¼¼°èÀÇ ÇコÄÉ¾î ºÐ¾ß ÀΰøÁö´É(AI) ½ÃÀå
Artificial Intelligence (AI) in Healthcare
»óǰÄÚµå : 1768183
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 183 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,222,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,666,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ÇコÄÉ¾î ºÐ¾ß ÀΰøÁö´É(AI) ¼¼°è ½ÃÀå, 2030³â±îÁö 3,465¾ï ´Þ·¯¿¡ µµ´Þ Àü¸Á

2024³â¿¡ 551¾ï ´Þ·¯·Î ÃßÁ¤µÈ ÇコÄÉ¾î ºÐ¾ß ÀΰøÁö´É(AI) ¼¼°è ½ÃÀåÀº 2024-2030³â CAGR 35.8%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 3,465¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ¼ÒÇÁÆ®¿þ¾î´Â CAGR37.1%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 1,772¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Çϵå¿þ¾î ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ CAGR 35.4%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº ÃßÁ¤ 167¾ï ´Þ·¯, Áß±¹Àº CAGR34.1%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ÇコÄÉ¾î ºÐ¾ß ÀΰøÁö´É(AI) ½ÃÀåÀº 2024³â¿¡ 167¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 498¾ï ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 34.1%·Î ÃßÁ¤µË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î¼­´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 32.0%¿Í 30.1%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 24.6%¸¦ ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù.

¼¼°èÀÇ ÇコÄÉ¾î ºÐ¾ß ÀΰøÁö´É(AI) ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

AI°¡ Áø´ÜÀÇ Á¤È®µµ¿Í ȯÀÚ °á°ú¸¦ ¾î¶»°Ô °³¼±Çϰí Àִ°¡?

ÀΰøÁö´É(AI)Àº ÀÇ·á Áø´Ü¿¡ º¯È­¸¦ °¡Á®¿À°í ÀÖÀ¸¸ç, ȯÀÚ °á°ú¿¡ Å« ¿µÇâÀ» ¹ÌÄ¡´Â º¸´Ù ½Å¼ÓÇϰí Á¤È®ÇÑ Æò°¡¸¦ °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù. ±âÁ¸¿¡´Â Áø´ÜÀÌ ÀÓ»óÀÇÀÇ Àü¹® Áö½Ä°ú °æÇè¿¡ Å©°Ô ÀÇÁ¸ÇØ ¿ÔÁö¸¸, ÀÌÁ¦´Â AI°¡ ÀÇ·á µ¥ÀÌÅÍ¿Í À̹ÌÁö¸¦ ºü¸£°Ô ºÐ¼®ÇÏ¿© ÀÌ °úÁ¤À» È®ÀåÇϰí Àΰ£ÀÇ ½Ç¼ö °¡´É¼ºÀ» ÁÙÀÌ´Â Á¤È®µµ¸¦ ³ôÀ̰í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ¹æ»ç¼±°úÀÇ ¸Ó½Å·¯´× ¾Ë°í¸®ÁòÀº À̹ÌÁö µ¥ÀÌÅ͸¦ ½Ç½Ã°£À¸·Î ½ºÄµÇÏ¿© ¾Ï, Æó·Å, ½ÉÇ÷°ü Áúȯ°ú °°Àº Áúº´ÀÇ Ãʱâ ¡Èĸ¦ °¨ÁöÇÒ ¼ö ÀÖÀ¸¸ç, Áõ»óÀÌ ³ªÅ¸³ª±â Àü¿¡ ¹®Á¦¸¦ ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿Í °°Àº ±â¾÷µéÀº µö·¯´×À» ÅëÇØ CT ½ºÄµ, MRI, ¿¢½º·¹À̸¦ ³î¶øµµ·Ï Á¤È®ÇÏ°Ô ÇØ¼®ÇÏ¿© ¿µ»óÀÇÇаú Àü¹®Àǰ¡ Á¤º¸¿¡ ÀÔ°¢ÇÑ ÆÇ´ÜÀ» ½Å¼ÓÇÏ°Ô ³»¸± ¼ö ÀÖµµ·Ï µ½°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, AI ¸ðµ¨Àº ÀüÀÚ ÀÇ·á ±â·Ï(EHR), °Ë»ç °á°ú, À¯ÀüÀÚ Á¤º¸¸¦ ºÐ¼®ÇÏ¿© ȯÀÚÀÇ À§ÇèÀ» ¿¹ÃøÇϰí Áúº´ÀÇ ÁøÇàÀ» ÃßÀûÇÏ¿© Àǻ翡°Ô ½Ç¿ëÀûÀÎ ÅëÂû·ÂÀ» Á¦°øÇÕ´Ï´Ù. AI ±â¹Ý Áø´ÜÀº ´õ ºü¸¥ Áø´Ü°ú °³ÀÎÈ­µÈ Ä¡·á °èȹÀ» °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á ȯÀÚ °á°ú¸¦ °³¼±Çϰí, ÀÔ¿ø ±â°£À» ´ÜÃàÇϸç, º¸´Ù Àû±ØÀûÀÎ ÀÇ·á Á¢±Ù ¹æ½ÄÀ» À§ÇÑ ±æÀ» ¿­¾îÁÖ°í ÀÖ½À´Ï´Ù.

AI°¡ °³ÀÎ ¸ÂÃãÇü Ä¡·á¿Í ½Å¾à°³¹ßÀ» º¯È­½Ãų ¼ö ÀÖÀ»±î?

AIÀÇ Ä¡·á °³ÀÎÈ­ ¹× ½Å¾à°³¹ßÀ» ÃËÁøÇÏ´Â AIÀÇ °¡´É¼ºÀº Global Industry Analysts°¡ ȯÀÚ Ä¡·á¿¡ Á¢±ÙÇÏ´Â ¹æ½ÄÀ» ÀçÁ¤ÀÇÇϰí ÀÖ½À´Ï´Ù. ±Þ¼ºÀåÇϰí ÀÖ´Â Á¤¹ÐÀÇÇÐÀº AI¸¦ Ȱ¿ëÇÏ¿© °³ÀÎÀÇ À¯ÀüÀû üÁú, »ýȰ½À°ü, ƯÁ¤ °Ç°­»óÅ¿¡ ¸Â°Ô Ä¡·á °èȹÀ» ¸ÂÃãÈ­ÇÏ´Â ºÐ¾ßÀÔ´Ï´Ù. À¯ÀüÀÚ Á¤º¸, »ýȰ½À°ü ¿äÀÎ, °ú°Å °Ç°­ ±â·ÏÀ» Æ÷ÇÔÇÑ º¹ÀâÇÑ µ¥ÀÌÅÍ ¼¼Æ®¸¦ ºÐ¼®ÇÏ¿© AI ¾Ë°í¸®ÁòÀº °íµµ·Î °³ÀÎÈ­µÈ Ä¡·á¹ýÀ» Á¦¾ÈÇϰí, Ä¡·á È¿°ú¸¦ ÃÖÀûÈ­ÇÏ°í ºÎÀÛ¿ëÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, IBMÀÇ ¿Ó½¼ Æ÷ Á¾¾ç(Watson for Oncology)´Â AI¸¦ ÅëÇØ °³º° ȯÀÚ µ¥ÀÌÅÍ¿Í ¹æ´ëÇÑ ÀÇÇÐ ¹®Çå ¶óÀ̺귯¸®¸¦ ±â¹ÝÀ¸·Î ¾Ï Ä¡·á ¿É¼ÇÀ» Á¦¾ÈÇÏ¿© Á¾¾ç Àü¹®Àǰ¡ ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ½Å¾à°³¹ß¿¡¼­´Â AI°¡ ÀáÀçÀû ¾à¹° Èĺ¸¹°ÁúÀÇ ½Äº°À» °¡¼ÓÈ­Çϰí, ¼­·Î ´Ù¸¥ ºÐÀÚ°¡ ¾î¶»°Ô »óÈ£ÀÛ¿ëÇÏ´ÂÁö ¿¹ÃøÇϰí, ºÎÀÛ¿ë±îÁö ÆÄ¾ÇÇÏ¿© ±âÁ¸ ¾à¹°°³¹ß¿¡ ¼Ò¿äµÇ´Â ½Ã°£°ú ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ½À´Ï´Ù. µö·¯´× ¸ðµ¨À» »ç¿ëÇÏ¿© ºÐÀÚ ±¸Á¶¸¦ ºÐ¼®ÇÏ¿© °ú°Å¿¡´Â ¼ö³âÀÌ °É¸®´ø ¿¬±¸ °úÁ¤À» °¡¼ÓÈ­ÇÕ´Ï´Ù. AI´Â °³ÀÎ ¸ÂÃãÇü ÀǷḦ °­È­ÇÏ°í ½Å¾à °³¹ßÀ» °¡¼ÓÈ­ÇÔÀ¸·Î½á Ä¡·á¹ý °³¹ß ¹× Á¦°ø ¹æ½Ä¿¡ Çõ¸íÀ» ÀÏÀ¸Å°°í ÀÖÀ¸¸ç, ±Ã±ØÀûÀ¸·Î º¸´Ù È¿°úÀûÀÌ°í ½Ã±âÀûÀýÇÑ ÀÇ·á ¼Ö·ç¼ÇÀ» ÅëÇØ ȯÀڵ鿡°Ô ÇýÅÃÀ» Á¦°øÇÕ´Ï´Ù.

AI°¡ ÇコÄÉ¾î ºÐ¾ßÀÇ ¾÷¹« È¿À²¼º°ú ÀÚ¿ø °ü¸®¸¦ ¾î¶»°Ô Áö¿øÇϰí Àִ°¡?

AI´Â ÀÇ·á ºÐ¾ß¿¡¼­ ¾÷¹« È¿À²¼º°ú ÀÚ¿ø °ü¸®ÀÇ È¹±âÀûÀÎ ¹ßÀüÀ» ÃËÁøÇϰí Àη ºÎÁ·, ÀÚ¿ø ¹èºÐ, ȯÀÚ ´ë±â ½Ã°£°ú °°Àº ¿À·£ ¹®Á¦¸¦ ÇØ°áÇϰí ÀÖ½À´Ï´Ù. º´¿ø°ú ÀÇ·á ¼­ºñ½º Á¦°ø¾÷üµéÀº AI¸¦ Ȱ¿ëÇÑ ¿¹Ãø ºÐ¼®À» ½ºÄÉÁÙ¸µ, Á÷¿ø ¹èÄ¡, ȯÀÚ È帧 °ü¸®¿¡ Ȱ¿ëÇϰí ÀÖÀ¸¸ç, ÀÌ·¯ÇÑ ÇÁ·Î¼¼½º¸¦ ÃÖÀûÈ­ÇÏ¿© °ú¹ÐÈ­¸¦ ÇØ¼ÒÇϰí ÀÚ¿øÀ» È¿À²ÀûÀ¸·Î »ç¿ëÇÒ ¼ö ÀÖµµ·Ï µ½°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ¾Ë°í¸®ÁòÀº ÀÀ±Þ½Ç°ú Áø·á¼ÒÀÇ ÇÇÅ© ½Ã°£À» ¿¹ÃøÇÏ¿© ´õ ³ªÀº Áغñ¿Í Àη ¹èÄ¡¸¦ Á¶Á¤ÇÔÀ¸·Î½á ȯÀÚÀÇ ´ë±â ½Ã°£À» ÃÖ¼ÒÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ EHR °ü¸®¿¡¼­ AI´Â µ¥ÀÌÅÍ ÀÔ·Â, û±¸ ó¸®, û±¸¼­ ÀÛ¼º°ú °°Àº ¹Ýº¹ÀûÀÎ °ü¸® ¾÷¹«¸¦ ÀÚµ¿È­ÇÏ¿© ÀÇ·áÁøÀÇ °ü¸® ºÎ´ãÀ» ÁÙÀ̰í Àü¹ÝÀûÀÎ È¿À²¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. °¡»ó ºñ¼­ ¹× 꺿Àº ȯÀÚ ¹®ÀÇ ÀÀ´ë, ¿¹¾à ¿¹¾à, ȯÀÚ º¹¾à ¾Ë¸² µî ¾÷¹« ºÎ´ãÀ» ´õ¿í ÁÙÀ̰í ÀÇ·áÁø¿¡°Ô ºÎ´ãÀ» ÁÖÁö ¾ÊÀ¸¸é¼­µµ ¼­ºñ½º ǰÁúÀ» Çâ»ó½ÃŰ´Â µî AI´Â ¾÷¹« È¿À²È­¸¦ ÅëÇØ ÇコÄɾî ÀÇ·á ¼­ºñ½º Á¦°ø¾÷ü°¡ ȯÀÚ¸¦ Á÷Á¢ µ¹º¸´Â µ¥ ´õ ÁýÁßÇÒ ¼ö ÀÖµµ·Ï ÇÏ¿© È¿À²¼ºÀ» ³ôÀ̰í, °¡Àå ÇÊ¿äÇÑ °÷¿¡ ÀÚ¿øÀ» ¹èÄ¡ÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù.

ÇコÄÉ¾î ½ÃÀå¿¡¼­ AIÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

ÇコÄÉ¾î ºÐ¾ßÀÇ AI ½ÃÀå ¼ºÀåÀº ¸î °¡Áö Áß¿äÇÑ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖÀ¸¸ç, ±â¼úÀÇ ¹ßÀü°ú ÇコÄÉ¾î ¿ä±¸»çÇ×ÀÇ ÁøÈ­°¡ AI äÅÃÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ÀÇ·á ¿µ»ó, À¯ÀüÀÚ ÇÁ·ÎÆÄÀÏ, ¿þ¾î·¯ºí °Ç°­ ±â±â¿¡¼­ »ý¼ºµÇ´Â ÀÇ·á µ¥ÀÌÅÍÀÇ ¾çÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ÀÌ·¯ÇÑ ¹æ´ëÇÑ µ¥ÀÌÅÍ ¼¼Æ®¸¦ ÀÌÇØÇÒ ¼ö ÀÖ´Â AI ±â¹Ý ºÐ¼®ÀÌ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. °³ÀÎÈ­µÈ »çÀü ¿¹¹æÀû ÇコÄÉ¾î ¼­ºñ½º¿¡ ´ëÇÑ ¼ÒºñÀÚ ¼ö¿ä´Â ȯÀÚ°¡ ¸ÂÃãÇü Ä¡·á °èȹ°ú ¿¹¹æÀû Ä¡·á ¿É¼Ç¿¡ ´ëÇÑ ±â´ë¸¦ °®°Ô µÊ¿¡ µû¶ó ÁÖ¿ä ÃËÁø¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ÀÚ¿¬¾î ó¸®¿Í ÄÄÇ»ÅÍ ºñÀü ±â¼úÀÇ ¹ßÀüÀ¸·Î ÀÇ·á µ¥ÀÌÅÍ¿Í ¾ð¾î ±â¹Ý °Ç°­ Á¤º¸¸¦ ÇØ¼®ÇÏ´Â AIÀÇ ´É·ÂÀÌ Çâ»óµÇ¸é¼­ AI´Â Áø´Ü, ȯÀÚ ¸ð´ÏÅ͸µ, °³ÀÎ ¸ÂÃãÇü ÀÇ·á¿¡ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ¾Ò½À´Ï´Ù. ¶ÇÇÑ, ¾ç ±â¹Ý ¼­ºñ½ºº¸´Ù °á°ú ±â¹Ý Ä¡·á¸¦ Áß½ÃÇÏ´Â °¡Ä¡ ±â¹Ý Ä¡·á·ÎÀÇ ÀüȯÀº Áø´Ü Á¤È®µµ Çâ»ó, Ä¡·á °èȹ ÃÖÀûÈ­, ȯÀÚ °á°ú ¿¹ÃøÀ» À§ÇÑ AIÀÇ ´É·Â°ú ¹ÐÁ¢ÇÑ °ü·ÃÀÌ ÀÖ½À´Ï´Ù. ¸¸¼ºÁúȯ Áõ°¡·Î ÀÎÇØ ȯÀÚ ¸ð´ÏÅ͸µ ¹× °ü¸®¿¡ ÀÖ¾î AI ¼Ö·ç¼ÇÀÇ Çʿ伺ÀÌ ´õ¿í Ä¿Áö°í ÀÖ½À´Ï´Ù. ÇコÄÉ¾î ±â¼ú¿¡ ´ëÇÑ Á¤ºÎÀÇ ÀÌ´Ï¼ÅÆ¼ºê¿Í ¹Î°£ ÅõÀÚ´Â ÀÌ ºÐ¾ßÀÇ ¿¬±¸°³¹ßÀ» °¡¼ÓÈ­Çϰí, Çõ½ÅÀ» ÃËÁøÇϸç, ÇコÄÉ¾î ºÐ¾ß¿¡¼­ AIÀÇ Àû¿ëÀ» È®´ëÇϰí ÀÖ½À´Ï´Ù. ÀÌ´Â ¼ÒºñÀÚÀÇ ¿ä±¸¿Í µ¥ÀÌÅÍ Áß½É, È¿À²Àû, ȯÀÚ Áß½ÉÀÇ Ä¡·á·Î ÀüȯÇÏ´Â ¾÷°èÀÇ º¯È­¿¡ ´ëÀÀÇϱâ À§ÇÑ °ÍÀÔ´Ï´Ù.

ºÎ¹®

ÄÄÆ÷³ÍÆ®(¼ÒÇÁÆ®¿þ¾î, Çϵå¿þ¾î, ¼­ºñ½º), Å×Å©³î·¯Áö(¸Ó½Å·¯´×, ÀÚ¿¬¾ð¾îó¸®, »óȲÀÎ½Ä ÄÄÇ»ÆÃ, ÄÄÇ»ÅÍ ºñÀü), ¿ëµµ(ÀÓ»ó½ÃÇè, ·Îº¿ Áö¿ø ¼ö¼ú, Ä¿³ØÆ¼µå ¸Ó½Å, ºÎÁ¤ °¨Áö, Áø´Ü, °¡»ó ºñ¼­, Åõ¾à ½Ç¼ö °¨¼Ò, ±âŸ ¿ëµµ), ÃÖÁ¾ ¿ëµµ(º´¿ø ¹× ÀÇ·á Á¦°øÀÚ, ȯÀÚ, Á¦¾à ±â¾÷ ¹× ¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö ±â¾÷, ÀÇ·áºñ ÁöºÒÀÚ, ±âŸ ÃÖÁ¾ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ¼­, ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°èº° SLM Äõ¸®¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ´ë·® ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Artificial Intelligence (AI) in Healthcare Market to Reach US$346.5 Billion by 2030

The global market for Artificial Intelligence (AI) in Healthcare estimated at US$55.1 Billion in the year 2024, is expected to reach US$346.5 Billion by 2030, growing at a CAGR of 35.8% over the analysis period 2024-2030. Software, one of the segments analyzed in the report, is expected to record a 37.1% CAGR and reach US$177.2 Billion by the end of the analysis period. Growth in the Hardware segment is estimated at 35.4% CAGR over the analysis period.

The U.S. Market is Estimated at US$16.7 Billion While China is Forecast to Grow at 34.1% CAGR

The Artificial Intelligence (AI) in Healthcare market in the U.S. is estimated at US$16.7 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$49.8 Billion by the year 2030 trailing a CAGR of 34.1% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 32.0% and 30.1% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 24.6% CAGR.

Global Artificial Intelligence (AI) in Healthcare Market - Key Trends and Drivers Summarized

How Is AI Enhancing Diagnostic Accuracy and Patient Outcomes?

Artificial Intelligence (AI) is transforming diagnostics in healthcare, enabling faster, more accurate assessments that significantly impact patient outcomes. Traditionally, diagnoses relied heavily on a clinician’s expertise and experience, but AI now augments this process by rapidly analyzing medical data and imaging with a level of precision that reduces the likelihood of human error. Machine learning algorithms in radiology, for example, can detect early signs of diseases like cancer, pneumonia, and cardiovascular disorders by scanning imaging data in real time, often identifying issues before symptoms manifest. Companies like Zebra Medical Vision and Aidoc are employing deep learning to interpret CT scans, MRIs, and X-rays with remarkable accuracy, assisting radiologists in making informed decisions quickly. Furthermore, AI models predict patient risks and track disease progression by analyzing electronic health records (EHRs), laboratory results, and genetic information, providing doctors with actionable insights. By enabling faster diagnoses and more personalized treatment plans, AI-driven diagnostics are improving patient outcomes, reducing hospital stays, and paving the way for a more proactive healthcare approach.

Can AI Transform Personalized Treatment and Drug Discovery?

AI’s potential to individualize treatments and expedite drug discovery is redefining how we approach patient care. Precision medicine, a rapidly growing field, leverages AI to customize treatment plans tailored to an individual’s unique genetic makeup, lifestyle, and specific health conditions. By analyzing complex datasets that include genetic information, lifestyle factors, and previous health records, AI algorithms can suggest highly personalized therapies, optimizing treatment efficacy and reducing adverse reactions. IBM’s Watson for Oncology, for instance, uses AI to recommend cancer treatment options based on individual patient data and an extensive library of medical literature, supporting oncologists in making well-informed decisions. In drug discovery, AI accelerates the identification of potential drug candidates, predicting how different molecules might interact and even identifying possible side effects, reducing the time and costs associated with traditional drug development. AI platforms like Atomwise and BenevolentAI use deep learning models to analyze molecular structures, expediting the research process that once took years. By enhancing personalized care and fast-tracking drug discovery, AI is revolutionizing how treatments are developed and delivered, ultimately benefiting patients through more effective and timely medical solutions.

How Is AI Assisting in Operational Efficiency and Resource Management in Healthcare?

AI is driving significant advancements in operational efficiency and resource management within the healthcare sector, addressing longstanding issues like staff shortages, resource allocation, and patient wait times. Hospitals and healthcare providers are utilizing AI-driven predictive analytics to manage scheduling, staff allocation, and patient flow, optimizing these processes to reduce overcrowding and ensure that resources are used efficiently. For example, algorithms can predict peak times in emergency departments or clinics, allowing for better preparation and staffing adjustments, thereby minimizing patient wait times. Additionally, AI in EHR management automates repetitive administrative tasks such as data entry, claims processing, and billing, reducing the administrative burden on healthcare staff and improving overall efficiency. Virtual health assistants and chatbots are further alleviating workload by addressing patient queries, scheduling appointments, and reminding patients of medication, enhancing service quality without overwhelming healthcare personnel. By streamlining operations, AI enables healthcare providers to focus more on direct patient care, increasing efficiency and ensuring resources are deployed where they are most needed.

What Factors Are Driving the Growth of AI in the Healthcare Market?

The growth in the AI in healthcare market is driven by several key factors, as advancements in technology and evolving healthcare needs accelerate AI adoption. Increasing healthcare data volumes, generated from medical imaging, genetic profiles, and wearable health devices, necessitate AI-driven analytics capable of making sense of these massive datasets. Consumer demand for personalized and proactive healthcare services is a primary driver, as patients increasingly expect tailored treatment plans and preventive care options. Technological advancements in natural language processing and computer vision are enhancing AI’s capabilities in interpreting medical data and language-based health information, making AI indispensable for diagnostics, patient monitoring, and personalized medicine. Additionally, the global shift toward value-based care, which emphasizes outcome-driven treatments over volume-based services, aligns closely with AI’s ability to improve diagnostic accuracy, optimize treatment plans, and predict patient outcomes. The rising prevalence of chronic diseases has further increased the need for AI solutions in patient monitoring and management. Government initiatives and private-sector investments in health technology are accelerating research and development in this area, encouraging innovation and expanding AI applications in healthcare. Together, these drivers indicate a transformative period for AI in healthcare, as it responds to both consumer demands and the industry’s shift towards data-centric, efficient, and patient-focused care.

SCOPE OF STUDY:

The report analyzes the Artificial Intelligence (AI) in Healthcare market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Component (Software, Hardware, Services); Technology (Machine Learning, Natural Language Processing, Context-Aware Computing, Computer Vision); Application (Clinical Trials, Robot-Assisted Surgery, Connected Machines, Fraud Detection, Diagnosis, Virtual Assistants, Dosage Error Reduction, Other Applications); End-Use (Hospitals & Healthcare Providers, Patients, Pharmaceuticals & Biotechnology Companies, Healthcare Payers, Other End-Uses)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 222 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â