ÙÀÌ·¯½º¼º À¯ÀüÀÚ Ä¡·á, ÀçÁ¶ÇÕ ´Ü¹éÁú »ý»ê Áõ°¡·Î ÀÎÇØ ¹èÄ¡ Àϰü¼º, ÃÖ¼Ò ¿À¿°, ³ôÀº ȸ¼öÀ²À» º¸ÀåÇÏ´Â °í¼øµµ Á¤Á¦ Ç÷§Æû¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

mRNA ¹é½Å °³¹ß¿¡¼­ ü¿Ü Àü»ç(IVT)¿ë °í¼øµµ Çö󽺹̵å DNA¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖ´Â °Íµµ Å« ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. Äڷγª19 ÆÒµ¥¹ÍÀº Çö󽺹̵å DNA°¡ IVT º£À̽ºÀÇ mRNA ÇÕ¼ºÀ» À§ÇÑ DNA ÅÛÇø´À¸·Î ÀÛ¿ëÇÏ´Â mRNA ¹é½Å¿¡ ´ëÇÑ ¼ö¿ä¸¦ °¡¼ÓÈ­Çß½À´Ï´Ù. »ý¸í°øÇÐ ±â¾÷µéÀÌ Â÷¼¼´ë RNA ±â¹Ý Ä¡·áÁ¦¿¡ ÅõÀÚÇϰí ÀÖ´Â °¡¿îµ¥, Á¦Á¶¾÷üµéÀº ¾ö°ÝÇÑ ±ÔÁ¦ ¹× ǰÁú °ü¸® ±âÁØÀ» ÃæÁ·ÇÏ´Â IVT ´ëÀÀ ¿£µµÅå½Å ÇÁ¸® Çö󽺹̵带 Á¦°øÇϱâ À§ÇØ Çö󽺹̵å Á¤Á¦ ¿öÅ©Ç÷ο츦 ÃÖÀûÈ­Çϰí ÀÖ½À´Ï´Ù.

¶ÇÇÑ, Çö󽺹̵å Á¤Á¦ÀÇ ±ÔÁ¦ Áؼö¿Í Ç¥ÁØÈ­°¡ ½ÃÀå ¿ªÇÐÀ» Çü¼ºÇϰí ÀÖ½À´Ï´Ù. FDA, EMA, WHO µîÀÇ ±â°üÀº À¯ÀüÀÚ ÀçÁ¶ÇÕÄ¡·á, ¼¼Æ÷¹è¾çÄ¡·á, ¸ÂÃãÀÇ·á¿¡ »ç¿ëµÇ´Â Çö󽺹̵å DNA¿¡ ´ëÇØ ¾ö°ÝÇÑ GMP ¿ä°ÇÀ» Àû¿ëÇϰí ÀÖ½À´Ï´Ù. ÀÌ¿¡ µû¶ó °øÁ¤ ºÐ¼®, ÀζóÀÎ Á¤Á¦ ¸ð´ÏÅ͸µ, ÀÚµ¿ ³»µ¶¼Ò Á¦°Å ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡ÇÏ¿© Çö󽺹̵å DNA°¡ ÀÓ»ó Àû¿ë¿¡ ÇÊ¿äÇÑ ¼øµµ, ¿ª°¡, ¹«±Õ¼º ¿ä°ÇÀ» ÃæÁ·ÇÒ ¼ö ÀÖµµ·Ï Çϰí ÀÖ½À´Ï´Ù.

±â¼ú Çõ½ÅÀº Çö󽺹̵å Á¤Á¦¸¦ ¾î¶»°Ô º¯È­½Ã۰í Àִ°¡?

Çö󽺹̵å DNAÀÇ ÃßÃâ, Á¤Á¦ ¹× ǰÁú °ü¸®ÀÇ ¹ßÀüÀº ¹ÙÀÌ¿ÀÇÁ·Î¼¼½º¿¡ Çõ¸íÀ» ÀÏÀ¸ÄÑ ´õ ³ôÀº ¼öÀ², ´õ ³ªÀº È®À强, ºÒ¼ø¹° °¨¼Ò¸¦ °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù. ±âÁ¸ÀÇ ¾ËÄ®¸® ¿ëÇØÁ¶ ÃßÃâ¹ýÀº ¿¬±¸ ȯ°æ¿¡¼­ ³Î¸® »ç¿ëµÇ°í ÀÖÁö¸¸, È®À强 ¹®Á¦¿Í ¼øµµÀÇ ÇѰ迡 Á÷¸éÇÏ¿© Â÷¼¼´ë Çö󽺹̵å Á¤Á¦ ±â¼ú °³¹ßÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

°¡Àå Áß¿äÇÑ ±â¼ú Çõ½Å Áß Çϳª´Â °íÇØ»óµµ Å©·Î¸¶Åä±×·¡ÇÇ ±â¹ÝÀÇ Á¤Á¦ ±â¼úÀÔ´Ï´Ù. °í±Þ À½À̿ ±³È¯ Å©·Î¸¶Åä±×·¡ÇÇ(AEX), ¼Ò¼ö¼º »óÈ£ÀÛ¿ë Å©·Î¸¶Åä±×·¡ÇÇ(HIC), Å©±â ¹èÁ¦ Å©·Î¸¶Åä±×·¡ÇÇ(SEC)´Â ±âÁ¸ÀÇ Ä§Àü¹ý ¹× ¼öÁö º£½º ¹æ¹ýÀ» ´ëüÇÏ¿© ´õ ³ôÀº ȸ¼öÀ², ´õ ³·Àº ³»µ¶¼Ò ¼öÁØ, ½ºÆÛÄÚÀÏÈ­ Çö󽺹̵å DNA ¹× À¯Àüü DNA, RNA, ¼÷ÁÖ ¼¼Æ÷ ´Ü¹éÁú µîÀÇ ¿À¿°¹°Áú°ú ´õ ³ªÀº ºÐ¸®¸¦ Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Å©·Î¸¶Åä±×·¡ÇÇ Ç÷§ÆûÀº GMP µî±ÞÀÇ Çö󽺹̵å Á¤Á¦¿¡ ÇʼöÀûÀ̸ç, À¯ÀüÀÚ Ä¡·á ¹× ¹é½Å ÀÀ¿ëÀ» À§ÇÑ Çö󽺹̵åÀÇ ¹«°á¼ºÀ» º¸ÀåÇÕ´Ï´Ù.

¶Ç ´Ù¸¥ Å« µ¹ÆÄ±¸´Â ¸·»ó¸· Á¢¼± À¯µ¿ ¿©°ú(TFF) Á¤Á¦·Î, ½ºÄÉÀÏ·¯ºíÇÏ°í °íÈ¿À²ÀûÀÎ Çö󽺹̵å DNA ºÐ¸®°¡ °¡´ÉÇÏ´Ù´Â Á¡ÀÔ´Ï´Ù. ÇÑ¿Ü ¿©°ú¸·°ú Åõ¼® ¿©°ú¸·À» °®Ãá TFF ½Ã½ºÅÛÀº Çö󽺹̵å DNAÀÇ ³óÃà°ú ¿ÏÃæ¾× ±³È¯À» ¿¬¼ÓÀûÀ¸·Î ¼öÇàÇÏ¿© ¼öÀ²ÀÇ Àϰü¼º°ú °øÁ¤ È¿À²À» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹æ¹ýÀº Çö󽺹̵忡 °¡ÇØÁö´Â Àü´Ü ÀÀ·ÂÀ» ÃÖ¼ÒÈ­ÇÏ¿© °íÈ¿À² À¯ÀüÀÚ µµÀÔ ¹× Ä¡·á ÀÀ¿ë ºÐ¾ß¿¡ ÇʼöÀûÀÎ ½ºÆÛÄÚÀÏ ±¸Á¶¸¦ À¯ÁöÇÕ´Ï´Ù.

¶ÇÇÑ, ³»µ¶¼Ò Á¦°Å ±â¼úÀº Çö󽺹̵å Á¤Á¦ÀÇ ÃÊÁ¡ÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¼¼±ÕÀÇ ¼¼Æ÷º®¿¡¼­ À¯·¡ÇÑ ³»µ¶¼Ò´Â ¿°Áõ ¹ÝÀÀ°ú ¸é¿ª°è ÇÕº´ÁõÀ» À¯¹ßÇÒ ¼ö Àֱ⠶§¹®¿¡ À¯ÀüÀÚ Ä¡·á¿Í ¹é½Å »ý»ê¿¡ ½É°¢ÇÑ À§ÇèÀ» ÃÊ·¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. Ä£¹Ðµµ°¡ ³ôÀº ³»µ¶¼Ò Á¦°Å ¼öÁö, È¿¼Ò ºÐÇØ ±â¼ú, ÀÌÁ߸· ¿©°ú ½Ã½ºÅÛÀ» äÅÃÇÏ¿© Çö󽺹̵å DNA´Â ÀÓ»ó ¹× »ó¾÷Àû ÀÀ¿ë¿¡ ÇÊ¿äÇÑ ÃÊÀú ³»µ¶¼Ò ÀÓ°èÄ¡¸¦ ÃæÁ·ÇÕ´Ï´Ù.

¶ÇÇÑ, ÀÚµ¿È­ ¹× AI ±â¹Ý °øÁ¤ Á¦¾î´Â Çö󽺹̵å Á¤Á¦ÀÇ È¿À²¼ºÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù. AI¸¦ Ȱ¿ëÇÑ ¹ÙÀÌ¿ÀÇÁ·Î¼¼½º ¸ð´ÏÅ͸µ Åø, ¿¹Ãø ºÐ¼®, ½Ç½Ã°£ Çö󽺹̵å Á¤·®È­ ½Ã½ºÅÛÀº ¼öÀ² ¿¹Ãø °¡´É¼º, ºÒ¼ø¹° °ËÃâ, °øÁ¤ Ç¥ÁØÈ­¸¦ °³¼±Çϰí ÀÖ½À´Ï´Ù. ¸Ó½Å·¯´× ¾Ë°í¸®ÁòÀ» Å©·Î¸¶Åä±×·¡ÇÇ ¹× ¿©°ú Ç÷§Æû°ú ÅëÇÕÇÏ¿© À¯·®, ¿ÏÃæ¾× Á¶¼º, Á¤Á¦ »çÀÌŬ ½Ã°£À» ÃÖÀûÈ­ÇÏ°í ¹èÄ¡ °£ ÆíÂ÷¸¦ ÁÙ¿© »ý»ê È®À强À» ³ôÀÔ´Ï´Ù.

½ÃÀå ¿ªÇÐ ¹× ÃÖÁ¾ ¿ëµµ´Â ¾î¶»°Ô ¼ö¿ä¸¦ Çü¼ºÇϰí Àִ°¡?

°íǰÁú Çö󽺹̵å DNA Á¤Á¦¿¡ ´ëÇÑ ¼ö¿ä´Â À¯ÀüÀÚ Ä¡·á, mRNA ¹é½Å, ÇÕ¼º»ý¹°ÇÐ ºÐ¾ß¿¡¼­ÀÇ ÀÀ¿ë È®´ë¿¡ µû¶ó Çü¼ºµÇ°í ÀÖÀ¸¸ç, ¹ÙÀÌ¿À Á¦¾à»ç, À§Å¹»ý»ê¾÷ü, ¿¬±¸±â°üÀÌ ½ÃÀå È®´ë¸¦ ÁÖµµÇϰí ÀÖ½À´Ï´Ù.

°¡Àå Å« ÀÀ¿ë ºÐ¾ß Áß Çϳª´Â À¯ÀüÀÚ Ä¡·á¿ë ¹ÙÀÌ·¯½º º¤ÅÍ »ý»êÀ̸ç, Çö󽺹̵å DNA´Â AAV, ·»Ä¡¹ÙÀÌ·¯½º, ¾Æµ¥³ë¹ÙÀÌ·¯½º º¤ÅÍ »ý»êÀÇ ÁÖÇüÀÌ µË´Ï´Ù. CAR-T ¼¼Æ÷ Ä¡·á, CRISPR ±â¹Ý À¯ÀüÀÚ ÆíÁý ¹× ºñ¹ÙÀÌ·¯½º À¯ÀüÀÚ µµÀÔ ½Ã½ºÅÛÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÔ¿¡ µû¶ó °í¼øµµ, GMP µî±ÞÀÇ Çö󽺹̵å DNA¿¡ ´ëÇÑ Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖÀ¸¸ç, ¹ÙÀÌ¿À¾÷üµéÀº Çö󽺹̵å Á¤Á¦ È¿À²°ú È®À强À» ÃÖÀûÈ­ÇØ¾ß ÇÒ Çʿ伺ÀÌ ´ëµÎµÇ°í ÀÖ½À´Ï´Ù. ÃÖÀûÈ­ÇÒ Çʿ䰡 ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ Áß¿äÇÑ ¼ºÀå ºÐ¾ß´Â Çö󽺹̵å DNA¸¦ ü¿ÜÀü»ç(IVT)¸¦ À§ÇÑ DNA ÅÛÇø´À¸·Î »ç¿ëÇÏ´Â mRNA ±â¹Ý ¹é½Å°ú Ä¡·áÁ¦ÀÔ´Ï´Ù. °¨¿°, Á¾¾ç, ÀÚ°¡¸é¿ªÁúȯÀ» À§ÇÑ mRNA ¹é½Å °³¹ßÀÌ ±ÞÁõÇϸ鼭 IVT ´ëÀÀ Çö󽺹̵å DNA¿¡ ´ëÇÑ ¼ö¿ä°¡ °¡¼ÓÈ­µÇ°í ÀÖÀ¸¸ç, ³»µ¶¼Ò¸¦ Æ÷ÇÔÇÏÁö ¾Ê´Â °í¼öÀ²ÀÇ DNA ÅÛÇø´À» È®º¸Çϱâ À§ÇÑ °íÃæ½Çµµ Á¤Á¦±â¼úÀÌ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. °³¹ß-Á¦Á¶¼öʱâ°ü(CDMO)Àº RNA ±â¹Ý Ä¡·áÁ¦ ¼ö¿ä Áõ°¡¿¡ ´ëÀÀÇϱâ À§ÇØ ½ºÄÉÀÏ·¯ºíÇÑ Çö󽺹̵å Á¤Á¦ ¼Ö·ç¼Ç¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù.

ÇÕ¼º»ý¹°ÇÐ ¹× Á¤¹ÐÀÇ·á ºÐ¾ßµµ ¸ÂÃãÇü Çö󽺹̵å Á¤Á¦ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¿¬±¸ÀÚµéÀÌ ´ë»ç°øÇÐ, ´Ü¹éÁú ÇÕ¼º, À¯ÀüÀÚ È¸·Î ¼³°è¸¦ À§ÇÑ Â÷¼¼´ë ÇÕ¼º Çö󽺹̵带 °³¹ßÇÔ¿¡ µû¶ó, °íÈ¿À² ¸ðµâÈ­µÈ Çö󽺹̵å Á¤Á¦ Ç÷§Æû¿¡ ´ëÇÑ ´ÏÁî°¡ È®´ëµÇ°í ÀÖ½À´Ï´Ù. Çмú ¿¬±¸½Ç, »ý¸í°øÇÐ ½ºÅ¸Æ®¾÷, Á¦¾àȸ»çµéÀº À¯¿¬ÇÑ ¼Ò·® Á¤Á¦ ¼­ºñ½º¸¦ ÇÊ¿ä·Î Çϰí ÀÖÀ¸¸ç, ÀÌ´Â ÇÕ¼º »ý¹°ÇÐ ¿ëµµ¸¦ À§ÇÑ ¸ÂÃãÇü Çö󽺹̵å Á¤Á¦ ¿öÅ©Ç÷οìÀÇ ºÎ»óÀ¸·Î À̾îÁö°í ÀÖ½À´Ï´Ù.

Çö󽺹̵å Á¤Á¦ ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

Çö󽺹̵å Á¤Á¦ ½ÃÀåÀÇ ¼ºÀåÀº ¹ÙÀÌ¿ÀÇÁ·Î¼¼½º ±â¼úÀÇ ¹ßÀü, °í¼øµµ Çö󽺹̵å DNA¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, GMP »ý»êÀÇ È®À强, ±ÔÁ¦ ¿ä°ÇÀÇ ÁøÈ­ µî ¿©·¯ °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. À¯ÀüÀÚ Ä¡·á, mRNA ¹é½Å, ÇÕ¼º»ý¹°ÇÐ ¿ëµµÀÇ ±Þ°ÝÇÑ Áõ°¡´Â Ãʼø¼ö Çö󽺹̵å DNA¿¡ ´ëÇÑ Àü·Ê ¾ø´Â ¼ö¿ä¸¦ âÃâÇϰí ÀÖÀ¸¸ç, »ý¸í°øÇÐ ±â¾÷ ¹× ¼öŹ Á¦Á¶¾÷üµéÀÌ Á¤Á¦ °øÁ¤ ÃÖÀûÈ­¸¦ À§ÇÑ ÅõÀÚ¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ Áß Çϳª´Â À¯ÀüÀÚ ÀÇ·á¿Í ¼¼Æ÷Ä¡·á ºÐ¾ßÀÇ ¹ÙÀÌ¿ÀÀǾàǰ ¿¬±¸°³¹ß È®´ëÀÔ´Ï´Ù. CAR-T Ä¡·á, Àç»ýÀÇ·á, À¯Àüü ÆíÁý Ç÷§ÆûÀÌ ÀÓ»ó¿¡ º¸±ÞµÇ¸é¼­ °í¼öÀ², ¹«°øÇØ Çö󽺹̵å DNA¿¡ ´ëÇÑ ´ÏÁî°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. µû¶ó¼­ »ó¾÷Àû ±Ô¸ðÀÇ ÇÃ¶ó½º¹Ìµå »ý»ê ¿ä±¸¿¡ ´ëÀÀÇϱâ À§ÇØ Å©·Î¸¶Åä±×·¡ÇÇ, Çѿܿ©°ú, ÀÚµ¿ ¿£µµÅå½Å Á¦°Å ±â¼úÀ» °áÇÕÇÑ ÇÏÀ̺긮µå Á¤Á¦ ¿öÅ©Ç÷οìÀÇ Ã¤ÅÃÀÌ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ Áß¿äÇÑ ¿ä¼Ò´Â ±ÔÁ¦ Áؼö¿Í ǰÁú °ü¸® °­È­ÀÔ´Ï´Ù. FDA¿Í EMAÀÇ °¡À̵å¶óÀÎÀÌ À¯ÀüÀÚ º¯Çü Ä¡·á¿¡ ¾ö°ÝÇÑ ¼øµµ »ç¾çÀ» ¿ä±¸Çϰí Àֱ⠶§¹®¿¡ Çö󽺹̵å¸ÞÄ«´Â Çö󽺹̵å DNA°¡ ÀÓ»ó µî±Þ ±âÁØÀ» ÃæÁ·ÇÏ´ÂÁö È®ÀÎÇϱâ À§ÇØ °í±Þ ºÐ¼®, °øÁ¤ °ËÁõ, ¹«±Õ¼º º¸Áõ¿¡ ÁßÁ¡À» µÎ°í ÀÖ½À´Ï´Ù. ÀÏȸ¿ë ¹ÙÀÌ¿ÀÇÁ·Î¼¼½Ì ½Ã½ºÅÛ, ±³Â÷ Á¤Á¦ ¿öÅ©Ç÷οì, ½Ç½Ã°£ °øÁ¤ ¸ð´ÏÅ͸µÀÇ µîÀåÀº ±ÔÁ¦ ´ç±¹ÀÇ ½ÂÀÎÀ» À§ÇÑ GMP Áؼö ÇÃ¶ó½º¹Ìµå »ý»êÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.

¶ÇÇÑ, AI ±â¹Ý ¹ÙÀÌ¿À Á¦Á¶ ¹× ÀÚµ¿È­ÀÇ ºÎ»óÀ¸·Î ÀÎÇØ Çö󽺹̵å Á¤Á¦ÀÇ È¿À²¼ºÀÌ Å©°Ô Çâ»óµÇ°í ÀÖ½À´Ï´Ù. AI¸¦ Ȱ¿ëÇÑ Å©·Î¸¶Åä±×·¡ÇÇ Á¦¾î ½Ã½ºÅÛ, ¿¹Ãø ºÒ¼ø¹° °ËÃâ, ÀÚµ¿ ¿ÏÃæ¾× ±³È¯ Ç÷§ÆûÀº ¼öÀ² ÀçÇö¼º, ºÒ¼ø¹° Á¦°Å È¿À², »ý»ê ½ºÄÉÁÙ¸µ °¡´É¼ºÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú º¯È­·Î ÀÎÇØ »ý¸í°øÇÐ ±â¾÷ ¹× CDMO´Â °í¼øµµ, Àúºñ¿ëÀÇ Çö󽺹̵å Á¤Á¦¸¦ º¸´Ù ½±°Ô ÀÌ¿ëÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.

À¯ÀüÀÚ Ä¡·á, mRNA ¹é½Å, ÇÕ¼º»ý¹°Çп¡ ´ëÇÑ ÀÀ¿ëÀÌ °è¼Ó È®´ëµÇ°í ÀÖ´Â °¡¿îµ¥, Çö󽺹̵å Á¤Á¦ ½ÃÀåÀº Áö¼ÓÀûÀÎ ¼ºÀå¼¼¸¦ º¸À̰í ÀÖ½À´Ï´Ù. °íÈ¿À² Á¤Á¦ ±â¼ú, AI ±â¹Ý °øÁ¤ Á¦¾î, ±ÔÁ¦ Áؼö Á¦Á¶ ¼Ö·ç¼Ç¿¡ ÅõÀÚÇÏ´Â ±â¾÷Àº ¹ÙÀÌ¿À ÀǾàǰ Çõ½ÅÀÇ ´ÙÀ½ ´Ü°è¸¦ ¼±µµÇϰí À¯ÀüÀÚ ÀÇÇÐÀÇ ¹Ì·¡¸¦ À§ÇÑ °íǰÁú Çö󽺹̵å DNA »ý»êÀ» º¸ÀåÇÒ ¼ö ÀÖ½À´Ï´Ù.

ºÎ¹®

Á¦°ø(Á¦Ç°, ¼­ºñ½º), µî±Þ(ºÐÀÚ µî±Þ, Æ®·£½ºÆå¼Ç±×·¹À̵å), ¿ëµµ(Ŭ·Î´×¡¤´Ü¹éÁú Áú¹ßÇö, Æ®·£½ºÆå¼Ç¡¤À¯ÀüÀÚ ÆíÁý, ±âŸ), ÃÖÁ¾ ¿ëµµ(Á¦¾à ±â¾÷ ¹× ¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö ±â¾÷, Çмú±â°ü ¹× ¿¬±¸±â°ü, ¼öŹ ¿¬±¸±â°ü)

Á¶»ç ´ë»ó ±â¾÷ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ¼­, ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Plasmid Purification Market to Reach US$3.5 Billion by 2030

The global market for Plasmid Purification estimated at US$1.9 Billion in the year 2024, is expected to reach US$3.5 Billion by 2030, growing at a CAGR of 11.2% over the analysis period 2024-2030. Products, one of the segments analyzed in the report, is expected to record a 12.8% CAGR and reach US$2.3 Billion by the end of the analysis period. Growth in the Services segment is estimated at 8.6% CAGR over the analysis period.

The U.S. Market is Estimated at US$507.4 Million While China is Forecast to Grow at 15.4% CAGR

The Plasmid Purification market in the U.S. is estimated at US$507.4 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$739.8 Million by the year 2030 trailing a CAGR of 15.4% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 7.9% and 10.0% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 8.9% CAGR.

Global Plasmid Purification Market - Key Trends & Drivers Summarized

The plasmid purification market is expanding rapidly, driven by the growing demand for gene therapy, mRNA vaccine production, and cell-based immunotherapies. Plasmid DNA (pDNA) is a critical component in genetic engineering, viral vector manufacturing, and CRISPR genome editing, making its purification an essential step in biopharmaceutical production. As biotech companies and research institutions seek high-purity, endotoxin-free plasmids for clinical applications, innovations in chromatography, filtration, and automated purification technologies are transforming the industry.

A key trend in the market is the increasing adoption of scalable, GMP-compliant plasmid purification techniques. With gene-based medicines moving from preclinical research to large-scale commercialization, traditional alkaline lysis-based purification methods are being replaced by high-yield, automated, and regulatory-compliant processes. The rise of plasmid DNA-based vaccines, non-viral gene therapies, and recombinant protein production has driven demand for high-throughput purification platforms that ensure batch consistency, minimal contamination, and high recovery rates.

Another major driver is the growing focus on high-purity plasmid DNA for in vitro transcription (IVT) in mRNA vaccine development. The COVID-19 pandemic accelerated demand for mRNA vaccines, where plasmid DNA serves as the DNA template for IVT-based mRNA synthesis. With biotech firms investing in next-generation RNA-based therapeutics, manufacturers are optimizing plasmid purification workflows to deliver IVT-ready, endotoxin-free plasmids that meet strict regulatory and quality control standards.

Additionally, regulatory compliance and standardization in plasmid purification are shaping market dynamics. Agencies such as the FDA, EMA, and WHO are enforcing stringent GMP requirements for plasmid DNA used in gene-modified therapies, cell-based treatments, and personalized medicine. This has led to increased investment in process analytics, in-line purification monitoring, and automated endotoxin removal techniques, ensuring plasmid DNA meets purity, potency, and sterility requirements for clinical applications.

How Are Technological Innovations Transforming Plasmid Purification?

Advancements in plasmid DNA extraction, purification, and quality control are revolutionizing bioprocessing, enabling higher yields, better scalability, and reduced impurities. Traditional alkaline lysis-based extraction methods, while widely used in research settings, face scalability challenges and purity limitations, prompting the development of next-generation plasmid purification technologies.

One of the most significant innovations is high-resolution chromatography-based purification techniques. Advanced anion-exchange chromatography (AEX), hydrophobic interaction chromatography (HIC), and size-exclusion chromatography (SEC) are replacing conventional precipitation and resin-based methods, offering higher recovery rates, lower endotoxin levels, and better separation of supercoiled plasmid DNA from contaminants such as genomic DNA, RNA, and host cell proteins. These chromatography platforms are essential for GMP-grade plasmid purification, ensuring plasmid integrity for gene therapy and vaccine applications.

Another major breakthrough is membrane-based and tangential flow filtration (TFF) purification, which enables scalable, high-throughput plasmid DNA isolation. TFF systems, equipped with ultrafiltration and diafiltration membranes, allow for continuous plasmid DNA concentration and buffer exchange, improving yield consistency and process efficiency. These methods minimize shear stress on plasmids, preserving their supercoiled conformation, which is crucial for high-efficiency gene transfection and therapeutic applications.

Additionally, endotoxin removal technologies have become a focal point in plasmid purification. Endotoxins, derived from bacterial cell walls, pose a significant risk in gene therapy and vaccine production, as they can trigger inflammatory responses and immune system complications. The adoption of affinity-based endotoxin removal resins, enzymatic degradation techniques, and dual-membrane filtration systems is ensuring plasmid DNA meets ultra-low endotoxin thresholds required for clinical and commercial applications.

Moreover, automation and AI-driven process control are enhancing plasmid purification efficiency. AI-powered bioprocess monitoring tools, predictive analytics, and real-time plasmid quantification systems are improving yield predictability, impurity detection, and process standardization. The integration of machine learning algorithms with chromatography and filtration platforms is optimizing flow rates, buffer compositions, and purification cycle times, reducing batch-to-batch variability and enhancing production scalability.

How Are Market Dynamics and End-Use Applications Shaping Demand?

The demand for high-quality plasmid DNA purification is being shaped by expanding applications in gene therapies, mRNA vaccines, and synthetic biology, with biopharmaceutical companies, contract manufacturers, and research institutions driving market expansion.

One of the largest application segments is viral vector production for gene therapy, where plasmid DNA serves as a template for AAV, lentivirus, and adenoviral vector manufacturing. The growing adoption of CAR-T cell therapies, CRISPR-based gene editing, and non-viral gene delivery systems has increased the need for high-purity, GMP-grade plasmid DNA, pushing biomanufacturers to optimize plasmid purification efficiency and scalability.

Another key growth area is mRNA-based vaccines and therapeutics, where plasmid DNA is used as a DNA template for in vitro transcription (IVT). The surge in mRNA vaccine development for infectious diseases, oncology, and autoimmune disorders has accelerated the demand for IVT-ready plasmid DNA, requiring high-fidelity purification techniques to ensure endotoxin-free, high-yield DNA templates. Contract development and manufacturing organizations (CDMOs) are investing in scalable plasmid purification solutions to meet the increasing demand for RNA-based therapeutics.

The synthetic biology and precision medicine sectors are also driving the demand for custom plasmid purification solutions. As researchers engineer next-generation synthetic plasmids for metabolic engineering, protein synthesis, and gene circuit design, the need for high-throughput, modular plasmid purification platforms is expanding. Academic labs, biotech startups, and pharmaceutical firms require flexible, small-batch purification services, leading to the rise of custom plasmid purification workflows tailored for synthetic biology applications.

What Factors Are Driving the Growth of the Plasmid Purification Market?

The growth in the plasmid purification market is driven by several factors, including advancements in bioprocessing technology, increasing demand for high-purity plasmid DNA, scalability of GMP production, and evolving regulatory requirements. The surge in gene therapy, mRNA vaccines, and synthetic biology applications is creating unprecedented demand for ultra-pure plasmid DNA, compelling biotech firms and contract manufacturers to invest in purification process optimization.

One of the primary market drivers is the expansion of biopharmaceutical R&D in genetic medicine and cell therapies. With CAR-T therapy, regenerative medicine, and genome editing platforms gaining clinical traction, the need for high-yield, contamination-free plasmid DNA is growing. This has led to the adoption of hybrid purification workflows, combining chromatography, ultrafiltration, and automated endotoxin removal technologies to meet commercial-scale plasmid manufacturing needs.

Another key factor is regulatory compliance and quality control enhancements. With FDA and EMA guidelines requiring stringent purity specifications for gene-modified therapies, plasmid manufacturers are focusing on advanced analytics, process validation, and sterility assurance to ensure plasmid DNA meets clinical-grade standards. The rise of single-use bioprocessing systems, closed-loop purification workflows, and real-time process monitoring is supporting GMP-compliant plasmid production for regulatory approvals.

Additionally, the rise of AI-driven biomanufacturing and automation is transforming plasmid purification efficiency. AI-powered chromatography control systems, predictive impurity detection, and automated buffer exchange platforms are enhancing yield reproducibility, impurity removal efficiency, and production scalability. This technological shift is making high-throughput, low-cost plasmid purification more accessible for biotech firms and CDMOs.

As gene therapy, mRNA vaccines, and synthetic biology applications continue to expand, the plasmid purification market is poised for sustained growth. Companies that invest in high-efficiency purification technologies, AI-driven process control, and regulatory-compliant manufacturing solutions will be well-positioned to lead the next phase of biopharmaceutical innovation, ensuring high-quality plasmid DNA production for the future of genetic medicine.

SCOPE OF STUDY:

The report analyzes the Plasmid Purification market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Offering (Products, Services); Grade (Molecular Grade, Transfection Grade); Application (Cloning & Protein Expression, Transfection & Gene Editing, Others); End-Use (Pharma & Biotech Companies, Academic & Research Institutes, Contract Research Organizations)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 48 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â