¼¼°èÀÇ ÁúÈ­°¥·ý(GaN) ÆÄ¿ö µð¹ÙÀ̽º ½ÃÀå
Gallium Nitride Power Devices
»óǰÄÚµå : 1757754
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 06¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 278 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,127,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,382,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

ÁúÈ­°¥·ý(GaN) ÆÄ¿ö µð¹ÙÀ̽º ¼¼°è ½ÃÀåÀº 2030³â±îÁö 8¾ï 5,710¸¸ ´Þ·¯¿¡ À̸¦ Àü¸Á

2024³â¿¡ 2¾ï 6,830¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â ÁúÈ­°¥·ý(GaN) ÆÄ¿ö µð¹ÙÀ̽º ¼¼°è ½ÃÀåÀº 2024-2030³âÀÇ ºÐ¼® ±â°£¿¡ CAGR 21.4%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 8¾ï 5,710¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ÆÄ¿ö µð¹ÙÀ̽º´Â CAGR 19.0%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 4¾ï 8,190¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. RF ÆÄ¿ö µð¹ÙÀ̽º ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 24.9%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 7,310¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 28.2%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ÁúÈ­°¥·ý(GaN) ÆÄ¿ö µð¹ÙÀ̽º ½ÃÀåÀº 2024³â¿¡ 7,310¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGR 28.2%·Î ¼ºÀåÀ» Áö¼ÓÇÏ¿© 2030³â±îÁö ¿¹Ãø ½ÃÀå ±Ô¸ð 2¾ï 50¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î¼­´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 17.4%¿Í 19.0%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 17.9%¸¦ º¸ÀÏ Àü¸ÁÀÔ´Ï´Ù.

ÁúÈ­°¥·ý(GaN) ÆÄ¿ö µð¹ÙÀ̽º ¼¼°è ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

ÁúÈ­°¥·ý(GaN) ÆÄ¿ö µð¹ÙÀ̽º°¡ ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½ºÀÇ ¹Ì·¡¸¦ ÀçÁ¤ÀÇÇÏ´Â ÀÌÀ¯´Â ¹«¾ùÀϱî?

ÁúÈ­°¥·ý(GaN) Àü·Â ¼ÒÀÚ´Â ±âÁ¸ÀÇ ½Ç¸®ÄÜ ±â¹Ý ¹ÝµµÃ¼¿¡ ºñÇØ Å« ¼º´É»óÀÇ ÀÌÁ¡À» Á¦°øÇÔÀ¸·Î½á Àü·Â ÀüÀÚ°øÇÐÀÇ Àü¸ÁÀ» ºü¸£°Ô ÀçÁ¤ÀÇÇϰí ÀÖ½À´Ï´Ù. ³ÐÀº ¹êµå°¸ Àç·áÀÎ GaNÀº ³ôÀº ³»Àü¾Ð, ºü¸¥ ½ºÀ§Äª ¼Óµµ, ³·Àº ¿Â ÀúÇ×°ú °°Àº ¿ì¼öÇÑ Àü±âÀû Ư¼ºÀ» º¸¿© °íÈ¿À² ¹× °íÁÖÆÄ ¿ëµµ¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. ÀÌ·¯ÇÑ Æ¯¼ºÀ¸·Î ÀÎÇØ Æ®·£Áö½ºÅÍ, ´ÙÀÌ¿Àµå, ÁýÀû Àü·Â ¸ðµâ°ú °°Àº GaN Àü·Â ¼ÒÀÚ´Â ¿¡³ÊÁö ¼Õ½ÇÀ» ÁÙÀÌ°í ¿­ ¼º´ÉÀ» °³¼±Çϸ鼭 ´õ ÀÛÀº ÆÐŰÁö·Î ´õ Å« Àü·ÂÀ» °ø±ÞÇÒ ¼ö ÀÖ½À´Ï´Ù. ´õ ³ôÀº Àü¾Ð°ú ¿Âµµ¿¡¼­ ÀÛµ¿ÇÏ´Â GaNÀÇ ´É·ÂÀº Àü·Â ½Ã½ºÅÛÀÇ ¼ÒÇüÈ­, ½Å·Ú¼º ¹× ¿¡³ÊÁö È¿À²À» Çâ»ó½Ãų ¼ö ÀÖÀ¸¸ç, ÀÌ´Â °ø°£ Á¦¾àÀÌ Àְųª ¿­ÀûÀ¸·Î ±î´Ù·Î¿î ȯ°æ¿¡¼­ ƯÈ÷ Áß¿äÇÕ´Ï´Ù. °¡ÀüÁ¦Ç°°ú µ¥ÀÌÅͼ¾ÅÍ¿¡¼­ºÎÅÍ Àü±âÀÚµ¿Â÷(EV), Àç»ý¿¡³ÊÁö ½Ã½ºÅÛ, »ê¾÷ ÀÚµ¿È­±îÁö, GaNÀ¸·ÎÀÇ ÀüȯÀº Â÷¼¼´ë ¼ÒÇü, °æ·®, °í¼º´É Àü·Â º¯È¯ ½Ã½ºÅÛÀ» °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¿¡³ÊÁö Áö¼Ó°¡´É¼ºÀÌ °­Á¶µÇ°í ±³Åë ¹× ÀÎÇÁ¶óÀÇ Àü±âÈ­°¡ ÁøÇàµÊ¿¡ µû¶ó GaN ±â¼úÀº Àå±âÀûÀÎ ¼¼°è ¿¡³ÊÁö ¸ñÇ¥¸¦ Áö¿øÇÏ´Â µ¥ ÇÊ¿äÇÑ È®À强°ú È¿À²¼ºÀ» Á¦°øÇÕ´Ï´Ù. µð¹ÙÀ̽º Á¦Á¶¾÷üµéÀÌ ÆÐŰ¡, ÁýÀûÈ­, °ÔÀÌÆ® µå¶óÀ̺ê ÃÖÀûÈ­¸¦ À§ÇØ Çõ½ÅÀ» °ÅµìÇϰí ÀÖ´Â °¡¿îµ¥, GaNÀº Æ´»õ ¿ëµµ¿¡¼­ ÁÖ·ù äÅÃÀ¸·Î ÀüȯÇϰí ÀÖÀ¸¸ç, ¼ö½Ê³âµ¿¾È ½Ç¸®ÄÜÀÇ ¿ìÀ§¿¡ µµÀüÇϰí Àü ¼¼°è Àü·Â ¿£Áö´Ï¾îµé¿¡°Ô »õ·Î¿î ¼³°è °¡´É¼ºÀ» ¿­¾îÁÖ°í ÀÖ½À´Ï´Ù.

»ê¾÷ ÀÀ¿ë ºÐ¾ß´Â ¾î¶»°Ô GaN Àü·Â ÀåÄ¡ÀÇ ºü¸¥ äÅÃÀ» ÃËÁøÇϰí Àִ°¡?

GaN ÆÄ¿ö µð¹ÙÀ̽ºÀÇ Ã¤ÅÃÀÌ °¡¼ÓÈ­µÇ°í ÀÖ´Â ÀÌÀ¯´Â °í¼º´É, ¿¡³ÊÁö¿¡ ¹Î°¨ÇÑ ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼­ GaNÀÇ Àû¿ë ¹üÀ§°¡ È®´ëµÇ°í Àֱ⠶§¹®ÀÔ´Ï´Ù. ¼ÒºñÀÚ ÀüÀÚ±â±â¿¡¼­ GaNÀº ½º¸¶Æ®Æù, ÅÂºí¸´, ³ëÆ®ºÏ, ¿þ¾î·¯ºí ±â±â¸¦ À§ÇÑ ÃʼÒÇü, °íÃâ·Â °í¼Ó ÃæÀü±â¸¦ ±¸ÇöÇÏ¿© ½Ç¸®Äܺ¸´Ù ÈξÀ ´õ ÀÛ°í È¿À²ÀûÀÎ ÃæÀü±â ¹× ¾î´ðÅÍ ½ÃÀåÀ» º¯È­½Ã۰í ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ ºÐ¾ßµµ ÁÖ¿ä ÃËÁø¿äÀÎÀ¸·Î, GaN µð¹ÙÀ̽º´Â Àü±âÀÚµ¿Â÷ÀÇ Â÷·®¿ë ÃæÀü±â, DC-DC ÄÁ¹öÅÍ, Æ®·¢¼Ç ÀιöÅÍ¿¡ Àü·ÂÀ» °ø±ÞÇÏ¿© ´õ ºü¸¥ ÃæÀü, ´õ ³ôÀº Àü·Â ¹Ðµµ, ´õ ±ä ÁÖÇà°Å¸®¸¦ ½ÇÇöÇÕ´Ï´Ù. µ¥ÀÌÅͼ¾ÅÍ ¹× Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ ÀÎÇÁ¶ó¿¡¼­´Â ¿¡³ÊÁö È¿À²À» ³ôÀÌ°í ³Ã°¢ ºñ¿ëÀ» Àý°¨ÇÏ¸ç °í¼º´É ÄÄÇ»ÆÃ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ´ëÀÀÇϱâ À§ÇØ GaNÀ» Àü¿ø °ø±Þ ÀåÄ¡¿¡ ÅëÇÕÇÏ´Â ¿òÁ÷ÀÓÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. Àç»ý ¿¡³ÊÁö ºÐ¾ß¿¡¼­ GaNÀº ž籤 ¸¶ÀÌÅ©·Î ÀιöÅÍ ¹× Àü·Â ÃÖÀûÈ­ ÀåÄ¡¿¡ »ç¿ëµÇ¾î ¿¡³ÊÁö ¼öÈ®·®À» ³ôÀÌ°í ½Ã½ºÅÛ ¼Õ½ÇÀ» ÃÖ¼ÒÈ­ÇÕ´Ï´Ù. ¶ÇÇÑ, »ê¾÷ ÀÚµ¿È­ ¹× ¸ðÅÍ Á¦¾î ½Ã½ºÅÛ¿¡¼­ GaNÀº º¸´Ù Á¤È®ÇÑ Á¦¾î, ºü¸¥ ½ºÀ§Äª ¹× ¿¡³ÊÁö ¼Òºñ °¨¼Ò¸¦ ½ÇÇöÇϱâ À§ÇØ Ã¤Åõǰí ÀÖ½À´Ï´Ù. Ç×°ø¿ìÁÖ ¹× ¹æÀ§ ÀÀ¿ë ºÐ¾ß´Â GaNÀÇ ¹æ»ç¼± °æµµ¿Í °í¿Â ÀúÇ×ÀÇ ÀÌÁ¡À» Ȱ¿ëÇÏ¿© À§¼º, ·¹ÀÌ´õ ½Ã½ºÅÛ, Ç×°ø ÀüÀÚ Àåºñ¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. ÀÌ·¯ÇÑ »ê¾÷º° ÀåÁ¡À¸·Î ÀÎÇØ Àü ¼¼°èÀûÀ¸·Î ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, ½Ã½ºÅÛ ¼³°èÀÚµéÀº Â÷¼¼´ë ÀüÀÚÁ¦Ç°ÀÇ ±î´Ù·Î¿î ¼º´É, Å©±â ¹× È¿À²¼º ¸ñÇ¥¸¦ ÃæÁ·ÇÒ ¼ö ÀÖ´Â ´É·ÂÀ¸·Î GaNÀ» äÅÃÇϰí ÀÖ½À´Ï´Ù.

¾î¶² ±â¼ú Çõ½ÅÀÌ GaN ÆÄ¿ö µð¹ÙÀ̽ºÀÇ °¡´É¼º°ú ¼º´ÉÀ» Çâ»ó½Ã۰í Àִ°¡?

Àç·á °úÇÐ, ÆÐŰ¡ ¹× ȸ·Î ÁýÀû ºÐ¾ßÀÇ Áö¼ÓÀûÀÎ Çõ½ÅÀº GaN Àü·Â ¼ÒÀÚÀÇ ¼º´É, Á¦Á¶ °¡´É¼º ¹× ½Å·Ú¼ºÀ» Å©°Ô Çâ»ó½ÃÄÑ GaN Àü·Â ¼ÒÀÚ°¡ ½ÃÀå¿¡¼­ ³Î¸® ¼ö¿ëµÉ ¼ö ÀÖ´Â ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ¹ßÀü Áß Çϳª´Â °­È­ ¸ðµå(e-mode) GaN Æ®·£Áö½ºÅÍÀÇ °³¹ß·Î, Àü·Â ¿ëµµÀÇ ¾ÈÀü°ú ½Ã½ºÅÛ ÅëÇÕ¿¡ ÇʼöÀûÀÎ ³ë¸Ö¸® ¿ÀÇÁ µ¿ÀÛÀ» Á¦°øÇÕ´Ï´Ù. °³¼±µÈ ¿¡ÇÇÅÃ¼È ¼ºÀå ±â¼ú, ƯÈ÷ ½Ç¸®Äܰú °°Àº ºñ¿ë È¿À²ÀûÀÎ ±âÆÇ¿¡¼­ °íǰÁú GaN ÃþÀ» À¯ÁöÇϸ鼭 Á¦Á¶ ºñ¿ëÀ» Àý°¨Çϰí ÀÖÀ¸¸ç, GaN-on-silicon ±â¼úÀº ÇöÀç »ó¾÷ÀûÀ¸·Î ¼º¼÷ÇØÁ® ¼º´É°ú °¡°ÝÀÇ °ÝÂ÷¸¦ ÇØ¼ÒÇÏ´Â µ¥ µµ¿òÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀÌÀü¿¡´Â 650V ÀÌÇÏ·Î Á¦ÇѵǾú´ø °íÀü¾Ð GaN µð¹ÙÀ̽º´Â ÇöÀç 900V À̻󿡼­ ÀÛµ¿Çϵµ·Ï °³¹ßµÇ°í ÀÖÀ¸¸ç, »ê¾÷ ¹× ±×¸®µå ·¹º§ Àü·Â ½Ã½ºÅÛ¿¡¼­ »ç¿ëÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù. GaN ½Ã½ºÅÛ ÀÎ ÆÐŰÁö(SiP) ¹× Ç¥¸é ½ÇÀå ÆÄ¿ö ½ºÅ×ÀÌÁö¿Í °°Àº ÷´Ü ÆÐŰ¡ ±â¼úÀº ±â»ý ÀδöÅϽº¸¦ ÃÖ¼ÒÈ­Çϰí, ´õ ³ôÀº ½ºÀ§Äª Á֯ļö¸¦ °¡´ÉÇÏ°Ô Çϸç, ¼öµ¿ ºÎǰÀÇ ¼ÒÇüÈ­¿Í Àüü ½Ã½ºÅÛÀÇ ¼ÒÇüÈ­·Î À̾îÁö°í ÀÖ½À´Ï´Ù. ÄÚÆÐŰÁö µå¶óÀ̹ö IC´Â °ÔÀÌÆ® ±¸µ¿ ¿ä°ÇÀ» ´Ü¼øÈ­ÇÏ¿© ¼³°èÀÇ º¹À⼺À» ÁÙ¿´½À´Ï´Ù. ÇÑÆí, µðÁöÅÐ ÄÁÆ®·Ñ·¯ ¹× ½Ç½Ã°£ ¸ð´ÏÅ͸µ ±â´É°úÀÇ ÅëÇÕÀº ½Ã½ºÅÛÀÇ ½Å·Ú¼º°ú º¸È£ ±â´ÉÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ¿­ °ü¸®µµ ¹ßÀüÇϰí ÀÖÀ¸¸ç, È÷Æ®½ºÇÁ·¹´õ, ±âÆÇ, ³Ã°¢ ±â¼úÀÇ Çõ½ÅÀ¸·Î °íÃâ·Â ¹Ðµµ¿¡¼­µµ ¾ÈÁ¤ÀûÀÎ ¼º´ÉÀ» º¸ÀåÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀû Áøº¸¸¦ ÅëÇØ GaNÀº À¯¸ÁÇÑ ´ëü ±â¼ú¿¡¼­ Àü ¼¼°è ÃֽŠÀü·Â º¯È¯ ½Ã½ºÅÛÀÇ ±î´Ù·Î¿î ¿ä±¸ »çÇ×À» ÃæÁ·½Ãų ¼ö ÀÖ´Â ¼º¼÷ÇÏ°í ÆÄ±«ÀûÀÎ ±â¼ú·Î ¹ßÀüÇϰí ÀÖ½À´Ï´Ù.

GaN ÆÄ¿ö µð¹ÙÀ̽ºÀÇ ¼¼°è ¼ºÀåÀ» ÁÖµµÇÏ´Â ½ÃÀå µ¿·ÂÀº ¹«¾ùÀΰ¡?

¼¼°è GaN Àü·Â ¼ÒÀÚ ½ÃÀåÀº °Å½Ã°æÁ¦, ȯ°æ ¹× ±â¼ú·ÂÀÇ À¶ÇÕÀ¸·Î ÀÎÇØ ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½ºÀÇ ¹Ì·¡¸¦ ÀçÆíÇϰí ÀÖ½À´Ï´Ù. ÁÖ¿ä ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ Áß Çϳª´Â ¿¡³ÊÁö È¿À²°ú Żź¼ÒÈ­ Ãß¼¼·Î, Á¤ºÎ, ±â¾÷, ¼ÒºñÀÚµéÀº º¸´Ù ģȯ°æÀûÀ̰í ÄÄÆÑÆ®Çϸç È¿À²ÀûÀÎ ÀüÀÚ ½Ã½ºÅÛÀ» ¿ä±¸Çϰí ÀÖ½À´Ï´Ù. ÀÌ»êȭź¼Ò ¹èÃâ·® °¨¼Ò, Àü·Â º¯È¯ È¿À² Çâ»ó, ÀüÀÚ Æó±â¹° °¨¼Ò¿¡ ÃÊÁ¡À» ¸ÂÃá ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©´Â GaN°ú °°Àº ±¤´ë¿ª °¸ ¹ÝµµÃ¼ÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. Àü±âÀÚµ¿Â÷, ÃæÀü ÀÎÇÁ¶ó, Àü±â Ç×°øÀ» Æ÷ÇÔÇÑ ¿î¼ÛÀÇ Àü±âÈ­°¡ ÁøÇàµÊ¿¡ µû¶ó GaNÀÌ µ¶ÀÚÀûÀ¸·Î Á¦°øÇÒ ¼ö ÀÖ´Â ¼ÒÇü ¹× °æ·® Àü·Â ¼Ö·ç¼Ç¿¡ ´ëÇÑ Àü·Ê ¾ø´Â ¼ö¿ä°¡ âÃâµÇ°í ÀÖ½À´Ï´Ù. ÀÌ¿Í ÇÔ²² µ¥ÀÌÅÍ Æ®·¡ÇÈ, ¿§Áö ÄÄÇ»ÆÃ, AI ±â¹Ý ¿öÅ©·ÎµåÀÇ Æø¹ßÀûÀÎ Áõ°¡·Î ÀÎÇØ µ¥ÀÌÅͼ¾ÅÍ´Â º¸´Ù È¿À²ÀûÀÎ ¿î¿µÀ» ¿ä±¸Çϰí ÀÖÀ¸¸ç, GaNÀº ¼­¹ö Àü¿ø ¹× ³Ã°¢ ½Ã½ºÅÛ¿¡¼­ °¢±¤À» ¹Þ°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ¹ÝµµÃ¼ Á¦Á¶¾÷üÀÇ ÅõÀÚ, º¥Ã³±â¾÷ Áö¿ø, OEM°ú GaN ÁÖÁ¶ÀÇ Àü·«Àû Á¦ÈÞ¸¦ ÅëÇØ »ý»ê´É·ÂÀÌ È®´ëµÇ°í, ±Ô¸ðÀÇ °æÁ¦¸¦ ÅëÇÑ ºñ¿ëÀý°¨ÀÌ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. ¼³°è Åø, Æò°¡ ŰƮ, ¿ëµµ¿¡ ƯȭµÈ GaN ¸ðµâ »ýŰ谡 ¼º¼÷ÇØÁö¸é¼­ »õ·Î¿î ¼³°è ½ÃÀå Ãâ½Ã ½Ã°£ÀÌ »¡¶óÁö°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, °ø±Þ¸Á ÇöÁöÈ­ ³ë·Â°ú ÁöÁ¤ÇÐÀû º¯È­·Î ÀÎÇØ GaN Á¦Á¶ ¹× R&D Çãºê¿¡ ´ëÇÑ Áö¿ªÀû ÅõÀÚ°¡ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ¿¡³ÊÁö°¡ ±â¼ú °æÀï·ÂÀÇ Áß¿äÇÑ Â÷º°È­ ¿ä¼Ò·Î ¶°¿À¸£¸é¼­, GaN Àü·Â µð¹ÙÀ̽º´Â ¸ðµç ÁÖ¿ä ºÎ¹®¿¡¼­ È¿À²ÀûÀÌ°í ³»°áÇÔ¼ºÀÌ ¶Ù¾î³ª¸ç ¹Ì·¡ ÁöÇâÀûÀÎ ÀüÀÚ ½Ã½ºÅÛÀ» ±¸ÃàÇϱâ À§ÇÑ ÇÙ½É ¿ä¼Ò·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

µð¹ÙÀ̽º À¯Çü(ÆÄ¿ö µð¹ÙÀ̽º, RF ÆÄ¿ö µð¹ÙÀ̽º); ¾÷°èº°(Åë½Å, »ê¾÷, ÀÚµ¿Â÷, Àç»ý¿¡³ÊÁö, ¼ÒºñÀÚ ¹× ±â¾÷, ±º/¹æÀ§/Ç×°ø¿ìÁÖ, ÀÇ·á)

Á¶»ç ´ë»ó ±â¾÷ ¿¹(ÃÑ 32°³»ç)

AI ÅëÇÕ

¿ì¸®´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ¼­, ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°èº° SLM Äõ¸®¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Gallium Nitride Power Devices Market to Reach US$857.1 Million by 2030

The global market for Gallium Nitride Power Devices estimated at US$268.3 Million in the year 2024, is expected to reach US$857.1 Million by 2030, growing at a CAGR of 21.4% over the analysis period 2024-2030. Power Device, one of the segments analyzed in the report, is expected to record a 19.0% CAGR and reach US$481.9 Million by the end of the analysis period. Growth in the RF Power Device segment is estimated at 24.9% CAGR over the analysis period.

The U.S. Market is Estimated at US$73.1 Million While China is Forecast to Grow at 28.2% CAGR

The Gallium Nitride Power Devices market in the U.S. is estimated at US$73.1 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$200.5 Million by the year 2030 trailing a CAGR of 28.2% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 17.4% and 19.0% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 17.9% CAGR.

Global Gallium Nitride (GaN) Power Devices Market - Key Trends & Drivers Summarized

Why Are Gallium Nitride Power Devices Redefining the Future of Power Electronics?

Gallium Nitride (GaN) power devices are rapidly redefining the power electronics landscape by offering significant performance advantages over traditional silicon-based semiconductors. As a wide bandgap material, GaN exhibits superior electrical properties, including higher breakdown voltage, faster switching speeds, and lower on-resistance, making it ideal for high-efficiency and high-frequency applications. These attributes allow GaN power devices-such as transistors, diodes, and integrated power modules-to deliver more power in smaller packages, while reducing energy losses and improving thermal performance. GaN’s ability to operate at higher voltages and temperatures enables power systems to be more compact, reliable, and energy-efficient, which is especially critical in space-constrained or thermally demanding environments. From consumer electronics and data centers to electric vehicles (EVs), renewable energy systems, and industrial automation, the shift to GaN is enabling the next generation of compact, lightweight, and high-performance power conversion systems. Moreover, with the growing emphasis on energy sustainability and the electrification of transport and infrastructure, GaN technology provides the scalability and efficiency needed to support long-term global energy goals. As device manufacturers continue to innovate in packaging, integration, and gate drive optimization, GaN is transitioning from niche applications into mainstream adoption, challenging the decades-long dominance of silicon and unlocking new design possibilities for power engineers worldwide.

How Are Industry Applications Driving the Rapid Adoption of GaN Power Devices?

The accelerating adoption of GaN power devices is being fueled by their growing applicability across a broad spectrum of high-performance and energy-sensitive industries. In consumer electronics, GaN is transforming the market for chargers and adapters, enabling ultra-compact, high-power fast chargers for smartphones, tablets, laptops, and wearable devices that are significantly smaller and more efficient than their silicon counterparts. The automotive sector is another major growth driver, with GaN devices powering onboard chargers, DC-DC converters, and traction inverters in electric vehicles-delivering faster charging, higher power density, and longer driving ranges. Data centers and cloud computing infrastructures are increasingly integrating GaN in their power supply units to enhance energy efficiency, reduce cooling costs, and support the growing demand for high-performance computing. In renewable energy, GaN is being used in solar microinverters and power optimizers to increase energy harvest and minimize system losses. Additionally, industrial automation and motor control systems are adopting GaN to achieve more precise control, faster switching, and reduced energy consumption. Aerospace and defense applications benefit from GaN's radiation hardness and high-temperature resilience, making it ideal for satellites, radar systems, and avionics. These industry-specific benefits are propelling global demand, with system designers embracing GaN for its ability to meet rigorous performance, size, and efficiency targets in next-generation electronics.

What Technological Innovations Are Enhancing the Viability and Performance of GaN Power Devices?

Ongoing technological innovations in materials science, packaging, and circuit integration are significantly enhancing the performance, manufacturability, and reliability of GaN power devices, driving their broader market acceptance. One major advancement has been the development of enhancement-mode (e-mode) GaN transistors, which offer normally-off behavior essential for safety and system integration in power applications. Improved epitaxial growth techniques, particularly on cost-effective substrates like silicon, are reducing manufacturing costs while maintaining high-quality GaN layers. GaN-on-silicon technology is now reaching commercial maturity, helping bridge the gap between performance and affordability. High-voltage GaN devices, previously limited to below 650V, are now being developed to operate beyond 900V, expanding their use in industrial and grid-level power systems. Advanced packaging innovations-such as GaN system-in-package (SiP) and surface-mount power stages-are minimizing parasitic inductance and enabling higher switching frequencies, which translate to smaller passive components and overall system miniaturization. Co-packaged driver ICs are simplifying gate drive requirements and reducing design complexity. Meanwhile, integration with digital controllers and real-time monitoring features is improving system reliability and protection. Thermal management is also advancing, with innovations in heat spreaders, substrates, and cooling technologies ensuring stable performance under high power densities. These technological breakthroughs are helping GaN move from a promising alternative to a mature and disruptive technology that can meet the rigorous demands of modern power conversion systems across the globe.

What Market Forces Are Driving the Global Growth of GaN Power Devices?

The global GaN power device market is being propelled by a convergence of macroeconomic, environmental, and technological forces that are reshaping the future of power electronics. One of the primary market drivers is the worldwide push for energy efficiency and decarbonization, with governments, corporations, and consumers demanding greener, more compact, and efficient electronic systems. Regulatory frameworks focused on lowering carbon emissions, improving power conversion efficiency, and reducing electronic waste are encouraging the adoption of wide bandgap semiconductors like GaN. The ongoing electrification of transportation-encompassing electric vehicles, charging infrastructure, and electric aviation-is creating unprecedented demand for compact, lightweight power solutions that GaN is uniquely equipped to provide. In parallel, the explosive growth in data traffic, edge computing, and AI-driven workloads is forcing data centers to operate more efficiently, placing GaN in the spotlight for server power supplies and cooling systems. Investment from major semiconductor players, venture-backed startups, and strategic collaborations between OEMs and GaN foundries are expanding production capacity and driving down costs through economies of scale. The maturing ecosystem of design tools, evaluation kits, and application-specific GaN modules is also accelerating time-to-market for new designs. Additionally, supply chain localization efforts and geopolitical shifts are encouraging regional investments in GaN manufacturing and R&D hubs. As energy becomes a critical differentiator in technology competitiveness, GaN power devices are emerging as a linchpin for building efficient, resilient, and future-ready electronic systems across every major sector.

SCOPE OF STUDY:

The report analyzes the Gallium Nitride Power Devices market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Device Type (Power Device, RF Power Device); Vertical (Telecommunications, Industrial, Automotive, Renewables, Consumer & Enterprise, Military / Defense / Aerospace, Medical)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 32 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â