¼¼°èÀÇ ¼öÀÍ Áֱ⠰ü¸®¿ë AI ½ÃÀå(2025-2032³â) : ±Ô¸ð, Á¡À¯À², µ¿Ç⠺м®(À¯Çüº°, Á¦°ø ¹æ½Äº°, ÃÖÁ¾ ¿ëµµº°, Á¦Ç°º°, ¿ëµµº°, Áö¿ªº°), Àü¸Á, ¿¹Ãø
Global AI In Revenue Cycle Management Market Size, Share & Industry Analysis Report By Type, By Delivery Mode, By End Use, By Product, By Application, By Regional Outlook and Forecast, 2025 - 2032
»óǰÄÚµå : 1768566
¸®¼­Ä¡»ç : KBV Research
¹ßÇàÀÏ : 2025³â 06¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 430 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 3,600 £Ü 5,021,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy & Paste °¡´ÉÇÕ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 4,320 £Ü 6,025,000
PDF (Multi User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ 10¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy & Paste °¡´ÉÇÕ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,048 £Ü 8,436,000
PDF (Corporate User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy & Paste °¡´ÉÇÕ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼öÀÍ Áֱ⠰ü¸®¿ë AI ½ÃÀå ±Ô¸ð´Â ¿¹Ãø ±â°£ µ¿¾È 23.7%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î ¼ºÀåÇÏ¿© 2032³â±îÁö 1,071¾ï 7,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

KBV Cardinal matrix : ¼öÀÍ Áֱ⠰ü¸®¿ë AI ½ÃÀå °æÀï ºÐ¼®

KBV Cardinal matrix¿¡ Á¦½ÃµÈ ºÐ¼®¿¡ µû¸£¸é Oracle Corporation°ú UnitedHealth Group, Inc.´Â ÀÌ ½ÃÀåÀÇ ¼±±¸ÀÚÀÔ´Ï´Ù.

COVID-19ÀÇ ¿µÇ⠺м®

COVID-19 ÆÒµ¥¹ÍÀº ¼öÀÍ Áֱ⠰ü¸®¿¡¼­ AI(ÀΰøÁö´É) ±â¼úÀÇ µµÀÔÀ» ÇöÀúÇÏ°Ô °¡¼Ó½ÃÄ×½À´Ï´Ù. ±â¾÷µéÀº AI ¼Ö·ç¼ÇÀ¸·ÎÀÇ ½Å¼ÓÇÑ ÀüȯÀ» µµ¸ðÇß½À´Ï´Ù.

½ÃÀå ¼ºÀå ¿äÀÎ

¼öÀÍ Áֱ⠰ü¸®(RCM)¿ë AIÀÇ ±Þ¼ÓÇÑ º¸±ÞÀ» °ßÀÎÇÏ´Â °¡Àå °­·ÂÇÑ ¿äÀÎ Áß Çϳª´Â ÀÇ·á ½Ã½ºÅÛÀÇ Áö¼ÓÀûÀÎ ¾÷¹« È¿À²¼º°ú ºñ¿ë ¾ïÁ¦ ³ë·ÂÀÔ´Ï´Ù. RCMÀº º»ÁúÀûÀ¸·Î º¹ÀâÇϸç ȯÀÚ µî·Ï, º¸ÇèÁõ È®ÀÎ, û±¸ ó¸®, ÁöºÒ ±â·Ï, ȸ¼ö±îÁö ¿©·¯ ´Ü°è¸¦ °ÅÃÄ¾ß ÇÕ´Ï´Ù. ÀüÅëÀûÀ¸·Î ÀÌ ÇÁ·Î¼¼½º´Â ¼öÀÛ¾÷¿¡ Å©°Ô ÀÇÁ¸ÇßÀ¸¸ç ½Ç¼ö¿Í ºñÈ¿À²¼ºÀÌ ¹ß»ýÇϱ⠽¬¿î »óȲÀ̾ú½À´Ï´Ù. ÀÇ·á Á¦°ø¾÷ü´Â ÀûÀº ÀÚ¿øÀ¸·Î ´õ ¸¹Àº ¼º°ú¸¦ ¿Ã¸®°í ½Í¾îÇϹǷΠAI¸¦ Ȱ¿ëÇÑ RCMÀº Àüü ÀÇ·á ¼öÀÍ »ýŰèÀÇ È¿À²¼º Çâ»ó°ú ºñ¿ë Àý°¨¿¡ ÇʼöÀûÀÎ ¼Ö·ç¼ÇÀÔ´Ï´Ù.

¶ÇÇÑ ÀÇ·áºñ ȯ±ÞÀ» µÑ·¯½Ñ »óȲÀº ³¯¸¶´Ù º¹ÀâÇØÁö°í ÀÖ½À´Ï´Ù. ¹Î°£ ¹× °ø°ø±â°ü¿¡ °ü°è¾øÀÌ º¸ÇèÀÚ´Â Á¡Á¡ ´õ ¾ö°ÝÇÑ ¹®¼­È­ ¿ä°Ç°ú Á¤Ã¥ Áؼö ±ÔÄ¢À» Àû¿ë¹Þ°í ÀÖ½À´Ï´Ù. ±× °á°ú û±¸ °ÅºÎÀ²ÀÌ Áõ°¡Çϰí ÀÇ·á Á¦°ø¾÷ü´Â ¿À·ù, Áö¿¬, Á¤Ã¥ Áؼö·Î ÀÎÇØ »ó´çÇÑ ¼öÀÍÀ» ÀÒ°í ÀÖ½À´Ï´Ù. µû¶ó¼­ ±ÔÁ¦ ´ç±¹ÀÇ °¨½Ã°¡ °­È­µÇ°í ȯ±Þ ±ÔÁ¤ÀÌ º¹ÀâÇØÁö´Â ½Ã´ë¿¡ AI´Â û±¸ °ÅºÎ¸¦ ÃÖ¼ÒÈ­Çϰí È®½ÇÇÑ ÄÄÇöóÀ̾𽺸¦ À¯ÁöÇÏ´Â µ¥ Áß¿äÇÑ ÆÄÆ®³ÊÀÔ´Ï´Ù.

½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ

¼öÀÍ Áֱ⠰ü¸®¿ë AIÀÇ ±¤¹üÀ§ÇÑ µµÀÔÀ» ¸·´Â °¡Àå Å« Á¦¾à Áß Çϳª´Â ÀÇ·á µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã¿Í º¸¾È ¹× ±ÔÁ¤ ÁؼöÀÇ º¹ÀâÇÑ »óȲÀÔ´Ï´Ù. AI ÁÖµµ RCM ½Ã½ºÅÛÀÇ ÇÙ½ÉÀº ȯÀÚ µ¥ÀÌÅÍÀÔ´Ï´Ù. ȯÀÚ µ¥ÀÌÅÍ´Â ±â¹Ð¼ºÀÌ ³ô°í, °³ÀÎÁ¤º¸À̸ç, HIPAA(ÀǷẸÇèÀÇ È޴뼺°ú Ã¥ÀÓ¿¡ °üÇÑ ¹ý·ü), GDPR(EU °³ÀÎÁ¤º¸º¸È£±ÔÁ¤)(±¹°æ ¿ÜºÎ µ¥ÀÌÅÍ Ã³¸®¿¡ °üÇÑ ÀÏ¹Ý µ¥ÀÌÅÍ º¸È£ ±ÔÄ¢), ±×¸®°í °¢ ÁÖÀÇ ¹ý·ü µî ´Ù¾çÇÑ Æ²¿¡ ÀÇÇØ ¹ýÀûÀ¸·Î º¸È£¹Þ°í ÀÖ½À´Ï´Ù. µû¶ó¼­ RCMÀÇ ÀΰøÁö´ÉÀÌ È¯ÀÚ µ¥ÀÌÅÍ¿¡ ´ëÇØ ¾ÈÀüÇϸç Åõ¸í¼ºÀÌ ³ô°í ±ÔÁ¦¸¦ ÁؼöÇϸ鼭 Ãë±ÞÇÏ´Â ´É·ÂÀÌ º¸ÀåµÉ ¶§±îÁö ÇÁ¶óÀ̹ö½Ã, º¸¾È ¹× ¹ýÀû À§Çè¿¡ ´ëÇÑ Á¤´çÇÑ ¿ì·Á·Î µµÀÔÀÌ Áö¿¬µÉ °ÍÀÔ´Ï´Ù.

¹ë·ùüÀÎ ºÐ¼®

¼öÀÍ Áֱ⿡¼­ AIÀÇ ¹ë·ùüÀÎ ºÐ¼®Àº ¿¬±¸ °³¹ß(R&D)°ú Çõ½ÅÀ¸·Î ½ÃÀ۵Ǹç ÃÖ÷´Ü AI ±â¼úÀ» ÅëÇØ ÀÇ·á ¼öÀÍÀÇ °úÁ¦¸¦ ÇØ°áÇÕ´Ï´Ù. µ¥ÀÌÅÍ Áý°è ¹× Àüó¸® ´Ü°è¿¡¼­´Â ±¸Á¶È­ ¹× ºñ±¸Á¶È­ µ¥ÀÌÅ͸¦ ¼öÁýÇϰí ÁغñÇÕ´Ï´Ù. Á¦Ç° °³¹ß ¹× Ç÷§Æû ¿£Áö´Ï¾î¸µ ´Ü°è¿¡¼­´Â ¼öÀÍ Áֱ⠱â´ÉÀ» ÀÚµ¿È­Çϰí ÃÖÀûÈ­Çϱâ À§ÇÑ ¸ÂÃãÇü AI ¼Ö·ç¼ÇÀ» ±¸ÃàÇÕ´Ï´Ù. ±×¸®°í ¸¶ÄÉÆÃ ¹× ÆÇ¸Å Áö¿øÀ» ÅëÇØ ÀÎÁöµµ¸¦ ³ôÀ̰í äÅÃÀ» ÃËÁøÇÕ´Ï´Ù. ±× ÈÄ ±¸Çö ¹× ÅëÇÕ ¼­ºñ½º¸¦ ÅëÇØ AI µµ±¸°¡ ±âÁ¸ ÀÇ·á ½Ã½ºÅÛ¿¡ È¿°úÀûÀ¸·Î ÅëÇյ˴ϴÙ. ¸¶Áö¸·À¸·Î »ýÅÂ°è ÆÄÆ®³Ê½Ê ¹× ÄÄÇöóÀ̾𽺠´Ü°è¿¡¼­´Â °á°ú¸¦ Æò°¡Çϰí AI ¸ðµ¨À» °³¼±ÇÏ¿© È¿À²¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù.

À¯Çüº° Àü¸Á

À¯Çüº°·Î º¸¸é, ½ÃÀåÀº ÅëÇÕÇü°ú µ¶¸³ÇüÀ¸·Î ºÐ·ùµË´Ï´Ù. µ¶¸³Çü ºÎ¹®Àº 2024³â ½ÃÀå¿¡¼­ ¼öÀÍ Á¡À¯À²ÀÇ 31%¸¦ ȹµæÇß½À´Ï´Ù.

Á¦°ø ¹æ½Äº° Àü¸Á

Á¦°ø ¹æ½Ä¿¡ µû¶ó ½ÃÀåÀº Ŭ¶ó¿ìµå ±â¹Ý, À¥ ±â¹Ý, On-PremiseÀÇ ¼¼ °¡Áö·Î ºÐ·ùµË´Ï´Ù. À¥ ±â¹Ý¿¡´Â À¥ºê¶ó¿ìÀú¿¡¼­ ¾×¼¼½ºÇÒ ¼ö ÀÖ´Â AI ¼Ö·ç¼ÇÀÌ Æ÷ÇԵǾî ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº Á¢±Ù¼º°ú Á¦¾î¼ºÀÌ ¶Ù¾î³ª¸ç Á÷°üÀûÀÎ ÀÎÅÍÆäÀ̽º¿Í Áß¾ÓÁýÁᫎ ¾÷µ¥ÀÌÆ®¸¦ Á¦°øÇϸ鼭 ¾î´À Á¤µµÀÇ ½Ã½ºÅÛ µ¶¸³¼ºÀ» À¯ÁöÇÕ´Ï´Ù.

ÃÖÁ¾ ¿ëµµº° Àü¸Á

ÃÖÁ¾ ¿ëµµº°·Î º¸¸é, ½ÃÀåÀº º´¿ø ÇàÁ¤ºÎ¼­, º´¿ø, Áø´Ü ½ÇÇè½Ç, ±âŸ·Î ºÐ·ùµË´Ï´Ù. º´¿ø ¿î¿µÀÇ º¹À⼺°ú ±Ô¸ð¸¦ °í·ÁÇϸé, AI´Â ´ë·®ÀÇ ±ÝÀ¶ °Å·¡ÀÇ È¿À²È­, »çÀü ½ÂÀÎÀÇ ÀÚµ¿È­, ÄÚµù Á¤¹ÐµµÀÇ Çâ»ó, û±¸ ÆÐÅÏÀÇ ÀÌ»ó °ËÃ⠵ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù.

¿ëµµº° Àü¸Á

¿ëµµº°·Î º¸¸é ½ÃÀåÀº û±¸ °ü¸®, ÀÇ·á ÄÚµù ¹× ºñ¿ë û±¸, À繫 ºÐ¼® ¹× KPI ¸ð´ÏÅ͸µ, ÁöºÒ ±â·Ï°ú ¼Û±Ý, ±âŸ·Î ºÐ·ùµË´Ï´Ù. ºñ¿ë û±¸ ºÎ¹®Àº AI¸¦ Ȱ¿ëÇÏ¿© ȯÀÚÀÇ Áø·á ±â·ÏÀ» û±¸ ¹× ¹®¼­È­¸¦ À§ÇÑ Ç¥ÁØÈ­µÈ ÄÚµå·Î Á¤È®ÇÏ°Ô º¯È¯ÇÏ´Â µ¥ ÁßÁ¡À» µÓ´Ï´Ù.

Á¦Ç° Àü¸Á

Á¦Ç°º°·Î º¼ ¶§ ½ÃÀåÀº ¼ÒÇÁÆ®¿þ¾î ¹× ¼­ºñ½º·Î ºÐ·ùµË´Ï´Ù. ¼­ºñ½º ºÎ¹®Àº 2024³â ½ÃÀå Á¡À¯À²ÀÇ 46%¸¦ ȹµæÇß½À´Ï´Ù.

Áö¿ª Àü¸Á

Áö¿ªº°·Î º¼ ¶§ ¼öÀÍ Áֱ⠰ü¸®¿ë AI ½ÃÀåÀº ºÏ¹Ì, À¯·´, ¾Æ½Ã¾ÆÅÂÆò¾ç, LAMEA(¶óƾ¾Æ¸Þ¸®Ä«, Áßµ¿, ¾ÆÇÁ¸®Ä«)·Î ±¸ºÐµË´Ï´Ù. ºÏ¹Ì´Â 2024³â ¼öÀÍ Áֱ⠰ü¸®¿ë AI ½ÃÀå¿¡¼­ 52%ÀÇ ¼öÀÍ Á¡À¯À²À» ±â·ÏÇß½À´Ï´Ù.

½ÃÀå °æÀï°ú Ư¼º

¼öÀÍ Áֱ⠰ü¸®¿ë AI ½ÃÀå¿¡¼­ÀÇ °æÀïÀº ¿©ÀüÈ÷ ¿ªµ¿ÀûÀ̰í Çõ½ÅÀûÀ̸ç ÁÖµµÀûÀÔ´Ï´Ù. ½ÅÈï ±â¾÷Àº Æ´»õ ¼Ö·ç¼Ç, ½Å¼ÓÇÑ µµÀÔ ¹× °í±Þ ¸ÂÃãÈ­¸¦ Á¦°øÇÔÀ¸·Î½á °æÀïÀ» ÆîÄ¡°í È¿À²¼º, Á¤È®¼º ¹× ¿î¿µ ºñ¿ë Àý°¨¿¡ ÁßÁ¡À» µÐ °æÀï·Â ÀÖ´Â »ýŰ踦 ±¸ÃàÇϰí ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ½ÃÀåÀÇ ¹üÀ§¿Í ºÐ¼® ¼ö¹ý

Á¦2Àå ½ÃÀå °³°ü

Á¦3Àå ½ÃÀå °³¿ä

Á¦4Àå °æÀï ºÐ¼® : ¼¼°è ½ÃÀå

Á¦5Àå ¹ë·ùüÀÎ ºÐ¼® : ¼öÀÍ Áֱ⠰ü¸®¿ë AI ½ÃÀå

Á¦6Àå ¼öÀÍ Áֱ⠰ü¸®¿ë AI ½ÃÀå : ÁÖ¿ä °í°´ ±âÁØ

Á¦7Àå ¼¼°èÀÇ ¼öÀÍ Áֱ⠰ü¸®¿ë AI ½ÃÀå : À¯Çüº°

Á¦8Àå ¼¼°èÀÇ ¼öÀÍ Áֱ⠰ü¸®¿ë AI ½ÃÀå : Á¦°ø ¹æ½Äº°

Á¦9Àå ¼¼°èÀÇ ¼öÀÍ Áֱ⠰ü¸®¿ë AI ½ÃÀå : ÃÖÁ¾ ¿ëµµº°

Á¦10Àå ¼¼°èÀÇ ¼öÀÍ Áֱ⠰ü¸®¿ë AI ½ÃÀå : ¿ëµµº°

Á¦11Àå ¼¼°èÀÇ ¼öÀÍ Áֱ⠰ü¸®¿ë AI ½ÃÀå : Á¦Ç°º°

Á¦12Àå ¼¼°èÀÇ ¼öÀÍ Áֱ⠰ü¸®¿ë AI ½ÃÀå : Áö¿ªº°

Á¦13Àå ±â¾÷ ÇÁ·ÎÆÄÀÏ

Á¦14Àå ¼öÀÍ Áֱ⠰ü¸®¿ë AI ½ÃÀåÀÇ Çʼö ¼º°ø Á¶°Ç

CSM
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

The Global AI In Revenue Cycle Management Market size is expected to reach $107.17 billion by 2032, rising at a market growth of 23.7% CAGR during the forecast period.

By offering a unified approach, integrated systems help reduce redundancies, minimize manual errors, and enhance overall efficiency. Healthcare providers benefit from improved data flow and real-time insights, which support faster decision-making and better financial outcomes. The ability to centralize data and processes also contributes to greater compliance and transparency across the organization.

The major strategies followed by the market participants are Product Launches as the key developmental strategy to keep pace with the changing demands of end users. For instance, In October, 2024, Infinx, Inc. unveiled an AI-powered Intelligent Revenue Cycle Automation Platform that integrates generative AI, machine learning, and human expertise to streamline healthcare revenue operations. This platform automates tasks such as patient financial clearance and claims processing, aiming to reduce errors, expedite reimbursements, and enhance operational efficiency for healthcare providers. Additionally, In April, 2025, CareCloud, Inc. unveiled the AI Center of Excellence focuses on developing AI models to optimize healthcare operations, particularly in Revenue Cycle Management. By automating tasks like billing and claims processing, the initiative aims to reduce errors and enhance financial performance for healthcare providers, marking a significant advancement in AI-driven RCM solutions.

KBV Cardinal Matrix - AI In Revenue Cycle Management Market Competition Analysis

Based on the Analysis presented in the KBV Cardinal matrix; Oracle Corporation and UnitedHealth Group, Inc. are the forerunners in this Market. Companies such as McKesson Corporation, Experian Information Solutions, Inc., and Infinx, Inc. are some of the key innovators in the Market.

COVID 19 Impact Analysis

The COVID-19 pandemic significantly accelerated the adoption of AI technologies in revenue cycle management. As healthcare systems faced an overwhelming surge in patient volumes, providers rapidly turned to AI solutions to automate and streamline complex billing, coding, and claims processes. This shift reduced the burden on administrative staff and improved operational efficiency at a time when human resources were stretched thin. Thus. The COVID-19 pandemic had a positive impact on the market.

Market Growth Factors

One of the most compelling drivers behind the surge of AI in Revenue Cycle Management is the relentless pursuit of operational efficiency and cost containment in healthcare systems. RCM is inherently complex, involving multiple stages-from patient registration and insurance verification to claims processing, payment posting, and collections. Historically, this process has relied heavily on manual labor, with a high margin for error and inefficiency. Thus, providers seek to do more with less, AI-powered RCM offers an indispensable solution for improving efficiency and reducing costs across the healthcare revenue ecosystem.

Additionally, The healthcare reimbursement landscape is growing more complex by the day. Payers, both private and public, are enforcing increasingly stringent documentation requirements and policy compliance rules. As a result, claim denial rates are on the rise, with healthcare providers losing significant revenue due to errors, delays, and policy non-adherence. Therefore, in an era of increasing regulatory scrutiny and complex reimbursement rules, AI serves as a crucial ally in minimizing denials and maintaining airtight compliance.

Market Restraining Factors

One of the most significant restraints hampering the widespread adoption of AI in Revenue Cycle Management is the complex landscape of data privacy, security, and regulatory compliance in healthcare. At the heart of AI-driven RCM systems lies patient data-sensitive, personal, and legally protected under a range of frameworks like HIPAA (Health Insurance Portability and Accountability Act), GDPR (General Data Protection Regulation, for cross-border data handling), and various state-specific laws. Thus, until AI in RCM can guarantee secure, transparent, and regulation-compliant handling of patient data, its adoption will be slowed by legitimate concerns about privacy, security, and legal exposure.

Value Chain Analysis

The value chain analysis of AI in the revenue cycle begins with Research & Development (R&D) and Innovation, where cutting-edge AI technologies are explored to address healthcare revenue challenges. This is followed by Data Aggregation & Preprocessing, which involves collecting and preparing large volumes of structured and unstructured data for AI model training. In the Product Development & Platform Engineering stage, tailored AI solutions are built to automate and optimize revenue cycle functions. These solutions are then introduced to the market through Marketing & Sales Enablement, creating awareness and driving adoption. Afterward, Implementation & Integration Services ensure the AI tools are effectively embedded into existing healthcare systems. Operations & Support maintain system functionality, address user concerns, and manage performance. Continuous Outcomes Monitoring & Optimization helps evaluate results and refine AI models for better efficiency. Finally, Ecosystem Partnerships & Compliance support regulatory alignment and foster strategic collaborations, with feedback from this stage looping back to inform future R&D initiatives.

Type Outlook

Based on type, the market is characterized into integrated and standalone. The standalone segment procured 31% revenue share in the market in 2024. The standalone segment consists of specialized AI tools that are developed to address specific functions within the revenue cycle, such as claims denial prediction, automated coding, or patient billing optimization.

Delivery Mode Outlook

On the basis of delivery mode, the market is classified into cloud-based, web-based, and on-premise. The web-based segment recorded 28% revenue share in the market in 2024. The web-based segment includes AI solutions that are accessed through web browsers without the need for extensive local installations. These systems strike a balance between accessibility and control, offering intuitive interfaces and centralized updates while still maintaining a level of system independence.

End Use Outlook

By end use, the market is divided into physician back offices, hospitals, diagnostic laboratories, and others. The hospitals segment garnered 27% revenue share in the market in 2024. The hospitals segment also plays a vital role in the AI in revenue cycle management landscape. Given the complexity and scale of hospital operations, AI is used to streamline large volumes of financial transactions, automate prior authorizations, assist in coding accuracy, and detect anomalies in billing patterns.

Application Outlook

On the basis of application, the market is segmented into claims management, medical coding & charge capture, financial analytics & KPI monitoring, payment posting & remittance, and others. The medical coding & charge capture segment acquired 26% revenue share in the market in 2024. The medical coding and charge capture segment focuses on using AI to accurately convert patient encounters into standardized codes for billing and documentation. This process is critical for ensuring compliance with payer requirements and securing appropriate reimbursement.

Product Outlook

Based on product, the market is segmented into software and services. The services segment acquired 46% revenue share in the market in 2024. The services segment encompasses a variety of offerings that support the successful implementation and operation of AI technologies in revenue cycle management. These services typically include system installation, customization, user training, technical assistance, and performance optimization.

Regional Outlook

Region-wise, the AI In revenue cycle management market is analyzed across North America, Europe, Asia Pacific, and LAMEA. The North America segment recorded 52% revenue share in the AI In revenue cycle management market in 2024. North America leads the AI in revenue cycle management market, driven by advanced healthcare infrastructure, early adoption of digital technologies, and a strong presence of leading AI solution providers.

Market Competition and Attributes

The competition in the AI in Revenue Cycle Management (RCM) market, remains dynamic and innovation-driven. Numerous mid-sized firms and startups are leveraging AI to streamline billing, coding, and claims management. These emerging players compete by offering niche solutions, faster deployment, and greater customization, fostering a competitive ecosystem focused on efficiency, accuracy, and operational cost reduction.

Recent Strategies Deployed in the Market

List of Key Companies Profiled

Global AI In Revenue Cycle Management Market Report Segmentation

By Type

By Delivery Mode

By End Use

By Application

By Product

By Geography

Table of Contents

Chapter 1. Market Scope & Methodology

Chapter 2. Market at a Glance

Chapter 3. Market Overview

Chapter 4. Competition Analysis - Global

Chapter 5. Value Chain Analysis of AI In Revenue Cycle Management Market

Chapter 6. Key Customer Criteria - AI In Revenue Cycle Management Market

Chapter 7. Global AI In Revenue Cycle Management Market by Type

Chapter 8. Global AI In Revenue Cycle Management Market by Delivery Mode

Chapter 9. Global AI In Revenue Cycle Management Market by End Use

Chapter 10. Global AI In Revenue Cycle Management Market by Application

Chapter 11. Global AI In Revenue Cycle Management Market by Product

Chapter 12. Global AI In Revenue Cycle Management Market by Region

Chapter 13. Company Profiles

Chapter 14. Winning Imperatives of AI In Revenue Cycle Management Market

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â