¼¼°èÀÇ Ã¼Å©Æ÷ÀÎÆ® ÀúÇØÁ¦ ºÒÀÀ¼º ¾Ï ½ÃÀå
Checkpoint Inhibitor Refractory Cancer
»óǰÄÚµå : 1758075
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 06¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 287 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,112,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,338,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ Ã¼Å©Æ÷ÀÎÆ® ÀúÇØÁ¦ ºÒÀÀ¼º ¾Ï ½ÃÀå, 2030³â¿¡´Â ¹Ì±¹¿¡¼­ 488¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 315¾ï ´Þ·¯·Î ÃßÁ¤µÈ ¼¼°èÀÇ Ã¼Å©Æ÷ÀÎÆ® ÀúÇØÁ¦ ºÒÀÀ¼º ¾Ï ½ÃÀåÀº 2024-2030³âÀÇ ºÐ¼® ±â°£¿¡ CAGR 7.6%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 488¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ PD-1 ÀúÇØÁ¦ À¯ÇüÀº CAGR 8.8%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á±îÁö 330¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. PD-L1 ÀúÇØÁ¦ À¯ÇüÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ Áß CAGR 5.0%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 86¾ï ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 12.0%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ Ã¼Å©Æ÷ÀÎÆ® ÀúÇØÁ¦ ºÒÀÀ¼º ¾Ï½ÃÀåÀº 2024³â¿¡ 86¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 105¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³âÀÇ CAGRÀº 12.0%ÀÔ´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 3.7%¿Í 7.3%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 5.0%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ Ã¼Å©Æ÷ÀÎÆ® ÀúÇØÁ¦ ºÒÀÀ¼º ¾Ï½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

¿Ö üũÆ÷ÀÎÆ® ¾ïÁ¦Á¦ ºÒÀÀ¼ºÀÌ ¾Ï Ä¡·áÀÇ »õ·Î¿î ¿µ¿ªÀ¸·Î ºÎ»óÇϰí Àִ°¡?

üũÆ÷ÀÎÆ® ¾ïÁ¦Á¦´Â Á¾¾çÀ» °ø°ÝÇÏ´Â ¸é¿ªÃ¼°è¸¦ ÇØÁ¦ÇÔÀ¸·Î½á ¾Ï Ä¡·á¿¡ Çõ¸íÀ» °¡Á®¿ÔÁö¸¸, »ó´ç¼öÀÇ È¯ÀÚµéÀº üũÆ÷ÀÎÆ® ¾ïÁ¦Á¦ ºÒÀÀ¼º ¾ÏÀ̶ó´Â º¹ÀâÇÑ »óȲ¿¡ Ã³ÇØ ÀÖÀ¸¸ç, ÀÌ °æ¿ì ¹ÝÀÀÀÌ Á¦ÇÑÀûÀ̰ųª ÀüÇô ³ªÅ¸³ªÁö ¾Ê½À´Ï´Ù. ÀÌ·¯ÇÑ ¾ÏÀº ¸é¿ª üũÆ÷ÀÎÆ® ¾ïÁ¦ ¿ä¹ý¿¡ óÀ½ ¹ÝÀÀÇÏÁö ¾Ê°Å³ª(¿ø¹ß¼º ÀúÇ×¼º), ¹ÝÀÀÇÑ ÈÄ ÁøÇà(ȹµæ ÀúÇ×¼º)ÇÏ´Â ¾ÏÀÔ´Ï´Ù. ÀÌ ¹®Á¦´Â Èæ»öÁ¾, ºñ¼Ò¼¼Æ÷Æó¾Ï(NSCLC), ½Å¼¼Æ÷¾Ï, »ïÁßÀ½¼ºÀ¯¹æ¾Ï¿¡¼­ ƯÈ÷ ½É°¢Çϸç, ³»¼º·üÀº Á¾¾çÀÇ À¯Çü°ú ¹ÙÀÌ¿À¸¶Ä¿ ¹ßÇö¿¡ µû¶ó 40%¿¡¼­ 60% ÀÌ»ó±îÁö ´Ù¾çÇÕ´Ï´Ù. ºÒÀÀ¼ºÀÇ ±Ùº»ÀûÀÎ ¿øÀÎÀ» ÀÌÇØÇÏ´Â °ÍÀº Á¾¾ç³»°ú ÀÇ»ç, ¹ÙÀÌ¿À Á¦¾à»ç, ¿¬±¸ÀÚ ¸ðµÎ¿¡°Ô Áß¿äÇÑ ¿ì¼±¼øÀ§°¡ µÇ°í ÀÖ½À´Ï´Ù. Á¾¾ç ¹Ì¼¼È¯°æ µ¿ÅÂ, ³·Àº Á¾¾ç µ¹¿¬º¯ÀÌ ºÎÇÏ, T¼¼Æ÷ ħÀ± ºÎÁ·(Àú¿Â Á¾¾ç), ¸é¿ª ȸÇÇ ±âÀüÀº ¸ðµÎ üũÆ÷ÀÎÆ®ÀÇ È¿´ÉÀ» °¨¼Ò½ÃŰ´Â ¿ªÇÒÀ» ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ÀλçÀÌÆ®´Â Ä¡·á¹ý °³¹ßÀ» ºü¸£°Ô À籸¼ºÇÏ°í º´¿ë¿ä¹ý, »õ·Î¿î ¸é¿ª Ç¥Àû, °³ÀÎ ¸ÂÃãÇü Ä¡·á Á¢±Ù¹ýÀÇ Çõ½ÅÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. üũÆ÷ÀÎÆ® ¾ïÁ¦Á¦ ´Üµ¶¿ä¹ýÀ» ´ëüÇÒ ¼ö ÀÖ´Â Ä¡·á¹ý¿¡ ´ëÇÑ ÀÓ»óÀû ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ³­Ä¡¼º ¾Ï ºÐ¾ß´Â ÀÓ»óÀû °¢ÁÖ¿¡¼­ ÁøÈ­ÇÏ´Â ¸é¿ªÁ¾¾çÇÐÀÇ Àü¸Á¿¡¼­ Áß½ÉÀûÀÎ ÃÊÁ¡À¸·Î À̵¿Çϰí ÀÖ½À´Ï´Ù.

º´¿ë¿ä¹ýÀÌ ³­Ä¡¼º ¾ÏÀÇ µ¹ÆÄ±¸°¡ µÉ ¼ö Àִ°¡?

º´¿ë¿ä¹ýÀº üũÆ÷ÀÎÆ® ¾ïÁ¦Á¦ ³»¼ºÀ» ±Øº¹Çϱâ À§ÇÑ °¡Àå È¿°úÀûÀÎ Á¢±Ù¹ýÀ¸·Î ¿©°ÜÁö°í ÀÖ½À´Ï´Ù. ¿©±â¿¡´Â üũÆ÷ÀÎÆ® ¾ïÁ¦Á¦¿Í È­Çпä¹ý, ¹æ»ç¼± ¿ä¹ý, Ç¥ÀûÄ¡·áÁ¦ ¶Ç´Â Ç׾ϹÙÀÌ·¯½º, Ç׾Ϲé½Å, T¼¼Æ÷ ÀÛ¿ëÁ¦ µîÀÇ ¸é¿ª¿ä¹ý°úÀÇ º´¿ë¿ä¹ýÀÌ Æ÷ÇԵ˴ϴÙ. Ç× PD-1/PD-L1 ¾à¹°°ú ÀÌÇʸ®¹«¸¿°ú °°Àº CTLA-4 ¾ïÁ¦Á¦¿ÍÀÇ º´¿ë¿ä¹ýÀº Èæ»öÁ¾°ú ºñ¼Ò¼¼Æ÷Æó¾ÏÀÇ Æ¯Á¤ ¾ÆÇü¿¡ ´ëÇÑ ¹ÝÀÀ·ü °³¼±À» º¸¿©ÁÖ¾ú½À´Ï´Ù. »õ·Î¿î Àü·«Àº LAG-3, TIGIT, TIM-3¿Í °°Àº Â÷¼¼´ë üũÆ÷ÀÎÆ® ºÐÀÚ¸¦ Ç¥ÀûÀ¸·Î ÇÏ´Â ¾à¹°À» ÅëÇÕÇÏ¿© 1¼¼´ë ¾à¹°ÀÇ ÇѰ踦 ±Øº¹Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ T¼¼Æ÷ ħÀ±À» Áõ°¡½ÃÅ´À¸·Î½á üũÆ÷ÀÎÆ® ¾ïÁ¦Á¦¿¡ ´ëÇÑ ¹Î°¨µµ¸¦ ³ô¿© "Â÷°¡¿î" Á¾¾çÀ» "¶ß°Å¿î" Á¾¾çÀ¸·Î ÀçÇÁ·Î±×·¡¹ÖÇϱâ À§ÇÑ ÈļºÀ¯ÀüÇÐÀû Á¶ÀýÁ¦°¡ ½ÃÇèµÇ°í ÀÖ½À´Ï´Ù. Á¾¾çÀÇ ºÒ±ÕÀϼº°ú ¸é¿ªÈ¸ÇÇ¿¡ ´ëÀÀÇϱâ À§ÇØ °³ÀÎ ¸ÂÃãÇü ½ÅÇ׿ø ¹é½Å°ú CAR-T ¼¼Æ÷¿Í TCR-T ¼¼Æ÷¸¦ Æ÷ÇÔÇÑ ÀÔ¾ç T ¼¼Æ÷ ¿ä¹ýµµ °³¹ßµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Àü·«Àº µ¶¼º ¹× ºñ¿ë¿¡ ´ëÇÑ ¿ì·Á°¡ ÀÖÁö¸¸, ÇöÀç ÁøÇà ÁßÀÎ ÀÓ»ó½ÃÇèÀº È¿´É°ú ¾ÈÀü¼ºÀ» °³¼±Çϱâ À§ÇØ Åõ¿© ¿ä¹ý°ú ¹ÙÀÌ¿À¸¶Ä¿¿¡ ±â¹ÝÇÑ È¯ÀÚ ¼±ÅÃÀ» ÃÖÀûÈ­Çϰí ÀÖÀ¸¸ç, FDA¿Í EMA´Â À¯¸ÁÇÑ ÄÞº¸ Ä¡·áÁ¦¿¡ ´ëÇØ ȹ±âÀû ÁöÁ¤ ¹× ½Å¼Ó ½ÂÀÎÀ» ºÎ¿©Çϰí ÀÖ½À´Ï´Ù. Çϰí ÀÖÀ¸¸ç, ÀÌ´Â ÀÌ Ä¡·á ÇÁ·±Æ¼¾îÀÇ ½Ã±Þ¼º°ú ÀáÀç·ÂÀ» °­Á¶Çϰí ÀÖ½À´Ï´Ù.

Ä¡·á Àü·« ¼ö¸³¿¡¼­ Áø´Ü°ú ¹ÙÀÌ¿À¸¶Ä¿´Â ¾î¶² ¿ªÇÒÀ» Çϴ°¡?

PD-L1 ¹ßÇö, Á¾¾ç µ¹¿¬º¯ÀÌ ºÎÇÏ(TMB), ¹Ì¼¼ À§¼º ºÒ¾ÈÁ¤¼º(MSI) »óÅ´ ±âº»ÀûÀÎ ÁöÇ¥ÀÌÁö¸¸, ÀÎÅÍÆä·Ð-°¨¸¶ ½Ã±×´Ïó, T¼¼Æ÷ ¼ö¿ëü Ŭ·Ð¼º, Àå³» ¹Ì»ý¹° ±¸¼º µî »õ·Î¿î ¹ÙÀÌ¿À¸¶Ä¿°¡ °¢±¤¹Þ°í ÀÖ½À´Ï´Ù. ÀÎÅÍÆä·Ð-°¨¸¶ ½Ã±×´Ïó, T¼¼Æ÷ ¼ö¿ëü Ŭ·Ð¼º, Àå³» ¸¶ÀÌÅ©·Î¹ÙÀÌ¿È Á¶¼º µîÀÇ »õ·Î¿î ¹ÙÀÌ¿À¸¶Ä¿°¡ Àα⸦ ²ø°í ÀÖ½À´Ï´Ù. ´ÜÀÏ ¼¼Æ÷ RNA ½ÃÄö½Ì ¹× ´ÙÁß ¸é¿ªÁ¶Á÷È­Çаú °°Àº ÷´Ü ±â¼úÀº ¿¬±¸ÀÚµéÀÌ Á¾¾ç³» ¸é¿ª¼¼Æ÷ ȯ°æÀ» ÇØµ¶ÇÏ°í ³»¼º ÆÐÅÏÀ» ´õ Àß ¿¹ÃøÇÒ ¼ö ÀÖµµ·Ï µ½°í ÀÖ½À´Ï´Ù. ¼øÈ¯ Á¾¾ç DNA(ctDNA) ºÐ¼®Àº ƯÈ÷ ÈÄõÀû ³»¼º Ãø¸é¿¡¼­ ¹Ì¼¼ ÀÜÁ¸ º´º¯°ú Á¶±â Àç¹ßÀ» ¸ð´ÏÅ͸µÇÏ´Â µ¥ ÇʼöÀûÀÎ ÅøÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ½Ç½Ã°£ ÀÇ»ç°áÁ¤°ú ȯÀÚ °èÃþÈ­¸¦ À§ÇØ ¸ÖƼ¿À¹Í½º µ¥ÀÌÅÍ(À¯Àüü, Àü»çü, ÇÁ·ÎÅ׿È)¸¦ ÅëÇÕÇÏ´Â ÀΰøÁö´ÉÀÌ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Áø´Ü¹ýÀº »õ·Î¿î ÀÓ»ó½ÃÇèÀÇ È¯ÀÚ ¼±¹ß¿¡µµ µµ¿òÀÌ µÇ¾î ȯÀÚ ¸ðÁýÀÇ È¿À²¼º°ú ½ÃÇè °á°ú¸¦ °³¼±Çϰí ÀÖ½À´Ï´Ù. °³ÀÎÈ­µÈ Á¾¾çÇÐÀ» Áö¿øÇϱâ À§ÇÑ »óȯ Á¦µµ°¡ ¹ßÀüÇÔ¿¡ µû¶ó µ¿¹ÝÁø´Ü¾à¹°ÀÇ °³¹ßÀº ÀǾàǰ ½ÂÀΰú ¹ÐÁ¢ÇÏ°Ô ¿¬°üµÇ¾î ÀÖÀ¸¸ç, À̴ üũÆ÷ÀÎÆ® ¾ïÁ¦Á¦ ºÒÀÀ¼º ¾Ï ½ÃÀå¿¡¼­ ¼ºÀå µ¿·ÂÀ¸·Î¼­ÀÇ ¿ªÇÒÀ» È®°íÈ÷ Çϰí ÀÖ½À´Ï´Ù.

üũÆ÷ÀÎÆ® ¾ïÁ¦Á¦ ºÒÀÀ¼º ¾Ï Ä¡·áÁ¦ ½ÃÀåÀÇ ¼ºÀåÀ» À̲ô´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

üũÆ÷ÀÎÆ® ¾ïÁ¦Á¦ ºÒÀÀ¼º ¾Ï ½ÃÀåÀÇ ¼ºÀåÀº ±â¼ú ¹ßÀü, ÀÓ»óÀû ¿ä±¸, Á¤¹ÐÀÇ·á ¸ðµ¨°ú ¹ÐÁ¢ÇÑ °ü·ÃÀÌ ÀÖ´Â ¸î °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ù°, ¸é¿ª¿ä¹ýÀ» ¹Þ´Â ȯÀÚ±ºÀÇ È®´ë´Â ´ç¿¬È÷ ³­Ä¡¼º ÁúȯÀÇ µ¿½Ã Áõ°¡·Î À̾îÁ® Å« ¹ÌÃæÁ· ¼ö¿ä¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù. Â÷¼¼´ë ½ÃÄö½Ì°ú ½Ç½Ã°£ ºÐÀÚÁø´ÜÀÇ ¹ßÀüÀ¸·Î ³»¼º ¸ÞÄ¿´ÏÁòÀ» º¸´Ù Á¤È®ÇÏ°Ô ÆÄ¾ÇÇÒ ¼ö ÀÖ°Ô µÇ¾î ¸ÂÃãÇü Ä¡·á Àü·«ÀÌ ¿ëÀÌÇØÁö°í ÀÖ½À´Ï´Ù. Á¦¾à»çµéÀº À¯¸ÁÇÑ ÀÓ»ó µ¥ÀÌÅÍ¿Í ±ÔÁ¦ ÇýÅÿ¡ ÈûÀÔ¾î »õ·Î¿î Ç¥Àû°ú ¸é¿ªÇ×¾ÏÁ¦ ÆÄÀÌÇÁ¶óÀο¡ ´ëÇÑ ÅõÀÚ¸¦ °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ÃÖÁ¾»ç¿ëÀÚ Ãø¸é¿¡¼­´Â 3Â÷ ¾Ï Ä¡·á¼¾ÅÍ¿Í ´ëÇк´¿øµéÀÌ Ã·´Ü ¸é¿ªÄ¡·áÁ¦ Á¶ÇÕÀ» ¼±µµÀûÀ¸·Î µµÀÔÇϰí ÀÖÀ¸¸ç, ¾Ï Àü¹® ³×Æ®¿öÅ©¸¦ ÅëÇØ ºÐ»êµÈ Á¢±Ù¼ºÀÌ °³¼±µÇ°í ÀÖ½À´Ï´Ù. ¼ÒºñÀÚÀÇ Çൿµµ º¯È­Çϰí ÀÖ½À´Ï´Ù. ȯÀÚ¿Í °£º´ÀεéÀº Ä¡·á ¿É¼Ç¿¡ ´ëÇÑ ÀÌÇØ¿¡ Àû±ØÀûÀ̸ç, Á¾Á¾ ÀÓ»ó½ÃÇèÀ̳ª ½ÇÇèÀû Ä¡·á¸¦ Àû±ØÀûÀ¸·Î ¿ä±¸Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ½ÇÁ¦ ÀÓ»ó Áõ°Å¿Í ȯÀÚ µî·ÏÀÇ °¡¿ë¼ºÀÌ ³ô¾ÆÁü¿¡ µû¶ó Àå±âÀûÀÎ Ä¡·á ¹ÝÀÀ°ú ³»¼º µ¿Çâ¿¡ ´ëÇÑ ±íÀº ÀλçÀÌÆ®¸¦ ¾òÀ» ¼ö ÀÖ°Ô µÇ¾î ÀǾàǰ °³¹ß¿¡¼­ ¹Ýº¹ÀûÀÎ Çõ½ÅÀÌ °¡´ÉÇØÁ³½À´Ï´Ù. ÀÌ·¯ÇÑ »óÈ£ ¿¬°üµÈ µ¿Àεé·Î ÀÎÇØ üũÆ÷ÀÎÆ® ¾ïÁ¦Á¦ ºÒÀÀ¼º ¾Ï Ä¡·á¿¡¼­ ¼ºÀå, Çõ½Å, °á°ú °³¼±À» ÃËÁøÇÏ´Â ¿ªµ¿ÀûÀÎ »ýŰ谡 ±¸ÃàµÇ°í ÀÖ½À´Ï´Ù.

ºÎ¹®

À¯Çü(PD-1 ÀúÇØÁ¦ À¯Çü, PD-L1 ÀúÇØÁ¦ À¯Çü, ±âŸ À¯Çü), ¾ÖÇø®ÄÉÀ̼Ç(Æó¾Ï ¾ÖÇø®ÄÉÀ̼Ç, ¹æ±¤¾Ï ¾ÖÇø®ÄÉÀ̼Ç, Èæ»öÁ¾ ¾ÖÇø®ÄÉÀ̼Ç, È£ÁöŲ ¸²ÇÁÁ¾ ¾ÖÇø®ÄÉÀ̼Ç, ±âŸ ¾ÖÇø®ÄÉÀ̼Ç)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹

AI ÅëÇÕ

¿ì¸®´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI Åø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾ç ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÔ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Checkpoint Inhibitor Refractory Cancer Market to Reach US$48.8 Billion by 2030

The global market for Checkpoint Inhibitor Refractory Cancer estimated at US$31.5 Billion in the year 2024, is expected to reach US$48.8 Billion by 2030, growing at a CAGR of 7.6% over the analysis period 2024-2030. PD-1 Inhibitor Type, one of the segments analyzed in the report, is expected to record a 8.8% CAGR and reach US$33.0 Billion by the end of the analysis period. Growth in the PD-L1 Inhibitor Type segment is estimated at 5.0% CAGR over the analysis period.

The U.S. Market is Estimated at US$8.6 Billion While China is Forecast to Grow at 12.0% CAGR

The Checkpoint Inhibitor Refractory Cancer market in the U.S. is estimated at US$8.6 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$10.5 Billion by the year 2030 trailing a CAGR of 12.0% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 3.7% and 7.3% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 5.0% CAGR.

Global Checkpoint Inhibitor Refractory Cancer Market - Key Trends & Drivers Summarized

Why Is Refractoriness to Checkpoint Inhibitors Emerging as a New Frontier in Oncology?

Checkpoint inhibitors revolutionized cancer treatment by unleashing the immune system to attack tumors, yet a significant proportion of patients show limited or no response-enter the complex landscape of checkpoint inhibitor refractory cancers. These are cancers that either do not initially respond to immune checkpoint blockade therapies (primary resistance) or that progress after a period of responsiveness (acquired resistance). This challenge is particularly acute in melanoma, non-small cell lung cancer (NSCLC), renal cell carcinoma, and triple-negative breast cancer, where resistance rates vary from 40% to over 60%, depending on tumor type and biomarker expression. Understanding the underlying causes of refractoriness is becoming a critical priority for oncologists, biopharma companies, and researchers alike. Tumor microenvironment dynamics, low tumor mutational burden, absence of T-cell infiltration (cold tumors), and immune escape mechanisms all play roles in reducing checkpoint efficacy. These insights are rapidly reshaping therapeutic development, driving innovations in combination therapies, novel immune targets, and personalized medicine approaches. With growing clinical demand for alternatives to monotherapy checkpoint blockade, the refractory cancer segment has moved from a clinical footnote to a central focus in the evolving immuno-oncology landscape.

Can Combination Therapies Offer a Breakthrough for Resistant Cancers?

Combination therapies are increasingly being seen as the most viable approach to overcoming checkpoint inhibitor resistance. These include pairings of checkpoint inhibitors with chemotherapy, radiation, targeted therapy, or other immunotherapies like oncolytic viruses, cancer vaccines, and T-cell agonists. Trials combining anti-PD-1/PD-L1 drugs with CTLA-4 inhibitors, such as ipilimumab, have shown improved response rates in specific subtypes of melanoma and NSCLC. Newer strategies are incorporating agents targeting LAG-3, TIGIT, and TIM-3-next-generation checkpoint molecules-to circumvent the limitations of first-generation drugs. Additionally, epigenetic modulators are being tested to reprogram “cold” tumors into “hot” ones by increasing T-cell infiltration, thereby making them more susceptible to checkpoint blockade. Personalized neoantigen vaccines and adoptive T-cell therapies, including CAR-T and TCR-T cells, are also under development to address tumor heterogeneity and immune evasion. While these strategies raise concerns around toxicity and cost, ongoing trials are optimizing dosing regimens and biomarker-based patient selection to improve efficacy and safety. The FDA and EMA are increasingly granting breakthrough designations and fast-track approvals to promising combo therapies, underscoring the urgency and potential of this therapeutic frontier.

What Role Are Diagnostics and Biomarkers Playing in Shaping Treatment Strategies?

Precision oncology is indispensable to addressing checkpoint inhibitor refractoriness, with companion diagnostics and biomarker profiling taking center stage. PD-L1 expression, tumor mutational burden (TMB), and microsatellite instability (MSI) status are foundational metrics, but newer biomarkers such as interferon-gamma signatures, T-cell receptor clonality, and gut microbiome composition are gaining traction. Advanced techniques like single-cell RNA sequencing and multiplex immunohistochemistry are helping researchers decode immune cell landscapes within tumors, enabling better prediction of resistance patterns. Circulating tumor DNA (ctDNA) analysis is becoming an essential tool in monitoring minimal residual disease and early relapse, particularly in the context of acquired resistance. Additionally, artificial intelligence is being used to integrate multi-omic data (genomic, transcriptomic, and proteomic) for real-time decision-making and patient stratification. These diagnostics are also aiding the selection of patients for emerging clinical trials, improving recruitment efficiency and trial outcomes. As reimbursement systems evolve to support personalized oncology, companion diagnostic development is closely tied to drug approvals, solidifying its role as a growth engine in the checkpoint inhibitor refractory cancer market.

What’s Driving Growth in the Market for Checkpoint Inhibitor Refractory Cancer Therapies?

The growth in the checkpoint inhibitor refractory cancer market is driven by several factors closely aligned with technological advances, clinical needs, and precision-based healthcare models. First, the expanding pool of patients receiving immunotherapies has naturally led to a parallel increase in refractory cases, creating a significant unmet need. Advances in next-generation sequencing and real-time molecular diagnostics are enabling more accurate identification of resistance mechanisms, thereby facilitating tailored treatment strategies. Pharmaceutical companies are accelerating investments in novel targets and immuno-oncology pipelines, spurred by promising trial data and regulatory incentives. From an end-use perspective, tertiary cancer care centers and academic hospitals are leading the adoption of advanced immunotherapeutic combinations, while decentralized access is improving via specialized oncology networks. Consumer behavior is also evolving-patients and caregivers are becoming more engaged in understanding treatment options, often seeking clinical trials or experimental therapies proactively. Moreover, growing availability of real-world evidence and patient registries is providing deeper insight into long-term treatment responses and resistance trends, enabling iterative innovation in drug development. These interconnected drivers are creating a dynamic ecosystem primed for growth, innovation, and improved outcomes in the battle against checkpoint inhibitor refractory cancers.

SCOPE OF STUDY:

The report analyzes the Checkpoint Inhibitor Refractory Cancer market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Type (PD-1 Inhibitor Type, PD-L1 Inhibitor Type, Other Types); Application (Lung Cancer Application, Bladder Cancer Application, Melanoma Application, Hodgkin Lymphoma Application, Other Applications)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 44 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â