¼¼°èÀÇ ÀÚµ¿Â÷ Ĩ ½ÃÀå
Automotive Chip
»óǰÄÚµå : 1766901
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 381 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,222,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,666,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

ÀÚµ¿Â÷ Ĩ ¼¼°è ½ÃÀåÀº 2030³â±îÁö 516¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 374¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ÀÚµ¿Â÷ Ĩ ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 5.5%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 516¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ¸¶ÀÌÅ©·ÎÄÁÆ®·Ñ·¯ ¹× ¸¶ÀÌÅ©·ÎÇÁ·Î¼¼¼­´Â CAGR 5.1%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á±îÁö 150¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ·ÎÁ÷ IC ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 5.8%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 98¾ï ´Þ·¯, Áß±¹Àº CAGR 8.3%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ÀÚµ¿Â÷ Ĩ ½ÃÀåÀº 2024³â¿¡ 98¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 114¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 8.3%¸¦ ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 3.5%¿Í 4.5%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 4.1%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ÀÚµ¿Â÷ Ĩ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

ÀÚµ¿Â÷ ĨÀÌ ÀÚµ¿Â÷ÀÇ ¹Ì·¡¸¦ ¾î¶»°Ô ¹Ù²Ü °ÍÀΰ¡?

ºü¸£°Ô ÁøÈ­ÇÏ´Â ÀÚµ¿Â÷ ±â¼úÀÇ ¼¼°è¿¡¼­ Â÷·®¿ë ĨÀÇ ¿ªÇÒÀº ¾Æ¹«¸® °­Á¶Çصµ Áö³ªÄ¡Áö ¾Ê½À´Ï´Ù. ÀÌ °íµµ·Î Àü¹®È­µÈ ¹ÝµµÃ¼´Â Çö´ë ÀÚµ¿Â÷ÀÇ °ÅÀÇ ¸ðµç ±â´ÉÀÇ ÇÙ½ÉÀ» Çü¼ºÇϰí ÀÖÀ¸¸ç, ºÒ°ú 10³â Àü¸¸ ÇØµµ »ó»óµµ ÇÒ ¼ö ¾ø¾ú´ø ±â´ÉµéÀ» °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù. ÆÄ¿öÆ®·¹ÀÎ °ü¸® ¹× ¾ÈÀü ½Ã½ºÅÛ¿¡¼­ ÀÎÆ÷Å×ÀÎ¸ÕÆ® ¹× ³»ºñ°ÔÀ̼ǿ¡ À̸£±â±îÁö, Â÷·®¿ë ĨÀº Á¡Á¡ ´õ º¹ÀâÇØÁö´Â ¿À´Ã³¯ ÀÚµ¿Â÷ÀÇ °è»ê ±â¹ÝÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¿À´Ã³¯ ÀÚµ¿Â÷¿¡´Â ¸¶ÀÌÅ©·ÎÄÁÆ®·Ñ·¯, ¼¾¼­, Àü·Â °ü¸® IC, Ư¼ö ÇÁ·Î¼¼¼­ µî ´Ù¾çÇÑ Á¾·ùÀÇ Ä¨ÀÌ ³»ÀåµÇ¾î ÀÖÀ¸¸ç, °¢ ĨÀº ¼­·Î ´Ù¸¥ Áß¿äÇÑ Â÷·® ±â´ÉÀ» Áö¿øÇϵµ·Ï ÁöÁ¤µÇ¾î ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ¼¾¼­´Â ¹ÙÄû ¼Óµµ, ¿¬·á »ç¿ë·®, Á¦µ¿·Â µî Áß¿äÇÑ µ¥ÀÌÅ͸¦ ÃßÀûÇϰí, Àü·Â °ü¸® ĨÀº Â÷·® ½Ã½ºÅÛ Àüü¿¡¼­ È¿À²ÀûÀÎ ¿¡³ÊÁö »ç¿ëÀ» º¸ÀåÇÕ´Ï´Ù. ÃÖ±Ù ÀÚÀ²ÁÖÇà, ADAS, ¹è±â°¡½º ±ÔÁ¦ °­È­ µî ±â¼ú Çõ½ÅÀÌ ÁøÇàµÇ¸é¼­ Â÷·®¿ë Ĩ¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. ÃÖ±Ù ¼¼°è ¹ÝµµÃ¼ °ø±Þ ºÎÁ·Àº ÀÌ·¯ÇÑ ¼ö¿ä¿¡ ÃÊÁ¡À» ¸ÂÃß°í Àü ¼¼°è »ý»ê ¶óÀÎÀ» È¥¶õ¿¡ ºü¶ß·Á ÀÚµ¿Â÷ »ê¾÷¿¡ ÀÌ·¯ÇÑ ºÎǰÀÌ ÇʼöÀûÀ̶ó´Â °ÍÀ» ºÐ¸íÈ÷ Çß½À´Ï´Ù. ÀÌÈÄ °ø±Þ ºÎÁ·Àº ÀÚµ¿Â÷ Ĩ Á¦Á¶¿¡ ´ëÇÑ ÅõÀÚ¿Í ¿¬±¸¸¦ °­È­ÇÏ¿© °¢ ±â¾÷Àº Çö´ë ÀÚµ¿Â÷ ½ÃÀåÀÇ Áõ°¡ÇÏ´Â ¼ö¿ä¸¦ ÃæÁ·½Ã۱â À§ÇØ ´õ °­·ÂÇÏ°í ³»±¸¼ºÀÌ ¶Ù¾î³ª¸ç ¿¡³ÊÁö È¿À²ÀÌ ³ôÀº ĨÀ» »ý»êÇϱâ À§ÇØ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù.

ÀÚµ¿Â÷ Ĩ »ê¾÷À» Çü¼ºÇÏ´Â Áß¿äÇÑ Çõ½ÅÀº ¹«¾ùÀΰ¡?

ÀÚµ¿Â÷ Ĩ »ê¾÷Àº ÀÚµ¿Â÷ ±â´ÉÀ» ÀçÁ¤ÀÇÇÏ´Â ÀΰøÁö´É(AI), ¸Ó½Å·¯´×(ML), Ä¿³ØÆ¼ºñƼ ±â¼úÀÇ ±Þ¼ÓÇÑ ¹ßÀüÀ¸·Î Çõ½ÅÀÇ ¹°°á¿¡ È۽ο© ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº ƯÈ÷ ÀÚÀ²ÁÖÇà ½Ã½ºÅÛ¿¡¼­ µÎµå·¯Áö°Ô ³ªÅ¸³ª°í ÀÖÀ¸¸ç, ´Ù¾çÇÑ ¼¾¼­¿¡¼­ ¹ß»ýÇÏ´Â ´ë·®ÀÇ ½Ç½Ã°£ µ¥ÀÌÅ͸¦ ó¸®Çϱâ À§Çؼ­´Â ³ôÀº ¿¬»ê ´É·ÂÀ» °¡Áø ĨÀÌ ÇʼöÀûÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ¼¾¼­(Ä«¸Þ¶ó, LiDAR, ·¹ÀÌ´õ, ÃÊÀ½ÆÄ µî)´Â AI°¡ žÀçµÈ ĨÀÌ ¹Ð¸®ÃÊ ´ÜÀ§·Î ó¸®ÇÏ´Â Á¤º¸ ½ºÆ®¸²À» »ý¼ºÇÏ¿© ÀÚµ¿Â÷°¡ ÀÚÀ²ÀûÀ¸·Î ȯ°æÀ» 'º¸°í', Æò°¡Çϰí, Ž»öÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ÀÚÀ²ÁÖÇà ±â´É»Ó¸¸ ¾Æ´Ï¶ó, Â÷·®¿ë ĨÀº ÇöÀç ¸ôÀÔÇü Â÷·®¿ë ¿£ÅÍÅ×ÀÎ¸ÕÆ® ½Ã½ºÅÛ, ¿¹Áöº¸Àü, ¿ø°Ý Áø´Ü, µµ·Î »óȲ ¹× ±³Åë °ü·Ã µ¥ÀÌÅ͸¦ ½Ç½Ã°£À¸·Î °øÀ¯ÇÒ ¼ö ÀÖ´Â Â÷·® °£(V2V) Åë½Åµµ Áö¿øÇϰí ÀÖ½À´Ï´Ù. ¹ÝµµÃ¼ ±â¾÷µéÀº ÇöÀç ³»±¸¼º, ½Å·Ú¼º, ¿­ °ü¸®¿¡ ´ëÇÑ ¾ö°ÝÇÑ ±âÁØÀ» ÃæÁ·Çϰí, ±ØÇÑÀÇ ¿Âµµ¿¡¼­µµ ¼º´ÉÀ» ¹ßÈÖÇϸç, Àå±â°£ ¸¶¸ð¿¡ °ßµô ¼ö ÀÖ´Â Â÷·®¿ë Ĩ °³¹ß¿¡ ÁÖ·ÂÇϰí ÀÖ½À´Ï´Ù. źȭ±Ô¼Ò(SiC)¿Í ÁúÈ­°¥·ý(GaN)°ú °°Àº ÷´Ü ¼ÒÀç´Â ´õ ³ôÀº ź¼º°ú ¿¡³ÊÁö È¿À²À» Á¦°øÇϱâ À§ÇØ ÃÖ÷´Ü ¼Ö·ç¼ÇÀ¸·Î µîÀåÇÏ¿© Çö´ë ÀÚµ¿Â÷ÀÇ ±î´Ù·Î¿î ¿ä±¸ »çÇ×À» ÃæÁ·½Ãų ¼ö ÀÖ´Â Â÷·®¿ë Ĩ °³¹ß¿¡ Å« ÁøÀüÀ» °¡Á®¿Ô½À´Ï´Ù.

¿Ö Â÷·®¿ë ĨÀÌ Àü±âÀÚµ¿Â÷ÀÇ ºÎ»ó¿¡ ÇʼöÀûÀΰ¡?

Àü±âÀÚµ¿Â÷(EV)ÀÇ ¼ºÀå¿¡ ÀÖ¾î Â÷·®¿ë ĨÀÇ Á߿伺Àº EV ½Ã½ºÅÛÀÇ ¼º´É, ¾ÈÀü¼º ¹× È¿À²¼º¿¡ Á÷Á¢ÀûÀÎ ¿µÇâÀ» ¹ÌÄ¡±â ¶§¹®¿¡ ¸Å¿ì Áß¿äÇϸç, EV¿¡¼­ Àü·Â °ü¸® ĨÀº ¹èÅ͸®¿Í ¸ðÅÍ »çÀÌÀÇ ¿¡³ÊÁö È帧À» Á¶ÀýÇÏ¿© ¹èÅ͸® ¼ö¸í°ú ÁÖÇà°Å¸®¸¦ ±Ø´ëÈ­ÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. À§ÇØ Áß¿äÇÑ ±â´ÉÀ» ¼öÇàÇÕ´Ï´Ù. ¹èÅ͸® °ü¸® ½Ã½ºÅÛ(BMS)µµ ¹ÝµµÃ¼¿¡ ÀÇÁ¸ÇÏ¿© ¹èÅ͸® ÆÑÀÇ °¢ ¼¿À» ¸ð´ÏÅ͸µÇϰí ÃæÀü ¼öÁØ, ¿­, ¹æÀü Áֱ⸦ °ü¸®ÇÏ¿© ¼Õ»óÀ» ¹æÁöÇϰí Àå±â°£ ¾ÈÀüÇÏ°Ô ÀÛµ¿ÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ÀÌ Ä¨ÀÌ Á¦°øÇÏ´Â ½Ç½Ã°£ µ¥ÀÌÅ͸¦ ÅëÇØ ¿îÀüÀÚ´Â ÃæÀü »óÅÂ, ÁÖÇà°Å¸® ¿¹Ãø, ¿¡³ÊÁö ¼Òºñ¸¦ º¸´Ù Á¤È®ÇÏ°Ô ¸ð´ÏÅ͸µÇÒ ¼ö ÀÖ¾î º¸´Ù È¿À²ÀûÀÎ ¿îÀü ½À°üÀ» Áö¿øÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, źȭ±Ô¼Ò(SiC)¿Í ÁúÈ­°¥·ý(GaN)À» Ĩ Á¦Á¶¿¡ »ç¿ëÇÏ´Â »õ·Î¿î Àç·á Çõ½ÅÀº EV ÆÄ¿öÆ®·¹Àΰú °ü·ÃµÈ °íÀü¾Ð ¹× °í¿Â¿¡ ´ëÀÀÇÒ ¼ö ÀÖ´Â »õ·Î¿î ¼ÒÀç Çõ½ÅÀ¸·Î ±âÁ¸ ½Ç¸®ÄÜ Ä¨¿¡ ºñÇØ ´«¿¡ ¶ç°Ô °³¼±µÈ ¼º´ÉÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Àç·á´Â EV¿ë ĨÀÌ ´õ ³ôÀº Àü·Â ¹Ðµµ¿Í È¿À²À» ´Þ¼ºÇÒ ¼ö ÀÖ°Ô ÇÏ¿© ÁÖÇà°Å¸® ¿¬Àå, ÃæÀü ½Ã°£ ´ÜÃà, EV Á¦Á¶ÀÇ Àü¹ÝÀûÀÎ ºñ¿ë Àý°¨¿¡ Á÷Á¢ÀûÀ¸·Î ±â¿©ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¼¼°è ¹èÃâ·® °¨Ãà ¸ñÇ¥¿Í ¼ÒºñÀÚ ¼ö¿ä¿¡ µû¶ó Àü±âÀÚµ¿Â÷ ½ÃÀåÀÌ ±Þ¼ºÀåÇϰí ÀÖ´Â °¡¿îµ¥, Â÷·®¿ë ĨÀº ÀÌ·¯ÇÑ ÀÚµ¿Â÷ÀÇ Ã·´Ü ±â¼ú ¿ä±¸ »çÇ×À» ÃæÁ·ÇÏ´Â µ¥ ÇʼöÀûÀ̸ç, ±Ã±ØÀûÀ¸·Î ÀÌ ºÐ¾ßÀÇ ¼ºÀå°ú Á¢±Ù¼ºÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù.

ÀÚµ¿Â÷ Ĩ ½ÃÀåÀÇ ¼ºÀå ¿øµ¿·ÂÀº?

ÀÚµ¿Â÷ Ĩ ½ÃÀåÀÇ ¼ºÀåÀº ±â¼ú ¹ßÀü, ±ÔÁ¦ º¯È­, ¼ÒºñÀÚ ÇൿÀÇ ÁøÈ­¿¡ ±â¹ÝÇÑ ¸î °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀÎ Áß °¡Àå Å« ¿äÀÎÀº ÀÚÀ²ÁÖÇà ¹× ¹ÝÀÚÀ²ÁÖÇà ±â¼úÀÇ ±Þ¼ÓÇÑ Ã¤ÅÃÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀº ¿©·¯ ¼¾¼­ÀÇ ½Ç½Ã°£ µ¥ÀÌÅ͸¦ ó¸®Çϱâ À§ÇØ °­·ÂÇÏ°í ½Å·ÚÇÒ ¼ö Àִ ĨÀ» ÇÊ¿ä·Î ÇÕ´Ï´Ù. ¶ÇÇÑ, ¼¼°è °¢±¹ÀÇ ±ÔÁ¦ ´ç±¹ÀÌ ¾ÈÀü °ü·Ã ±ÔÁ¦¸¦ ½ÃÇàÇϸ鼭 ADAS(÷´Ü ¿îÀüÀÚ º¸Á¶ ½Ã½ºÅÛ)¿¡ ´ëÇÑ ¼ö¿äµµ Áõ°¡Çϰí ÀÖ¾î °í¼º´É Â÷·®¿ë ĨÀÇ Çʿ伺ÀÌ ´õ¿í Ä¿Áö°í ÀÖ½À´Ï´Ù. Á¤ºÎ¿Í ¾÷°è°¡ ÀÌ»êȭź¼Ò Àú°¨ Àü·«À» Ãß±¸ÇÏ°í ¼ÒºñÀÚµéÀÌ ±âÁ¸ ³»¿¬±â°ü Â÷·®º¸´Ù EV¸¦ ¼±È£ÇÏ°Ô µÇ¸é¼­ EV´Â È¿À²ÀûÀÎ Àü·Â ºÐ¹è, ¹èÅ͸® °ü¸®, ¿¡³ÊÁö ÃÖÀûÈ­¸¦ À§ÇÑ Ã·´Ü ĨÀ» ÇÊ¿ä·Î Çϱ⠶§¹®¿¡ ÀÌ·¯ÇÑ ¹ÝµµÃ¼´Â ÀÚµ¿Â÷ ÆÄ¿öÆ®·¹ÀÎÀÇ Áö¼ÓÀûÀÎ º¯È­¿¡ ÇʼöÀûÀÔ´Ï´Ù. Çʼö ºÒ°¡°áÇÑ ¿ä¼Ò·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ °í±Þ ÀÎÆ÷Å×ÀÎ¸ÕÆ®, ½Ç½Ã°£ ³»ºñ°ÔÀ̼Ç, Çâ»óµÈ V2X(Vehicle-to-Everything) Åë½Å°ú °°Àº Ä¿³ØÆ¼µåÄ« ±â´É¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ °ü½ÉÀº ½ÃÀåÀ» È®´ë½Ã۰í ÀÖ½À´Ï´Ù. ¹ÝµµÃ¼ Á¦Á¶¿¡ ´ëÇÑ ¾÷°èÀÇ ÅõÀÚ´Â ÀÚµ¿Â÷ Á¦Á¶¾÷ü¿Í ÇÏÀÌÅ×Å© ±â¾÷ °£ÀÇ ÆÄÆ®³Ê½Ê°ú ÇÔ²² °ø±Þ¸ÁÀ» °­È­ÇÏ°í ¹Ì·¡ÀÇ °ø±Þ ºÎÁ·¿¡ ´ëÇÑ Åº·Â¼ºÀ» È®º¸Çϸç ÀÚµ¿Â÷ ĨÀÇ ±â¼ú Çõ½Å ¼Óµµ¸¦ °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½ÃÀå ÃËÁø¿äÀÎÀ» Á¾ÇÕÇϸé Â÷·®¿ë ĨÀÌ ±³ÅëÀÇ ¹Ì·¡¸¦ Çü¼ºÇÏ´Â µ¥ ÀÖ¾î ÇÙ½ÉÀûÀÎ ¿ªÇÒÀ» Çϰí ÀÖÀ¸¸ç, ±× ¾î´À ¶§º¸´Ù Ä¿³ØÆ¼µå, ÀÚÀ²ÁÖÇà, Àüµ¿È­ ÀÚµ¿Â÷ ±â¼úÀÇ »õ·Î¿î ½Ã´ë¸¦ À§ÇÑ ¹«´ë¸¦ ¸¶·ÃÇϰí ÀÖÀ½À» ¾Ë ¼ö ÀÖ½À´Ï´Ù.

ºÎ¹®

ÄÄÆ÷³ÍÆ® À¯Çü(¸¶ÀÌÅ©·ÎÄÁÆ®·Ñ·¯ ¹× ¸¶ÀÌÅ©·ÎÇÁ·Î¼¼¼­, ·ÎÁ÷ IC, ¾Æ³¯·Î±× IC, ¸Þ¸ð¸®), ¿ëµµ(¹Ùµð ÀÏ·ºÆ®·Î´Ð½º, ÅÚ·¹¸Åƽ½º ¹× ÀÎÆ÷Å×ÀÎ¸ÕÆ®, ÆÄ¿öÆ®·¹ÀÎ, ¼¼ÀÌÇÁƼ, ¼¨½Ã), ÃÖÁ¾ ¿ëµµ(½Â¿ëÂ÷, »ó¿ëÂ÷)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM ¹× ¾÷°è °íÀ¯ÀÇ SLMÀ» Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Automotive Chip Market to Reach US$51.6 Billion by 2030

The global market for Automotive Chip estimated at US$37.4 Billion in the year 2024, is expected to reach US$51.6 Billion by 2030, growing at a CAGR of 5.5% over the analysis period 2024-2030. Microcontrollers & Microprocessors, one of the segments analyzed in the report, is expected to record a 5.1% CAGR and reach US$15.0 Billion by the end of the analysis period. Growth in the Logic ICs segment is estimated at 5.8% CAGR over the analysis period.

The U.S. Market is Estimated at US$9.8 Billion While China is Forecast to Grow at 8.3% CAGR

The Automotive Chip market in the U.S. is estimated at US$9.8 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$11.4 Billion by the year 2030 trailing a CAGR of 8.3% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 3.5% and 4.5% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 4.1% CAGR.

Global Automotive Chip Market - Key Trends and Drivers Summarized

How Are Automotive Chips Transforming the Future of Vehicles?

In the rapidly evolving world of automotive technology, the role of automotive chips cannot be overstated. These highly specialized semiconductors form the core of almost every function within a modern vehicle, enabling features that were unimaginable just a decade ago. From powertrain management and safety systems to infotainment and navigation, automotive chips are the computational backbone of today’s increasingly complex vehicles. Cars today incorporate numerous types of chips, such as microcontrollers, sensors, power management ICs, and specialized processors, each designated to support distinct and critical vehicle functionalities. For example, sensors track essential data like wheel speed, fuel usage, and brake force, while power management chips ensure efficient energy usage across the vehicle’s systems, particularly vital in electric vehicles (EVs). In recent years, as innovations such as autonomous driving, ADAS, and stricter emissions standards have progressed, the demand for automotive chips has soared. The recent global semiconductor shortage brought this demand into stark focus, disrupting production lines worldwide and underscoring the essential nature of these components for the auto industry. The shortage has since intensified investments and research in automotive chip manufacturing, with companies dedicating efforts to create chips that are more powerful, durable, and energy-efficient to meet the rising demands of the modern vehicle market.

What Key Innovations Are Shaping the Automotive Chip Industry?

The automotive chip industry is undergoing a wave of innovation, driven by rapid advancements in artificial intelligence (AI), machine learning (ML), and connectivity technologies that are redefining automotive capabilities. These innovations are particularly evident in autonomous driving systems, where chips with high computational power are essential for processing massive amounts of real-time data from various sensors. These sensors-including cameras, LiDAR, radar, and ultrasonic-generate a stream of information that AI-powered chips process in milliseconds to enable a car to “see,” assess, and navigate its environment autonomously. Beyond self-driving functionalities, automotive chips now also support highly immersive in-car entertainment systems, predictive maintenance, remote diagnostics, and even vehicle-to-vehicle (V2V) communication, which enables cars to share data on road conditions and traffic in real time. Semiconductor companies are now focused on creating automotive-grade chips that meet strict standards for durability, reliability, and thermal management, ensuring they can perform under extreme temperatures and resist wear over long periods. Advanced materials such as silicon carbide (SiC) and gallium nitride (GaN) have emerged as leading-edge solutions, as they offer greater resilience and energy efficiency, marking significant progress in the development of automotive chips that can meet the rigorous demands of modern vehicles.

Why Are Automotive Chips Critical to the Rise of Electric Vehicles?

The importance of automotive chips to the growth of electric vehicles (EVs) is profound and multifaceted, as these chips directly influence the performance, safety, and efficiency of EV systems. In an EV, power management chips regulate the energy flow between the battery and the motor, a critical function for maximizing both battery life and driving range. Battery management systems (BMS) also rely on semiconductors to monitor each cell in a battery pack, managing charge levels, heat, and discharge cycles to prevent damage and ensure safe operation over time. Real-time data provided by these chips enables drivers to monitor charge status, range estimations, and energy consumption more accurately, supporting more efficient driving habits. Furthermore, emerging material innovations, particularly the use of silicon carbide (SiC) and gallium nitride (GaN) in chip production, enable these components to handle the high voltages and temperatures associated with EV powertrains, offering a notable improvement over traditional silicon chips. These materials allow EV chips to achieve greater power density and efficiency, directly contributing to longer ranges, faster charging times, and overall cost reductions in EV manufacturing. With the EV market expanding rapidly in response to global emission reduction targets and consumer demand, automotive chips are indispensable in meeting the advanced technical requirements of these vehicles, ultimately driving the sector’s growth and accessibility.

What Is Driving Growth in the Automotive Chip Market?

The growth in the automotive chip market is driven by several factors, each rooted in technological advancements, regulatory shifts, and evolving consumer behaviors. Chief among these factors is the rapid adoption of autonomous and semi-autonomous driving technologies, which require powerful and reliable chips to process real-time data from multiple sensors. As regulatory bodies worldwide implement safety mandates, the demand for advanced driver-assistance systems (ADAS) is also increasing, further fueling the need for high-performance automotive chips. Another primary growth driver is the global trend toward electrification, as governments and industries alike pursue carbon reduction strategies, pushing consumers to adopt EVs over traditional internal combustion engine vehicles. EVs require sophisticated chips for efficient power distribution, battery management, and energy optimization, making these semiconductors indispensable for the ongoing shift in automotive powertrains. Additionally, consumer interest in connected car features, such as advanced infotainment, real-time navigation, and enhanced vehicle-to-everything (V2X) communication, is expanding the market, as these systems depend on highly capable chips to operate seamlessly and securely. Industry investments in semiconductor manufacturing, coupled with partnerships among automotive and tech companies, are strengthening supply chains, ensuring resilience against future shortages, and accelerating the pace of innovation in automotive chips. Altogether, these market drivers highlight the central role of automotive chips in shaping the future of transportation, setting the stage for a new era in vehicle technology that is more connected, autonomous, and electrified than ever before.

SCOPE OF STUDY:

The report analyzes the Automotive Chip market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Component Type (Microcontrollers & Microprocessors, Logic ICs, Analog ICs, Memory); Application (Body Electronics, Telematics & Infotainment, Powertrain, Safety, Chassis); End-Use (Passenger Cars, Commercial Vehicles)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 42 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â