¼¼°èÀÇ Çö󽺹̵å DNA Á¦Á¶ ½ÃÀå
Plasmid DNA Manufacturing
»óǰÄÚµå : 1773859
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 475 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,206,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,620,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Çö󽺹̵å DNA Á¦Á¶ ¼¼°è ½ÃÀåÀº 2030³â±îÁö 56¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 21¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â Çö󽺹̵å DNA Á¦Á¶ ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 18.1%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 56¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ R&D µî±ÞÀº CAGR 16.6%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 35¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. GMP µî±Þ ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 21.0%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 5¾ï 6,300¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 24.4%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ Çö󽺹̵å DNA Á¦Á¶ ½ÃÀåÀº 2024³â¿¡ 5¾ï 6,300¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 13¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 24.4%¸¦ ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 14.6%¿Í 16.0%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 15.0%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ Çö󽺹̵å DNA Á¦Á¶ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

Çö󽺹̵å DNA(pDNA) Á¦Á¶ ½ÃÀåÀº À¯ÀüÀÚ Ä¡·á, mRNA ¹é½Å, CRISPR ±â¹Ý À¯Àüü ÆíÁý, ¼¼Æ÷ ±â¹Ý ¸é¿ª¿ä¹ý µî ´Ù¾çÇÑ ºÐ¾ß¿¡ Àû¿ëµÇ¸é¼­ ºü¸£°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. Çö󽺹̵å DNA´Â ¹ÙÀÌ·¯½º º¤ÅÍ »ý»ê, ºñ¹ÙÀÌ·¯½º À¯ÀüÀÚ µµÀÔ, ÀçÁ¶ÇÕ ´Ü¹éÁú ¹ßÇö¿¡ Áß¿äÇÑ ¿ø·á·Î ÀÛ¿ëÇϸç, ¹ÙÀÌ¿ÀÀǾàǰ ¿¬±¸ ¹× »ó¾÷È­¿¡ Áß¿äÇÑ ±¸¼º¿ä¼Ò·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. À¯ÀüÀÚ ±â¹Ý Ä¡·á, ÇÕ¼º»ý¹°ÇÐ, ¸ÂÃãÀÇ·á¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁü¿¡ µû¶ó °í¼øµµ, È®À强, ±ÔÁ¦ Áؼö Çö󽺹̵å DNA »ý»ê¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù.

½ÃÀåÀ» Çü¼ºÇÏ´Â Å« Ãß¼¼´Â ¿¬±¸¿ë¿¡¼­ GMP(¿ì¼öÀǾàǰÁ¦Á¶°ü¸®±âÁØ)·ÎÀÇ ÀüȯÀÔ´Ï´Ù. ¼Ò±Ô¸ð Çö󽺹̵å DNA »ý»êÀº Çмú ¿¬±¸¿¡ ³Î¸® »ç¿ëµÇ¾î ¿ÔÁö¸¸, ÀÓ»ó ´Ü°èÀÇ À¯ÀüÀÚ Ä¡·á ¹× »ó¾÷¿ë mRNA ¹é½ÅÀÇ µîÀåÀ¸·Î GMP¸¦ ÁؼöÇÏ´Â ´ë±Ô¸ð ½Ã¼³ÀÇ Çʿ伺ÀÌ ´ëµÎµÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ º¯È­´Â ±ÔÁ¦ ¿ä°ÇÀ» ÃæÁ·Çϰí ÀÓ»ó Àû¿ëÀ» À§ÇØ ³ôÀº ¼öÀ²°ú ³»µ¶¼Ò°¡ ¾ø´Â Çö󽺹̵å DNA¸¦ º¸ÀåÇϱâ À§ÇØ ¹ÙÀÌ¿À °øÁ¤ ÃÖÀûÈ­, ÷´Ü Á¤Á¦ ±â¼ú ¹× È®Àå °¡´ÉÇÑ »ý»ê Ç÷§Æû¿¡ ´ëÇÑ ÅõÀÚ·Î À̾îÁ³½À´Ï´Ù.

¶Ç ´Ù¸¥ ÁÖ¿ä µ¿·ÂÀº RNA ±â¹Ý Ä¡·áÁ¦, ƯÈ÷ mRNA ¹é½Å °³¹ß¿¡¼­ Çö󽺹̵å DNAÀÇ ¿ªÇÒÀÌ Áõ°¡Çϰí ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. COVID-19 ÆÒµ¥¹ÍÀº mRNA ¹é½Å Á¦Á¶¿¡¼­ ü¿Ü Àü»ç(IVT) DNA ÅÛÇø´À¸·Î Çö󽺹̵å DNAÀÇ Á߿伺À» ºÎ°¢½ÃÄ×½À´Ï´Ù. Á¦¾àȸ»çµéÀÌ °¨¿°¼º Áúȯ, ¾Ï ¸é¿ªÄ¡·á, ´ë»ç¼º Áúȯ¿¡ ´ëÇÑ mRNA ±â¹Ý Ä¡·á¹ýÀ» Áö¼ÓÀûÀ¸·Î ¸ð»öÇÔ¿¡ µû¶ó °íǰÁú Çö󽺹̵å DNA ÅÛÇø´¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. ÀÌ¿¡ µû¶ó IVT ´ëÀÀ ÇÃ¶ó½º¹Ìµå »ý»êÀ» ÃÖÀûÈ­Çϱâ À§ÇÑ ¹ßÈ¿, Á¤Á¦, ÇÃ¶ó½º¹Ìµå ¾ÈÁ¤È­ ±â¼úÀÇ ±â¼ú ¹ßÀüÀÌ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù.

¶ÇÇÑ, FDA, EMA, PMDA µî ±ÔÁ¦ ±â°üÀº À¯ÀüÀÚ º¯Çü Ä¡·á ¹× »ý¹°ÇÐÀû Á¦Á¦¿¡ »ç¿ëµÇ´Â Çö󽺹̵å DNA¿¡ ´ëÇØ ¾ö°ÝÇÑ GMP °¡À̵å¶óÀÎÀ» Á¦Á¤Çϰí ÀÖ½À´Ï´Ù. ÀÌ¿¡ µû¶ó QbD(Quality-by-design) ¿øÄ¢, °í±Þ ºÐ¼® µµ±¸, ¿À¿° Á¦¾î Àü·«ÀÌ Çö󽺹̵å DNA Á¦Á¶¿¡ Àû¿ëµÇ°í ÀÖ½À´Ï´Ù. ±× °á°ú, ¹ÙÀÌ¿À Á¦Á¶¾÷üµéÀº ¹èÄ¡ °£ Àϰü¼º, Çö󽺹̵åÀÇ ¾ÈÁ¤¼º Çâ»ó, ÀÓ»ó Àû¿ëÀ» À§ÇÑ °í¼øµµ ¼öÀ²À» º¸ÀåÇϱâ À§ÇØ È®Àå °¡´ÉÇÏ°í ±ÔÁ¤À» ÁؼöÇÏ´Â »ý»ê Ç÷§Æû¿¡ ÃÊÁ¡À» ¸ÂÃß°í ÀÖ½À´Ï´Ù.

±â¼ú Çõ½ÅÀº Çö󽺹̵å DNA Á¦Á¶¸¦ ¾î¶»°Ô º¯È­½Ã۰í Àִ°¡?

Çö󽺹̵å DNA »ý»ê, Á¤Á¦ ¹× ǰÁú °ü¸® ºÐ¾ßÀÇ ±â¼ú ¹ßÀüÀº ¾÷°è¿¡ Çõ¸íÀ» ÀÏÀ¸ÄÑ ´õ ³ôÀº ¼öÀ², È®À强 Çâ»ó ¹× ¿À¿° À§Çè °¨¼Ò¸¦ °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù. ÀüÅëÀûÀÎ ¹ÚÅ׸®¾Æ ¹ßÈ¿ ±â¹Ý ÇÃ¶ó½º¹Ìµå »ý»ê¿¡¼­ Â÷¼¼´ë ¹ÙÀÌ¿ÀÇÁ·Î¼¼½Ì ¼Ö·ç¼ÇÀ¸·ÎÀÇ ÀüȯÀº ´ë±Ô¸ð »ý»êÀÇ È¿À²¼º°ú ºñ¿ë È¿À²¼ºÀ» ÃÖÀûÈ­Çϰí ÀÖ½À´Ï´Ù.

°¡Àå Çõ½ÅÀûÀÎ Çõ½Å Áß Çϳª´Â ´ë±Ô¸ð Çö󽺹̵å DNA »ý»êÀ» À§ÇÑ °í¹Ðµµ ¹ÚÅ׸®¾Æ ¹ßÈ¿ÀÔ´Ï´Ù. ±âÁ¸ÀÇ ÇÃ¶ó½º¹Ìµå »ý»êÀº ´ëÀå±Õ ±â¹Ý ¹ßÈ¿¿¡ ÀÇÁ¸ÇÏ¿© ÇÃ¶ó½º¹Ìµå ¼öÀ²ÀÌ ³·°í ³ôÀº ¼öÁØÀÇ ³»µ¶¼Ò¸¦ »ý¼ºÇÒ ¼ö ÀÖ½À´Ï´Ù. Æäµå¹èÄ¡ ¹ÙÀÌ¿À¸®¾×ÅÍ, °ü·ù ¹ÙÀÌ¿À¸®¾×ÅÍ, ¿¬¼Ó ¹ßÈ¿, º¤ÅÍ °øÇÐÀÇ ¹ßÀüÀ¸·Î ¹è¾ç 1¸®ÅÍ´ç ÇÃ¶ó½º¹Ìµå ¼öÀ²ÀÌ Çâ»óµÇ¾î »ý»ê 󸮷® ¹× ºñ¿ë È¿À²¼ºÀÌ °³¼±µÇ°í ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ µ¹ÆÄ±¸´Â Å©·Î¸¶Åä±×·¡ÇÇ ±â¹ÝÀÇ Á¤Á¦ ±â¼ú·Î, ¾ËÄ®¸® ¿ëÇØ ±â¹ÝÀÇ ¹æ¹ýÀ» ´ëüÇϰí ÀÖ½À´Ï´Ù. °í±Þ À½À̿ ±³È¯ Å©·Î¸¶Åä±×·¡ÇÇ(AEX), ¼Ò¼ö¼º »óÈ£ÀÛ¿ë Å©·Î¸¶Åä±×·¡ÇÇ(HIC), ¸âºê·¹ÀÎ ¿©°ú ½Ã½ºÅÛÀº °í¼øµµ Çö󽺹̵å DNA ÃßÃâÀ» °¡´ÉÇÏ°Ô Çϸç, ³·Àº ¿£µµÅå½Å ¼öÁØ, ³ôÀº ¾ÈÁ¤¼º, ´õ ³ªÀº ±ÔÁ¦ Áؼö¸¦ º¸ÀåÇÕ´Ï´Ù. ÀÌ·¯ÇÑ °³¼±Àº ¼øµµ¿Í Àϰü¼ºÀÌ ÀÓ»óÀû ¼º°ø¿¡ ÇʼöÀûÀÎ À¯ÀüÀÚ Ä¡·á ¹× ¹é½Å ÀÀ¿ë ºÐ¾ß¿¡ ÇʼöÀûÀÔ´Ï´Ù.

¶ÇÇÑ, ¹«¼¼Æ÷ DNA ÇÕ¼º ¹× È¿¼Ò ÁõÆø ±â¼úÀº ±âÁ¸ÀÇ ´ëÀå±Õ ±â¹Ý ÇÃ¶ó½º¹Ìµå »ý»ê¿¡ ´ëÇÑ ´ë¾ÈÀ¸·Î ¶°¿À¸£°í ÀÖ½À´Ï´Ù. ¹«¼¼Æ÷ Àü»ç/¹ø¿ª Ç÷§ÆûÀº ¹ÚÅ׸®¾Æ ³» µ¶¼Ò³ª ¼÷ÁÖ ¼¼Æ÷ ¿À¿°ÀÇ À§Çè ¾øÀÌ ½Å¼ÓÇÏ°í ³ôÀº ¼öÀ²ÀÇ Çö󽺹̵å ÁõÆøÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀº º¸´Ù ºü¸£°í, È®Àå °¡´ÉÇϸç, ¿À¿° ¾ø´Â Çö󽺹̵å DNA »ý»êÀ» °¡´ÉÇÏ°Ô ÇÏ¿© ¸ÂÃãÇü ÀÇ·á ¾ÖÇø®ÄÉÀ̼ǿ¡ Çõ¸íÀ» °¡Á®¿Ã °ÍÀ¸·Î ±â´ëµË´Ï´Ù.

¶ÇÇÑ, AI ±â¹Ý °øÁ¤ ÃÖÀûÈ­ ¹× µðÁöÅÐ ¹ÙÀÌ¿À Á¦Á¶ Ç÷§ÆûÀº Çö󽺹̵å DNA »ý»ê ¿öÅ©Ç÷ο츦 º¯È­½Ã۰í ÀÖÀ¸¸ç, AI ±â¹Ý ¹ÙÀÌ¿À °øÁ¤ ¸ð´ÏÅ͸µ ½Ã½ºÅÛ, ¿¹Ãø ºÐ¼® ¹× ÀÚµ¿È­ µµ±¸´Â ¹ßÈ¿ È¿À², Á¤Á¦ ¼öÀ² ÃÖÀûÈ­, ½Ç½Ã°£ ǰÁú °ü¸®, »ý»ê º¯µ¿¼º °¨¼Ò ¹× È®À强À» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. °ü¸®¸¦ °­È­Çϰí, »ý»êÀÇ º¯µ¿¼ºÀ» ÁÙÀ̰í, È®À强À» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ±â°èÇнÀ ¾Ë°í¸®ÁòÀº º¤ÅÍ ¼³°è, ¾ÈÁ¤¼º ¿¹Ãø, À¯ÀüÀÚ ¼­¿­ ÃÖÀûÈ­¿¡µµ Ȱ¿ëµÇ¾î Â÷¼¼´ë ÇÃ¶ó½º¹Ìµå ±â¹Ý Ä¡·áÁ¦ °³¹ßÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù.

½ÃÀå ¿ªÇÐ ¹× ÃÖÁ¾ ¿ëµµ´Â ¾î¶»°Ô ¼ö¿ä¸¦ Çü¼ºÇϰí Àִ°¡?

°íǰÁú Çö󽺹̵å DNA¿¡ ´ëÇÑ ¼ö¿ä´Â À¯ÀüÀÚ Ä¡·á, ¹é½Å, ¼¼Æ÷ ±â¹Ý Ä¡·áÀÇ ÀÀ¿ë È®´ë¿¡ µû¶ó Çü¼ºµÇ°í ÀÖÀ¸¸ç, »ý¸í°øÇÐ ±â¾÷, Á¦¾àȸ»ç, ¿¬±¸±â°üÀÌ ¼ºÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù.

°¡Àå Å« ÀÀ¿ë ºÐ¾ß Áß Çϳª´Â À¯ÀüÀÚ Ä¡·á ºÐ¾ß·Î, Çö󽺹̵å DNA´Â ¹ÙÀÌ·¯½º º¤ÅÍ »ý»ê(AAV, ·»Æ¼¹ÙÀÌ·¯½º, ¾Æµ¥³ë¹ÙÀÌ·¯½º) ¹× ºñ¹ÙÀÌ·¯½º¼º À¯ÀüÀÚ Á÷Á¢ µµÀÔ, CAR-T ¹× TCR-T ¼¼Æ÷ Ä¡·á, CRISPR ±â¹Ý À¯Àüü ÆíÁý, Àç»ýÀÇ·áÀÇ È®´ë¿¡ µû¶ó ÀÓ»ó½ÃÇè ¹× »ó¾÷Àû ±Ô¸ðÀÇ À¯ÀüÀÚ Ä¡·áÁ¦ »ý»êÀ» Áö¿øÇϱâ À§ÇÑ ³ôÀº Ä«ÇÇ, GMP µî±ÞÀÇ Çö󽺹̵å DNAÀÇ Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ Å« ¼ºÀå ºÐ¾ß´Â mRNA ±â¹Ý ¹é½Å ¹× Ä¡·áÁ¦ °³¹ßÀÔ´Ï´Ù. Çö󽺹̵å DNA´Â mRNA ¹é½Å »ý»ê¿¡¼­ IVTÀÇ DNA ÅÛÇø´ ¿ªÇÒÀ» Çϸç, Á¦¾à»çÀÇ ¹ÙÀÌ¿À Á¦Á¶ ¿öÅ©Ç÷ο쿡¼­ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù. °¨¿°, Á¾¾ç, ´ë»ç¼º ÁúȯÀ» À§ÇÑ Â÷¼¼´ë mRNA ¹é½ÅÀÌ °³¹ßµÊ¿¡ µû¶ó ³ôÀº ¼öÀ²°ú ³»µ¶¼Ò¸¦ ÇÔÀ¯ÇÏÁö ¾Ê´Â pDNA¿¡ ´ëÇÑ ¼ö¿ä´Â Áö¼ÓÀûÀ¸·Î Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ¿¡ µû¶ó Á¦Á¶»çµéÀº È®Àå °¡´ÉÇÑ Çö󽺹̵å Á¤Á¦, ¾ÈÁ¤¼º Çâ»ó, IVT ÃÖÀûÈ­ ÇÃ¶ó½º¹Ìµå »ý»ê¹ý¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù.

R&D ºÎ¹® ¶ÇÇÑ Çö󽺹̵å DNA »ý»ê ¼ö¿äÀÇ ÁÖ¿ä °ßÀÎÂ÷ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. Çмú ±â°ü, »ý¸í°øÇÐ ½ºÅ¸Æ®¾÷, ÇÕ¼º»ý¹°ÇÐ ±â¾÷µéÀº À¯Àü°øÇÐ, ÇÕ¼º»ý¹°ÇÐ, Ãʱ⠴ܰèÀÇ ÀüÀÓ»ó ¿¬±¸¸¦ À§ÇØ ¿¬±¸¿ë Çö󽺹̵带 ÇÊ¿ä·Î ÇÕ´Ï´Ù. ¸¹Àº CDMO´Â ÇöÀç ÃÊ±â ´Ü°è ¿¬±¸ ¹× °³³ä Áõ¸í ¿¬±¸¿¡ ¸Â´Â À¯¿¬ÇÑ ¼Ò·® »ý»ê ÇÃ¶ó½º¹Ìµå »ý»ê ¼­ºñ½º¸¦ Á¦°øÇÏ¿© »ý¸í°øÇÐ ±â¾÷ÀÌ ÀüÀÓ»ó ´Ü°è¿¡¼­ »ó¾÷Àû ±Ô¸ð·Î ¿øÈ°ÇÏ°Ô ÀüȯÇÒ ¼ö ÀÖµµ·Ï µ½°í ÀÖ½À´Ï´Ù.

Çö󽺹̵å DNA Á¦Á¶ ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

Çö󽺹̵å DNA Á¦Á¶ ½ÃÀåÀÇ ¼ºÀåÀº ¹ÙÀÌ¿À °øÁ¤ ±â¼úÀÇ ¹ßÀü, À¯ÀüÀÚ ±â¹Ý Ä¡·á¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, GMP »ý»êÀÇ È®À强, ±ÔÁ¦ ¿ä°ÇÀÇ ÁøÈ­ µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖÀ¸¸ç, mRNA ¹é½Å, CRISPR À¯Àüü ÆíÁý, ÇÕ¼º»ý¹°ÇÐ ¾ÖÇø®ÄÉÀ̼ÇÀÇ ±ÞÁõÀº °íǰÁú °íǰÁú Çö󽺹̵å DNA¿¡ ´ëÇÑ Àü·Ê ¾ø´Â ¼ö¿ä¸¦ âÃâÇϰí ÀÖÀ¸¸ç, »ý¸í°øÇÐ ±â¾÷°ú Á¦¾à»çµéÀº »ý»ê´É·ÂÀ» È®ÀåÇØ¾ß ÇÏ´Â »óȲ¿¡ Ã³ÇØ ÀÖ½À´Ï´Ù.

¸ÂÃãÇü ÀÇ·á ¹× Àç»ý Ä¡·áÀÇ È®´ëµµ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖÀ¸¸ç, CAR-T ¼¼Æ÷ Ä¡·áÁ¦ °³¹ß ±â¾÷, À¯ÀüÀÚ ÆíÁý ±â¾÷, ÀÚ°¡ ¼¼Æ÷ Ä¡·áÁ¦ Á¦Á¶¾÷ü´Â ¸ÂÃãÇü Çö󽺹̵å DNA Á¦Á¦¸¦ ÇÊ¿ä·Î Çϰí ÀÖ½À´Ï´Ù. ÀÌ¿¡ µû¶ó ºü¸¥ È®À强°ú »ý»ê ±â°£ ´ÜÃàÀ» °¡´ÉÇÏ°Ô ÇÏ´Â ¸ðµâ½Ä Ç÷º¼­ºí Çö󽺹̵å Á¦Á¶ Ç÷§ÆûÀÌ µîÀåÇϰí ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ Áß¿äÇÑ ¿ä¼Ò´Â ±ÔÁ¦ Áؼö ¹× ǰÁú °ü¸® °­È­·Î, FDA, EMA, WHO µîÀÇ ±â°üÀÌ Çö󽺹̵å DNA ±â¹Ý Ä¡·áÁ¦¿¡ ´ëÇÑ GMP °¡À̵å¶óÀÎÀ» °­È­ÇÔ¿¡ µû¶ó Á¦Á¶¾÷üµéÀº Çö󽺹̵å DNA°¡ ÀÓ»ó ¹× »ó¾÷Àû Ç¥ÁØÀ» ÃæÁ·ÇÏ´ÂÁö È®ÀÎÇϱâ À§ÇØ ³»µ¶¼Ò°¡ ¾ø´Â Á¤Á¦, ºÐ¼® °ËÁõ, ¹«±Õ¼º º¸Áõ¿¡ ÁßÁ¡À» µÎ°í ÀÖ½À´Ï´Ù.

¶ÇÇÑ, AI ±â¹Ý ¹ÙÀÌ¿À Á¦Á¶ÀÇ ºÎ»óÀ¸·Î »ý»ê È¿À²¼º°ú ǰÁú Àϰü¼ºÀÌ Çâ»óµÇ°í ÀÖÀ¸¸ç, AI ±â¹Ý °øÁ¤ ºÐ¼®, ½Ç½Ã°£ ¸ð´ÏÅ͸µ, ¿¹Ãø À¯Áöº¸¼ö°¡ Çö󽺹̵å DNA Á¦Á¶ ¿öÅ©Ç÷ο쿡 ÅëÇյǾî Á¦Á¶¾÷ü´Â ¼öÀ²À» ÃÖÀûÈ­ÇÏ°í °øÁ¤ ½ÇÆÐ¸¦ ÁÙÀ̸ç, º¸´Ù È¿À²ÀûÀ¸·Î »ý»êÀ» È®ÀåÇÒ ¼ö ÀÖ½À´Ï´Ù. ¼öÀ²À» ÃÖÀûÈ­ÇÏ°í °øÁ¤ ½ÇÆÐ¸¦ ÁÙ¿© º¸´Ù È¿À²ÀûÀ¸·Î »ý»êÀ» È®´ëÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.

À¯ÀüÀÚ Ä¡·á, mRNA ¹é½Å, ÇÕ¼º»ý¹°ÇÐ ÀÀ¿ë ºÐ¾ß°¡ °è¼Ó ¹ßÀüÇÔ¿¡ µû¶ó Çö󽺹̵å DNA Á¦Á¶ ½ÃÀåÀº Áö¼ÓÀûÀ¸·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. °í󸮷® ¹ÙÀÌ¿ÀÇÁ·Î¼¼½Ì, AI ±â¹Ý ÃÖÀûÈ­, ÅëÇÕµÈ ¿£µåÅõ¿£µå Çö󽺹̵å Á¦Á¶ ¼Ö·ç¼Ç¿¡ ÅõÀÚÇÏ´Â °³¹ß¾÷ü´Â ¹ÙÀÌ¿ÀÀǾàǰ Çõ½Å°ú À¯ÀüÀÚ ±â¹Ý ÀǾàǰ °³¹ßÀÇ ´ÙÀ½ ´Ü°è¸¦ ÁÖµµÇÒ ¼ö ÀÖ´Â À¯¸®ÇÑ À§Ä¡¿¡ ÀÖÀ» °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

ºÎ¹®

µî±Þ(R&D µî±Þ, GMP µî±Þ), °³¹ß ´Ü°è(ÀüÀÓ»ó Ä¡·áÁ¦, ÀÓ»ó Ä¡·áÁ¦, ½ÃÆÇ Ä¡·áÁ¦), Áúȯ(°¨¿°Áõ, ¾Ï, À¯ÀüÁúȯ, ±âŸ), ¿ëµµ(DNA ¹é½Å, ¼¼Æ÷ ¹× À¯ÀüÀÚ Ä¡·á, ¸é¿ª¿ä¹ý, ±âŸ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM ¹× ¾÷°èº° SLM Äõ¸®¸¦ µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Plasmid DNA Manufacturing Market to Reach US$5.6 Billion by 2030

The global market for Plasmid DNA Manufacturing estimated at US$2.1 Billion in the year 2024, is expected to reach US$5.6 Billion by 2030, growing at a CAGR of 18.1% over the analysis period 2024-2030. R&D Grade, one of the segments analyzed in the report, is expected to record a 16.6% CAGR and reach US$3.5 Billion by the end of the analysis period. Growth in the GMP Grade segment is estimated at 21.0% CAGR over the analysis period.

The U.S. Market is Estimated at US$563.0 Million While China is Forecast to Grow at 24.4% CAGR

The Plasmid DNA Manufacturing market in the U.S. is estimated at US$563.0 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$1.3 Billion by the year 2030 trailing a CAGR of 24.4% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 14.6% and 16.0% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 15.0% CAGR.

Global Plasmid DNA Manufacturing Market - Key Trends & Drivers Summarized

The plasmid DNA (pDNA) manufacturing market is experiencing rapid expansion, driven by growing applications in gene therapy, mRNA vaccines, CRISPR-based genome editing, and cell-based immunotherapies. Plasmid DNA serves as a critical raw material in viral vector production, non-viral gene delivery, and recombinant protein expression, making it a key component in biopharmaceutical research and commercialization. With the increasing focus on gene-based therapies, synthetic biology, and personalized medicine, the demand for high-purity, scalable, and regulatory-compliant plasmid DNA production has surged.

A major trend shaping the market is the transition from research-grade to GMP (Good Manufacturing Practice) plasmid DNA manufacturing. While small-scale plasmid DNA production has been widely used in academic research, the rise of clinical-stage gene therapies and commercial mRNA vaccines has created the need for large-scale, GMP-compliant plasmid DNA manufacturing facilities. This shift has led to investments in bioprocess optimization, advanced purification techniques, and scalable production platforms to meet regulatory requirements and ensure high-yield, endotoxin-free plasmid DNA for clinical applications.

Another key driver is the increasing role of plasmid DNA in RNA-based therapeutics, particularly mRNA vaccine development. The COVID-19 pandemic highlighted the importance of plasmid DNA as a DNA template for in vitro transcription (IVT) in mRNA vaccine manufacturing. As pharmaceutical companies continue to explore mRNA-based treatments for infectious diseases, cancer immunotherapy, and metabolic disorders, the demand for high-quality plasmid DNA templates has surged. This has driven technological advancements in fermentation, purification, and plasmid stabilization techniques to optimize IVT-ready plasmid production.

Additionally, regulatory agencies such as the FDA, EMA, and PMDA are establishing stringent GMP guidelines for plasmid DNA used in gene-modified therapies and biologics. This has led to the adoption of quality-by-design (QbD) principles, advanced analytical tools, and contamination control strategies in plasmid DNA manufacturing. As a result, biomanufacturers are focusing on scalable, regulatory-compliant production platforms to ensure batch-to-batch consistency, enhanced plasmid stability, and high-purity yields for clinical applications.

How Are Technological Innovations Transforming Plasmid DNA Manufacturing?

Technological advancements in plasmid DNA production, purification, and quality control are revolutionizing the industry, enabling higher yields, improved scalability, and lower contamination risks. The shift from traditional bacterial fermentation-based plasmid production to next-generation bioprocessing solutions is optimizing efficiency and cost-effectiveness in large-scale manufacturing.

One of the most transformative innovations is high-density bacterial fermentation for large-scale plasmid DNA production. Traditional plasmid manufacturing relies on E. coli-based fermentation, which can result in low plasmid yields and high levels of endotoxins. Advances in fed-batch and perfusion bioreactors, continuous fermentation, and vector engineering are enabling higher plasmid yield per liter of culture, improving manufacturing throughput and cost-efficiency.

Another breakthrough is chromatography-based purification techniques, which are replacing alkaline lysis-based methods. Advanced anion-exchange chromatography (AEX), hydrophobic interaction chromatography (HIC), and membrane filtration systems allow for high-purity plasmid DNA extraction, ensuring low endotoxin levels, higher stability, and better regulatory compliance. These improvements are critical for gene therapy and vaccine applications, where purity and consistency are essential for clinical success.

Additionally, cell-free DNA synthesis and enzymatic amplification technologies are emerging as potential alternatives to traditional E. coli-based plasmid production. Cell-free transcription/translation platforms allow for rapid, high-yield plasmid amplification without the risks of bacterial endotoxins or host cell contamination. These technologies are expected to revolutionize personalized medicine applications, enabling faster, more scalable, and contamination-free plasmid DNA production.

Moreover, AI-driven process optimization and digital biomanufacturing platforms are transforming plasmid DNA production workflows. AI-powered bioprocess monitoring systems, predictive analytics, and automation tools are enhancing fermentation efficiency, purification yield optimization, and real-time quality control, reducing production variability and improving scalability. Machine learning algorithms are also being used in vector design, stability prediction, and genetic sequence optimization, accelerating the development of next-generation plasmid-based therapeutics.

How Are Market Dynamics and End-Use Applications Shaping Demand?

The demand for high-quality plasmid DNA is being shaped by expanding applications in gene therapies, vaccines, and cell-based therapies, with biotech firms, pharmaceutical companies, and research institutions driving growth.

One of the largest application segments is gene therapy, where plasmid DNA serves as a critical component in viral vector production (AAV, lentivirus, adenovirus) and direct non-viral gene delivery. The expansion of CAR-T and TCR-T cell therapies, CRISPR-based genome editing, and regenerative medicine has increased the need for high-copy, GMP-grade plasmid DNA to support clinical trials and commercial-scale gene therapy production.

Another major growth area is mRNA-based vaccine and therapeutic development. Plasmid DNA acts as the DNA template for IVT in mRNA vaccine manufacturing, making it a vital component in the biomanufacturing workflow of pharmaceutical companies. With the development of next-generation mRNA vaccines for infectious diseases, oncology, and metabolic disorders, the demand for high-yield, endotoxin-free pDNA continues to rise. As a result, manufacturers are investing in scalable plasmid purification, stability enhancement, and IVT-optimized plasmid production methods.

The research and development sector is also a key driver of plasmid DNA manufacturing demand. Academic institutions, biotech startups, and synthetic biology companies require research-grade plasmids for genetic engineering, synthetic biology, and early-stage preclinical studies. Many CDMOs are now offering flexible, small-batch plasmid production services tailored for early-stage research and proof-of-concept studies, enabling biotech firms to transition smoothly from preclinical to commercial-scale plasmid DNA manufacturing.

What Factors Are Driving the Growth of the Plasmid DNA Manufacturing Market?

The growth in the plasmid DNA manufacturing market is driven by several factors, including advancements in bioprocessing technologies, increasing demand for gene-based therapies, scalability of GMP production, and evolving regulatory requirements. The surge in mRNA vaccines, CRISPR genome editing, and synthetic biology applications is creating unprecedented demand for high-quality plasmid DNA, compelling biotech firms and pharmaceutical companies to scale up manufacturing capabilities.

The expansion of personalized medicine and regenerative therapies is also fueling demand, with CAR-T cell therapy developers, gene editing companies, and autologous cell therapy manufacturers requiring custom plasmid DNA formulations. This has led to the emergence of modular, flexible plasmid manufacturing platforms that enable rapid scalability and reduced production timelines.

Another critical factor is regulatory compliance and quality control enhancements. With agencies such as the FDA, EMA, and WHO tightening GMP guidelines for plasmid DNA-based therapeutics, manufacturers are focusing on endotoxin-free purification, analytical validation, and sterility assurance to ensure that plasmid DNA meets clinical and commercial standards.

Additionally, the rise of AI-driven biomanufacturing is enhancing production efficiency and quality consistency. AI-powered process analytics, real-time monitoring, and predictive maintenance are being integrated into plasmid DNA production workflows, allowing manufacturers to optimize yields, reduce process failures, and scale production more efficiently.

As gene therapy, mRNA vaccines, and synthetic biology applications continue to evolve, the plasmid DNA manufacturing market is expected to experience sustained growth. Companies that invest in high-throughput bioprocessing, AI-driven optimization, and integrated end-to-end plasmid manufacturing solutions will be well-positioned to lead the next phase of biopharmaceutical innovation and gene-based medicine development.

SCOPE OF STUDY:

The report analyzes the Plasmid DNA Manufacturing market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Grade (R&D Grade, GMP Grade); Development Phase (Pre-Clinical Therapeutics, Clinical Therapeutics, Marketed Therapeutics); Disease (Infectious Disease, Cancer, Genetic Disorder, Others); Application (DNA Vaccines, Cell & Gene Therapy, Immunotherapy, Others)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 43 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â