¼¼°èÀÇ ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ÀÚµ¿È­ ½ÃÀå
Software-Defined Automation
»óǰÄÚµå : 1773907
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 483 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,239,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,719,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ÀÚµ¿È­ ¼¼°è ½ÃÀåÀº 2030³â±îÁö 710¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 370¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ÀÚµ¿È­ ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 11.5%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 710¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®Çϰí ÀÖ´Â ºÎ¹® Áß ÇϳªÀÎ ¼Ö·ç¼ÇÀº CAGR 9.6%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 417¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¼­ºñ½º ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 14.7%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 101¾ï ´Þ·¯, Áß±¹Àº CAGR 15.2%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹Ãø

¹Ì±¹ÀÇ ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ÀÚµ¿È­ ½ÃÀåÀº 2024³â¿¡ 101¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 145¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 15.2%¸¦ ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 8.5%¿Í 10.1%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 9.0%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ÀÚµ¿È­ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ÀÚµ¿È­´Â ¾î¶»°Ô Áö´ÉÇü Á¦¾î·Î »ê¾÷À» À籸¼ºÇϰí Àִ°¡?

¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ÀÚµ¿È­(SDA)´Â Á¦¾î ½Ã½ºÅÛ¿¡ ³ôÀº À¯¿¬¼º, È®À强 ¹× Áö´ÉÀ» µµÀÔÇÏ¿© »ê¾÷ ÀÚµ¿È­ ¹× ¿£ÅÍÇÁ¶óÀÌÁî ÀÚµ¿È­¿¡ Çõ¸íÀ» ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. SDA´Â °æÁ÷µÈ Çϵå¿þ¾î ±â¹Ý ±¸¼º¿¡ ÀÇÁ¸ÇÏ´Â ±âÁ¸ ÀÚµ¿È­¿Í ´Þ¸® ¼ÒÇÁÆ®¿þ¾î Áß½ÉÀÇ ¿ÀÄɽºÆ®·¹À̼ÇÀ» Ȱ¿ëÇÏ¿© ÇÁ·Î¼¼½º¸¦ µ¿ÀûÀ¸·Î °ü¸®ÇÔÀ¸·Î½á Àδõ½ºÆ®¸® 4.0¿¡ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù. SDA´Â °í±Þ ¾Ë°í¸®Áò, Ŭ¶ó¿ìµå ¿¬°á, AI ±â¹Ý ÀÇ»ç°áÁ¤À» ÅëÇØ ±â¾÷ÀÌ ¿öÅ©Ç÷ο츦 À籸¼ºÇϰí, ¸®¼Ò½º¸¦ ÃÖÀûÈ­Çϸç, ºñ¿ëÀÌ ¸¹ÀÌ µå´Â Çϵå¿þ¾î ¾÷±×·¹ÀÌµå ¾øÀ̵µ È¿À²¼ºÀ» ³ôÀÏ ¼ö ÀÖµµ·Ï Áö¿øÇÕ´Ï´Ù. Áß¿äÇÑ Â÷º°È­ ¿ä¼Ò´Â ´Ù¾çÇÑ IoT Áö¿ø ÀåÄ¡, ¼¾¼­ ¹× ¾×Ãß¿¡ÀÌÅ͸¦ ÅëÇÕ ÀÚµ¿È­ ÇÁ·¹ÀÓ¿öÅ©¿¡ ÅëÇÕÇÏ¿© ´Ù¿îŸÀÓÀ» ÁÙÀ̰í Àü¹ÝÀûÀÎ »ý»ê¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ´Â ´É·ÂÀÔ´Ï´Ù. Çϵå¿þ¾î Á᫐ Á¦¾î¿¡¼­ ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ Á¦¾î·ÎÀÇ ÀüȯÀº ¹ÎøÇÑ Á¦Á¶, ¿¹Áöº¸Àü, »ê¾÷ °£ ¿øÈ°ÇÑ Àΰ£-±â°è Çù¾÷¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó ´õ¿í °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. Á¦Á¶, ¹°·ù, À¯Æ¿¸®Æ¼ ±â¾÷µéÀº SDA¸¦ µµÀÔÇÏ¿© ½Ç½Ã°£À¸·Î ¿î¿µ °¡½Ã¼ºÀ» È®º¸Çϰí, ¿î¿µ ź·Â¼ºÀ» Çâ»ó½Ã۸ç, ½ÅÁ¦Ç° Ãâ½Ã ½Ã°£À» ´ÜÃàÇϰí ÀÖ½À´Ï´Ù. ¿ÀÇ ¼Ò½º ÀÚµ¿È­ ÇÁ·¹ÀÓ¿öÅ©¿Í º¥´õ Á߸³ÀûÀÎ ¼ÒÇÁÆ®¿þ¾î ¼Ö·ç¼ÇÀÇ Ã¤ÅÃÀº ÀÌ·¯ÇÑ º¯È­¸¦ ´õ¿í ÃËÁøÇϰí, ±â¾÷ÀÌ ´õ ÀÌ»ó µ¶Á¡ÀûÀÎ Çϵå¿þ¾îÀÇ ÇѰ迡 ¾ô¸ÅÀÌÁö ¾Ê´Â »ýŰ踦 Á¶¼ºÇϰí ÀÖ½À´Ï´Ù. ¼ÒÇÁÆ®¿þ¾î ±â¹Ý ÀÚµ¿È­°¡ °è¼Ó ÁÖµµÇÏ´Â °¡¿îµ¥, »ê¾÷ ÇÁ·Î¼¼½º À籸Ãà¿¡ ¾ó¸¶³ª ±â¿©ÇÒ ¼ö ÀÖ´ÂÁö, ±×¸®°í AI¿Í ¸Ó½Å·¯´×ÀÌ ÀÚµ¿È­ ¿öÅ©Ç÷ο쿡 ´õ¿í ÅëÇÕµÇ¸é ¾î¶² »õ·Î¿î ±â´ÉÀÌ µîÀåÇÒ °ÍÀÎÁö¿¡ ´ëÇÑ Àǹ®ÀÌ Á¦±âµË´Ï´Ù.

¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ÀÚµ¿È­ÀÇ ÁøÈ­¸¦ ÃËÁøÇÏ´Â ÇÙ½É ±â¼úÀº ¹«¾ùÀΰ¡?

¸î °¡Áö ȹ±âÀûÀÎ ±â¼úÀÌ ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ÀÚµ¿È­ÀÇ ¼ºÀåÀ» °¡¼ÓÈ­ÇÏ¿© º¸´Ù Áö´ÉÀûÀ̰í ÀûÀÀ·ÂÀÌ ¶Ù¾î³­ Á¦¾î ½Ã½ºÅÛÀ» ½ÇÇöÇϰí ÀÖ½À´Ï´Ù. ¿§Áö ÄÄÇ»ÆÃÀº ÀÚµ¿È­ ÇÁ·Î¼¼½ºÀÇ Áö¿¬ ½Ã°£À» ÁÙÀÌ°í ¸Ö¸® ¶³¾îÁø Ŭ¶ó¿ìµå ÀÎÇÁ¶ó¿¡ ÀÇÁ¸ÇÏÁö ¾Ê°íµµ ½Ç½Ã°£ ÀÇ»ç°áÁ¤À» º¸ÀåÇÔÀ¸·Î½á ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÄÄÇ»ÆÃ ÆÄ¿öÀÇ ºÐ»êÀº ½º¸¶Æ® ÆÑÅ丮, ÀÚÀ²ÁÖÇàÂ÷, ¿¡³ÊÁö ±×¸®µå °ü¸®¿Í °°Àº ¹Ì¼Ç Å©¸®Æ¼ÄÃÇÑ ¾ÖÇø®ÄÉÀ̼ÇÀÇ ÀÀ´ä¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù. ÇÑÆí, ÀΰøÁö´É(AI)°ú ¸Ó½Å·¯´×(ML)Àº ¿î¿µ µ¥ÀÌÅͷκÎÅÍ ÇнÀÇÏ°í ÆÄ¶ó¹ÌÅ͸¦ µ¿ÀûÀ¸·Î Á¶Á¤ÇÏ¿© È¿À²¼ºÀ» ±Ø´ëÈ­ÇÏ´Â ÀÚ°¡ ÃÖÀûÈ­ ½Ã½ºÅÛÀ» °¡´ÉÇϰÔÇÔÀ¸·Î½á ÀÚµ¿È­ ¿öÅ©Ç÷ο츦 º¯È­½Ã۰í ÀÖ½À´Ï´Ù. ¶Ç ´Ù¸¥ Çõ½ÅÀÎ µðÁöÅÐ Æ®À© ±â¼úÀº »ê¾÷°è°¡ ¹°¸®Àû ÀÚ»êÀÇ °¡»ó º¹Á¦º»À» »ý¼ºÇÏ°í ¹èÆ÷ Àü¿¡ ÀÚµ¿È­ Àü·«À» ½Ã¹Ä·¹À̼ÇÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ÀÌ·¯ÇÑ ¿¹ÃøÀû Á¢±Ù ¹æ½ÄÀº ¿À·ù¸¦ ÁÙÀ̰í, ´Ù¿îŸÀÓÀ» ÃÖ¼ÒÈ­Çϸç, Àüü ½Ã½ºÅÛÀÇ ½Å·Ú¼ºÀ» Çâ»ó½ÃŰ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ¶ÇÇÑ, SDA¿Í 5G ³×Æ®¿öÅ©ÀÇ À¶ÇÕÀº ¿¬°áµÈ ÀåÄ¡ °£ÀÇ ÃÊÀúÁö¿¬ Åë½ÅÀ» ÃËÁøÇÏ°í ½Ç½Ã°£ Á¦¾î¸¦ º¸´Ù Á¤È®Çϰí È¿À²ÀûÀ¸·Î ¸¸µé¾î ÀÚµ¿È­ ȯ°æÀ» À籸¼ºÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Á¦·Î Æ®·¯½ºÆ® ¾ÆÅ°ÅØÃ³¿Í AI¸¦ Ȱ¿ëÇÑ À§Çù ŽÁö µîÀÇ »çÀ̹ö º¸¾È ´ëÃ¥Àº SDA µµÀÔ¿¡ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ°í ÀÖÀ¸¸ç, Áß¿äÇÑ ÀÎÇÁ¶ó¸¦ »çÀ̹ö À§ÇùÀ¸·ÎºÎÅÍ º¸È£Çϰí ÀÖ½À´Ï´Ù. ±â¾÷µéÀÌ Áö´ÉÇü ÀÚµ¿È­¸¦ Áö¼ÓÀûÀ¸·Î µµÀÔÇÏ´Â °¡¿îµ¥, ÀÚ°¡ Ä¡À¯ ³×Æ®¿öÅ©¿Í ºí·ÏüÀÎ ±â¹Ý º¸¾È ÇÁ·¹ÀÓ¿öÅ©ÀÇ Çõ½ÅÀº ÀÚµ¿È­ »ýŰèÀÇ ¿î¿µ ¹æ½ÄÀ» ÀçÁ¤ÀÇÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀ¸·Î º¼ ¶§, ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ÀÚµ¿È­ÀÇ ¹Ì·¡´Â ÀüÅëÀûÀÎ »ê¾÷ ȯ°æÀ» ³Ñ¾î ÇコÄɾî, ½º¸¶Æ® ½ÃƼ, ÀÚÀ² ¿î¼Û ½Ã½ºÅÛ µî º¸´Ù ±¤¹üÀ§ÇÑ ÀÀ¿ë ºÐ¾ß·Î À̵¿ÇÒ Áغñ°¡ µÇ¾î ÀÖ´Â °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ÀÚµ¿È­°¡ ºü¸£°Ô äÅõǰí ÀÖ´Â ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ÀÚµ¿È­ÀÇ ±Þ¼ÓÇÑ µµÀÔÀº »ê¾÷ ȯ°æ¿¡¼­ ¿î¿µÀÇ ¹Îø¼º, ºñ¿ë È¿À²¼º ¹× Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó ÃßÁøµÇ°í ÀÖ½À´Ï´Ù. ±â¾÷µéÀº ±âÁ¸ÀÇ ÀÚµ¿È­ ½Ã½ºÅÛÀº ¾÷±×·¹ÀÌµå ºñ¿ëÀÌ ¸¹ÀÌ µé°í, ±¸¼ºÀÌ °æÁ÷µÇ¾î ÀÖÀ¸¸ç, ÁøÈ­ÇÏ´Â ºñÁî´Ï½º ¿ä±¸¿¡ ÀûÀÀÇÏ´Â µ¥ ½Ã°£ÀÌ ¿À·¡ °É¸®´Â µî ÇѰ谡 ÀÖ´Ù´Â °ÍÀ» ¾Ë°í ÀÖ½À´Ï´Ù. ´ë±Ô¸ð Çϵå¿þ¾î º¯°æ ¾øÀ̵µ ¿öÅ©Ç÷ο츦 ÀÚµ¿È­ÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ƯÈ÷ Á¦Á¶¾÷ÀÇ °æ¿ì, º¯È­ÇÏ´Â ¼ÒºñÀÚ ±âÈ£¿¡ ¸ÂÃç »ý»ê ¶óÀÎÀ» ½Å¼ÓÇÏ°Ô º¯°æÇØ¾ß ÇÕ´Ï´Ù. ÀÚµ¿È­ ¼ÒÇÁÆ®¿þ¾î¸¦ ¿ø°ÝÀ¸·Î ÀçÇÁ·Î±×·¡¹ÖÇϰí ÁÖ¹®Çü º¯°æÀ» ¼öÇàÇÒ ¼ö ÀÖ´Â ´É·ÂÀº ±â¾÷¿¡°Ô Å« °æÀï·ÂÀ» Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ, SDA´Â AI ±â¹Ý ¿¹Ãø ºÐ¼®À» ÅëÇØ ¿¹Ãø À¯Áöº¸¼ö Àü·«À» ÃËÁøÇϰí, AI ±â¹Ý ¿¹Ãø ºÐ¼®À» ÅëÇØ Àåºñ °íÀåÀ» »çÀü¿¡ °¨ÁöÇÏ¿© °èȹµÇÁö ¾ÊÀº ´Ù¿îŸÀÓÀ» ÃÖ¼ÒÈ­ÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÕ´Ï´Ù. ±× °á°ú, ÀÚ»ê °¡µ¿·üÀ» ³ôÀ̰í À¯Áöº¸¼ö ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ½À´Ï´Ù. Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ³ë·Âµµ °¢ »ê¾÷À» SDA·Î À̲ø°í ÀÖ½À´Ï´Ù. ¼ÒÇÁÆ®¿þ¾î ±â¹Ý ÀÚµ¿È­¸¦ ÅëÇØ ¿¡³ÊÁö ¼Òºñ¸¦ ÃÖÀûÈ­ÇÏ°í Æó±â¹°À» ÁÙÀ̸ç Àü¹ÝÀûÀÎ ÀÚ¿ø È¿À²¼ºÀ» ³ôÀÏ ¼ö Àֱ⠶§¹®ÀÔ´Ï´Ù. ¹°·ù, ¼®À¯ ¹× °¡½º, Åë½Å µîÀÇ »ê¾÷¿¡¼­´Â °ø±Þ¸Á ¿î¿µ °£¼ÒÈ­, µ¥ÀÌÅÍ ±â¹Ý ÀÇ»ç°áÁ¤ °³¼±, Á÷¿ø »ý»ê¼º Çâ»óÀ» À§ÇØ SDA¸¦ ÅëÇÕÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, SDA´Â IT-OT(Á¤º¸±â¼ú-¿î¿µ±â¼ú) À¶ÇÕÀ̶ó´Â ±¤¹üÀ§ÇÑ Æ®·»µå¿¡ ºÎÇÕÇϸç, ±â¾÷ÀÇ IT ½Ã½ºÅÛ°ú »ê¾÷¿ë Á¦¾î ³×Æ®¿öÅ©ÀÇ ¿øÈ°ÇÑ ÅëÇÕÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ½º¸¶Æ® ÆÑÅ丮, ÃÊÀÚµ¿ â°í, ÀÚÀ² »ý»ê ȯ°æ¿¡ ´ëÇÑ ÅõÀÚ°¡ È®´ëµÇ´Â °¡¿îµ¥, SDAÀÇ ±¤¹üÀ§ÇÑ µµÀÔÀº Â÷¼¼´ë »ê¾÷ ¿î¿µÀÇ Æ¯Â¡ÀÌ µÇ°í ÀÖ½À´Ï´Ù.

¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ÀÚµ¿È­ ½ÃÀåÀÇ ¼ºÀåÀ» À̲ô´Â ¿äÀÎÀº ¹«¾ùÀϱî?

¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ÀÚµ¿È­ ½ÃÀå ¼ºÀåÀÇ ¿øµ¿·ÂÀº ¿©·¯ °¡Áö ¿äÀÎÀÌ ÀÖÀ¸¸ç, °¢ ¿äÀÎÀº °¢ »ê¾÷¿¡¼­ äÅÃÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ÁÖ¿ä ¿äÀÎ Áß Çϳª´Â ÀÚµ¿È­ ÀÇ»ç°áÁ¤°ú ¿¹Ãø ºÐ¼®À» °­È­Çϱâ À§ÇØ ÀΰøÁö´É°ú ¸Ó½Å·¯´×¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁö°í ÀÖÀ¸¸ç, AI¸¦ Ȱ¿ëÇÑ SDA¸¦ ÅëÇØ »ê¾÷°è´Â ¿î¿µÀÇ ÀÚü ÃÖÀûÈ­¸¦ ½ÇÇöÇϰí, ºñÈ¿À²À» ÁÙÀ̰í, ÇÁ·Î¼¼½ºÀÇ ÀûÀÀ¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ¶Ç ´Ù¸¥ Áß¿äÇÑ ¿äÀÎÀº Àδõ½ºÆ®¸® 4.0°ú ½º¸¶Æ® Á¦Á¶ÀÇ ºÎ»óÀ¸·Î, ±â¾÷µéÀº »ý»ê ȯ°æ¿¡¼­ ½Ç½Ã°£ °¡½Ã¼º°ú ¹Îø¼ºÀ» È®º¸Çϱâ À§ÇØ µðÁöÅÐ ¿ì¼±ÀÇ ÀÚµ¿È­ Àü·«À¸·Î Àû±ØÀûÀ¸·Î ÀüȯÇϰí ÀÖ½À´Ï´Ù. »óÈ£¿¬°áµÈ ¼¾¼­¿Í ½º¸¶Æ® ¸Ó½ÅÀº ¿øÈ°ÇÑ Á¶Á¤À» À§ÇÑ Áö´ÉÇü ¼ÒÇÁÆ®¿þ¾î ±â¹Ý ¿ÀÄɽºÆ®·¹À̼ÇÀÌ ÇÊ¿äÇϱ⠶§¹®¿¡ IoT µð¹ÙÀ̽ºÀÇ º¸±ÞÀº SDAÀÇ Ã¤ÅÃÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Ŭ¶ó¿ìµå ¹× ¿§Áö ÄÄÇ»ÆÃÀÇ Ã¤ÅÃÀÌ È®´ëµÇ¸é¼­ ºÐ»êÇü ÀÎÅÚ¸®Àü½º¸¦ ±¸ÇöÇϰí Áß¾Ó ÁýÁᫎ µ¥ÀÌÅͼ¾ÅÍ¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³·ÃãÀ¸·Î½á ÀÚµ¿È­ ¾ÆÅ°ÅØÃ³¸¦ º¯È­½Ã۰í ÀÖ½À´Ï´Ù. ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ÀÚµ¿È­¿¡ ´ëÇÑ ¼ö¿ä´Â »ê¾÷ Á¦¾î ½Ã½ºÅÛ¿¡¼­ »çÀ̹ö º¸¾È¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó, ±â¾÷µéÀº ÁøÈ­ÇÏ´Â »çÀ̹ö À§ÇùÀ¸·ÎºÎÅÍ º¸È£Çϱâ À§ÇØ ¼ÒÇÁÆ®¿þ¾î ±â¹Ý º¸¾È Á¶Ä¡¸¦ ¿ì¼±½ÃÇϰí ÀÖ½À´Ï´Ù. ±â¾÷ÀÌ ÀÚµ¿È­ ¼Ö·ç¼ÇÀÇ ¸ÂÃãÈ­, È®À强, »óÈ£¿î¿ë¼º Çâ»óÀ» Ãß±¸ÇÔ¿¡ µû¶ó ÃÖÁ¾»ç¿ëÀÚÀÇ Çൿµµ Áß¿äÇÑ ÃËÁø¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ±â¾÷µéÀº ´õ Å« À¯¿¬¼º°ú ÅëÇÕ ±â´ÉÀ» Á¦°øÇÏ´Â º¥´õ µ¶¸³ÀûÀÎ ¼ÒÇÁÆ®¿þ¾î Ç÷§ÆûÀ¸·Î ÀüȯÇϰí ÀÖÀ¸¸ç, µ¶Á¡ÀûÀÎ ÀÚµ¿È­ Çϵå¿þ¾î¿¡¼­ ¹þ¾î³ª°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ±ÔÁ¦ Áؼö ¹× Áö¼Ó°¡´É¼º Àǹ«È­·Î ÀÎÇØ »ê¾÷°è´Â ȯ°æ ¸ñÇ¥¿¡ ºÎÇÕÇÏ´Â ¿¡³ÊÁö È¿À²ÀûÀÎ ÀÚµ¿È­ ¼Ö·ç¼ÇÀ» äÅÃÇϰí ÀÖ½À´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾ç ½ÅÈï ½ÃÀå, ƯÈ÷ Áß±¹°ú Àεµ´Â ±Þ¼ÓÇÑ »ê¾÷È­¿Í ½º¸¶Æ® ÀÎÇÁ¶ó ÀÌ´Ï¼ÅÆ¼ºê·Î ÀÎÇØ SDA ÅõÀÚ°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. ¸¶Áö¸·À¸·Î, ¹°·ù, ³ó¾÷, ÇコÄÉ¾î ºÐ¾ß¿¡¼­ ÀÚÀ² ¿î¿µÀÇ Á߿伺ÀÌ °­Á¶µÇ¸é¼­ ÀüÅëÀûÀÎ Á¦Á¶¾÷ ¿Ü¿¡µµ ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ÀÚµ¿È­ÀÇ »ç¿ë »ç·Ê°¡ È®´ëµÇ°í ÀÖÀ¸¸ç, ÇâÈÄ ½ÃÀå ¼ºÀå°ú ±â¼ú ¹ßÀüÀÌ ¿¹»óµË´Ï´Ù.

ºÎ¹®

±¸¼º¿ä¼Ò(¼Ö·ç¼Ç, ¼­ºñ½º), Àü°³(¿ÂÇÁ·¹¹Ì½º, Ŭ¶ó¿ìµå ±â¹Ý), ¿ëµµ(ÇÁ·Î¼¼½º ÀÚµ¿È­, ³×Æ®¿öÅ© ÀÚµ¿È­, º¸¾È ÀÚµ¿È­, ±âŸ), ÃÖÁ¾ ¿ëµµ(Á¤º¸±â¼ú¡¤Åë½Å, BFSI, ¼Ò¸Å¡¤E-Commerce, ÇコÄɾ»ý¸í°úÇÐ, Á¦Á¶, ÀÚµ¿Â÷, ¿î¼Û¡¤¹°·ù, ±âŸ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM ¹× ¾÷°èº° SLM Äõ¸®¸¦ µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Software-Defined Automation Market to Reach US$71.0 Billion by 2030

The global market for Software-Defined Automation estimated at US$37.0 Billion in the year 2024, is expected to reach US$71.0 Billion by 2030, growing at a CAGR of 11.5% over the analysis period 2024-2030. Solutions, one of the segments analyzed in the report, is expected to record a 9.6% CAGR and reach US$41.7 Billion by the end of the analysis period. Growth in the Services segment is estimated at 14.7% CAGR over the analysis period.

The U.S. Market is Estimated at US$10.1 Billion While China is Forecast to Grow at 15.2% CAGR

The Software-Defined Automation market in the U.S. is estimated at US$10.1 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$14.5 Billion by the year 2030 trailing a CAGR of 15.2% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 8.5% and 10.1% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 9.0% CAGR.

Global Software-Defined Automation Market - Key Trends & Drivers Summarized

How is Software-Defined Automation Reshaping Industries with Intelligent Control?

Software-defined automation (SDA) is revolutionizing industrial and enterprise automation by introducing greater flexibility, scalability, and intelligence into control systems. Unlike traditional automation, which relies on rigid hardware-based configurations, SDA leverages software-driven orchestration to dynamically manage processes, making it an integral part of Industry 4.0. Through advanced algorithms, cloud connectivity, and AI-driven decision-making, SDA is enabling enterprises to reconfigure workflows, optimize resources, and enhance efficiency without costly hardware upgrades. A key differentiator is the ability to integrate diverse IoT-enabled devices, sensors, and actuators into a unified automation framework, reducing downtime and increasing overall productivity. This shift from hardware-centric to software-defined control is being fueled by the growing need for agile manufacturing, predictive maintenance, and seamless human-machine collaboration across industries. Businesses across manufacturing, logistics, and utilities are deploying SDA to gain real-time visibility into their operations, improve operational resilience, and accelerate time-to-market for new products. The adoption of open-source automation frameworks and vendor-neutral software solutions is further propelling this transformation, fostering an ecosystem where enterprises are no longer tied to proprietary hardware limitations. As software-driven automation continues to gain traction, the question arises-how far can it go in reshaping industrial processes, and what new capabilities will emerge as AI and machine learning are further integrated into automation workflows?

What Are the Key Technologies Driving the Evolution of Software-Defined Automation?

Several breakthrough technologies are accelerating the growth of software-defined automation, enabling more intelligent and adaptive control systems. Edge computing is playing a pivotal role by reducing latency in automation processes, ensuring real-time decision-making without relying on distant cloud infrastructure. This decentralization of computing power enhances responsiveness in mission-critical applications such as smart factories, autonomous vehicles, and energy grid management. Meanwhile, artificial intelligence (AI) and machine learning (ML) are transforming automation workflows by enabling self-optimizing systems capable of learning from operational data and dynamically adjusting parameters for maximum efficiency. Digital twin technology is another game-changer, allowing industries to create virtual replicas of physical assets and simulate automation strategies before deployment. This predictive approach helps in reducing errors, minimizing downtime, and improving overall system reliability. The convergence of SDA with 5G networks is also reshaping automation landscapes by facilitating ultra-low latency communication between connected devices, making real-time control even more precise and efficient. Additionally, cybersecurity measures such as zero-trust architectures and AI-powered threat detection are becoming integral to SDA deployments, safeguarding critical infrastructure from cyber threats. As enterprises continue to embrace intelligent automation, innovations in self-healing networks and blockchain-based security frameworks are expected to redefine the way automation ecosystems operate. Given these advancements, the future of software-defined automation seems poised to move beyond traditional industrial settings into broader applications such as healthcare, smart cities, and autonomous transportation systems.

Why Are Industries Rapidly Adopting Software-Defined Automation at Scale?

The rapid adoption of software-defined automation is being driven by the increasing need for operational agility, cost efficiency, and sustainability in industrial environments. Companies are recognizing the limitations of traditional automation systems, which are often expensive to upgrade, rigid in configuration, and slow to adapt to evolving business needs. SDA offers a highly flexible and software-driven approach that enables organizations to automate workflows without the need for extensive hardware modifications. One of the strongest adoption drivers is the rising demand for mass customization, particularly in manufacturing sectors where businesses must quickly adapt production lines to meet changing consumer preferences. The ability to reprogram automation software remotely and implement changes on demand gives enterprises a significant competitive edge. Additionally, SDA is facilitating predictive maintenance strategies, allowing industries to minimize unplanned downtime by using AI-based predictive analytics to detect equipment failures before they occur. This results in higher asset utilization rates and lower maintenance costs. Sustainability initiatives are also pushing industries toward SDA, as software-driven automation can optimize energy consumption, reduce waste, and enhance overall resource efficiency. Industries such as logistics, oil and gas, and telecommunications are integrating SDA to streamline supply chain operations, improve data-driven decision-making, and enhance workforce productivity. Furthermore, SDA aligns with the broader trend of IT-OT (Information Technology-Operational Technology) convergence, enabling seamless integration between enterprise IT systems and industrial control networks. With growing investments in smart factories, hyper-automated warehouses, and autonomous production environments, the widespread deployment of SDA is becoming a defining characteristic of next-generation industrial operations.

What’s Fueling the Growth of the Software-Defined Automation Market?

The growth in the software-defined automation market is driven by several factors, each contributing to its accelerating adoption across industries. One of the primary drivers is the increasing reliance on artificial intelligence and machine learning to enhance automation decision-making and predictive analytics. AI-powered SDA enables industries to achieve self-optimizing operations, reducing inefficiencies and improving process adaptability. Another critical factor is the rise of Industry 4.0 and smart manufacturing, where organizations are actively transitioning to digital-first automation strategies to gain real-time visibility and agility in their production environments. The proliferation of IoT devices is further fueling SDA adoption, as interconnected sensors and smart machines require intelligent software-based orchestration for seamless coordination. Additionally, the growing adoption of cloud and edge computing is transforming automation architectures by enabling distributed intelligence and reducing reliance on centralized data centers. The demand for software-defined automation is also being driven by the increasing need for cybersecurity in industrial control systems, with enterprises prioritizing software-driven security measures to protect against evolving cyber threats. End-user behavior is another significant driver, as businesses seek greater customization, scalability, and interoperability in automation solutions. Companies are moving away from proprietary automation hardware in favor of vendor-agnostic software platforms that offer greater flexibility and integration capabilities. Furthermore, regulatory compliance and sustainability mandates are encouraging industries to adopt energy-efficient automation solutions that align with environmental goals. Emerging markets in Asia-Pacific, particularly China and India, are witnessing a surge in SDA investments due to rapid industrialization and smart infrastructure initiatives. Finally, the growing emphasis on autonomous operations in logistics, agriculture, and healthcare is expanding the use cases for software-defined automation beyond traditional manufacturing, ensuring continued market growth and technological evolution in the years ahead.

SCOPE OF STUDY:

The report analyzes the Software-Defined Automation market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Component (Solutions, Services); Deployment (On-Premise, Cloud-based); Application (Process Automation, Network Automation, Security Automation, Others); End-Use (Information Technology & Telecom, BFSI, Retail & E-Commerce, Healthcare & Life Sciences, Manufacturing, Automotive, Transportation & Logistics, Others)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 42 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â