¼¼°èÀÇ ÇϵÓ(Hadoop) ½ÃÀå
Hadoop
»óǰÄÚµå : 1662220
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 02¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 203 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,322,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,966,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ÇÏµÓ ½ÃÀå, 2030³â¿¡´Â 9,134¾ï ´Þ·¯¿¡ µµ´Þ

2024³â¿¡ 1,422¾ï ´Þ·¯¿¡ À̸¥ °ÍÀ¸·Î ÃßÁ¤µÇ´Â ÇÏµÓ ¼¼°è ½ÃÀåÀº 2024-2030³â°£ CAGR 36.3%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 9,134¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ÇÏµÓ ¼­ºñ½º´Â CAGR 38.1%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 4,720¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÇÏµÓ ¼ÒÇÁÆ®¿þ¾î ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ CAGR·Î 36.2%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 385¾ï ´Þ·¯, Áß±¹Àº CAGR 34.4%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ÇÏµÓ ½ÃÀåÀº 2024³â¿¡ 385¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 1,341¾ï ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â°£ CAGRÀº 34.4%¸¦ ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î¼­´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 33.2%¿Í 31.0%¸¦ ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 24.9%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ÇÏµÓ ½ÃÀå µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

ÇϵÓÀº ºòµ¥ÀÌÅÍ ¿µ¿ª¿¡¼­ ¸Å¿ì Áß¿äÇÑ ÇÁ·¹ÀÓ¿öÅ©À̸ç, ºÐ»êµÈ ÄÄÇ»ÅÍ Å¬·¯½ºÅÍ¿¡ °­·ÂÇÑ ½ºÅ丮Áö¿Í È¿À²ÀûÀΠó¸® ±â´ÉÀ» Á¦°øÇÕ´Ï´Ù. ƯÈ÷ ¼Ò¼È ¹Ìµð¾î¿Í »ç¹°ÀÎÅͳÝ(IoT) µî µ¥ÀÌÅÍ »ý¼º·®ÀÌ Áö¼ÓÀûÀ¸·Î Áõ°¡ÇÔ¿¡ µû¶ó ÇϵÓÀÇ Á߿伺Àº ´õ¿í Ä¿Áö°í ÀÖÀ¸¸ç, ±â¾÷ÀÌ ¹æ´ëÇÑ ¾çÀÇ µ¥ÀÌÅ͸¦ ¹ÎøÇϰí Á¤È®ÇÏ°Ô °ü¸®ÇÒ ¼ö ÀÖ´Â Áß¿äÇÑ µµ±¸·Î ±â´ÉÇϰí ÀÖ½À´Ï´Ù. ÇãµéÀº ´ë±Ô¸ð À¥ µ¥ÀÌÅÍ ¼¼Æ®ÀÇ Àε¦½Ì°ú °Ë»öÀ̶ó´Â °úÁ¦¸¦ ÇØ°áÇϱâ À§ÇØ Ã³À½ °³¹ßµÇ¾úÁö¸¸, Doug Cutting°ú Mike CafarellaÀÇ ÇÁ·ÎÁ§Æ® Nutch°¡ ÇãµéÀÇ ±âÃʸ¦ ¸¶·ÃÇϰí ÀÌÈÄ Yahoo¿¡¼­ °³¼±°ú È®ÀåÀ» °ÅÃÄ 2008³â¿¡ ÇãµéÀÇ ±âÃʸ¦ ´ÙÁ³½À´Ï´Ù. 2008³â±îÁö ÇϵÓÀº Apache Software Foundation¿¡¼­ °ü¸®ÇÏ´Â ¿ÀǼҽº ÇÁ·ÎÁ§Æ®°¡ µÇ¾ú°í, Àü ¼¼°è °³¹ßÀÚ Ä¿¹Â´ÏƼ¸¦ À°¼ºÇß½À´Ï´Ù. ÇÏµÓ ºÐ»ê ÆÄÀÏ ½Ã½ºÅÛ(HDFS), YARN, MapReduce, ±×¸®°í »õ·Ó°Ô Ãß°¡µÈ ÇÏµÓ ¿ÀÁ¸(Ozone)°ú ¼­ºê¸¶¸°(Submarine) µîÀÇ ÇÙ½É ÄÄÆ÷³ÍÆ®´Â ºÐ»ê µ¥ÀÌÅÍ ÀúÀå, ÀÚ¿ø °ü¸®, º´·Ä 󸮿¡ ÇʼöÀûÀÎ ¿ä¼ÒÀÔ´Ï´Ù.

ÇϵÓÀÇ °¡Àå Å« °­Á¡ Áß Çϳª´Â ±¸Á¶È­, ¹Ý±¸Á¶È­, ºñÁ¤ÇüÈ­¸¦ ¸··ÐÇÏ°í ¹æ´ëÇÑ ¾çÀÇ µ¥ÀÌÅ͸¦ ó¸®ÇÒ ¼ö ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ À¯¿¬¼ºÀ» ÅëÇØ Á¶Á÷Àº ´ë±Ô¸ð Àüó¸® ¾øÀ̵µ ÅØ½ºÆ®, À̹ÌÁö, µ¿¿µ»ó µî ´Ù¾çÇÑ µ¥ÀÌÅÍ À¯Çü°ú Æ÷¸Ë¿¡ ºü¸£°Ô ´ëÀÀÇÒ ¼ö ÀÖ½À´Ï´Ù. ÇϵÓÀÇ ¶Ç ´Ù¸¥ Å« Ư¡Àº È®À强Àε¥, ³ëµå Ãß°¡¸¦ ÅëÇØ ½±°Ô È®ÀåÇÒ ¼ö ÀÖ¾î °ü¸® ¿À¹öÇìµå¸¦ ÃÖ¼ÒÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼³°è¸¦ ÅëÇØ ³ëµå¿¡ Àå¾Ö°¡ ¹ß»ýÇÏ´õ¶óµµ µ¥ÀÌÅÍ Ã³¸®ÀÇ º¹¿ø·Â°ú ½Å·Ú¼ºÀ» À¯ÁöÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÇϵÓÀº ¿ÀǼҽºÀ̱⠶§¹®¿¡ ºòµ¥ÀÌÅÍ °ü¸®, ƯÈ÷ ´ë¿ë·® µ¥ÀÌÅÍ ÀúÀå¿¡ µå´Â ºñ¿ëÀ» Å©°Ô Àý°¨ÇÒ ¼ö ÀÖÀ¸¸ç, ÆäÀ̽ººÏÀ̳ª ¾Æ¸¶Á¸°ú °°Àº ´ëÇü ÇÏÀÌÅ×Å© ±â¾÷µéÀº ¹æ´ëÇÑ µ¥ÀÌÅÍ ¼¼Æ®ÀÇ °ü¸® ¹× ºÐ¼®¿¡ ÇϵÓÀ» »ç¿ëÇϰí ÀÖÀ¸¸ç, ÀÌ ÇÁ·¹ÀÓ¿öÅ©´Â ´Ù¾çÇÑ »ê¾÷¿¡¼­ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. ÇÁ·¹ÀÓ¿öÅ©°¡ ´Ù¾çÇÑ »ê¾÷¿¡¼­ ¹ü¿ë¼ºÀÌ ÀÖÀ½À» º¸¿©ÁÖ°í ÀÖ½À´Ï´Ù.

ÇϵÓÀÇ È®»ê¿¡´Â ¸î °¡Áö ¿äÀÎÀÌ ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ½ºÅ丮Áö¿Í ÄÄÇ»ÆÃ ÆÄ¿öÀÇ ±â¼úÀû ¹ßÀüÀ¸·Î ÀÎÇØ ´ë±Ô¸ð µ¥ÀÌÅÍ ¼¼Æ®ÀÇ °ü¸®°¡ ´õ¿í ½ÇÇö °¡´ÉÇÏ°í ºñ¿ë È¿À²¼ºÀÌ ³ô¾ÆÁ³À¸¸ç, IoT µð¹ÙÀ̽º¿¡¼­ »ý¼ºµÇ´Â µ¥ÀÌÅÍÀÇ ±ÞÁõÀ¸·Î ÀÎÇØ ÇϵÓÀÌ Á¦°øÇÏ´Â °­·ÂÇÑ µ¥ÀÌÅÍ Ã³¸® ¹× ºÐ¼® ±â´ÉÀÌ ÇÊ¿äÇÏ°Ô µÇ¾ú½À´Ï´Ù. ½Ç½Ã°£ µ¥ÀÌÅÍ Ã³¸® ¹× ºÐ¼®¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡´Â Apache Kafka ¹× Apache Storm°ú °°Àº ÅøÀ» ÇÏµÓ »ýŰ迡 ÅëÇÕÇÏ¿© ´ëÀÀÇϰí ÀÖ½À´Ï´Ù. ¸Ó½Å·¯´×°ú AI ¿ëµµÀÇ È®»êÀº ÀÌ·¯ÇÑ ±â¼ú¿¡ ÇÊ¿äÇÑ ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ ÀÎÇÁ¶ó¸¦ Áö¿øÇÒ ¼ö ÀÖ´Â ÇϵӰú °°Àº Ç÷§ÆûÀÇ Çʿ伺À» ´õ¿í ³ôÀ̰í ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ º¸È£ ±ÔÁ¦ ´ëÀÀ, µ¥ÀÌÅÍ Æ÷¸ËÀÇ ÁøÈ­, Ŭ¶ó¿ìµå ÄÄÇ»ÆÃÀ¸·ÎÀÇ Àüȯµµ ÇϵÓÀÇ ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ±â¾÷ÀÌ °³ÀÎÈ­µÈ °í°´ °æÇèÀ» Á¦°øÇϰí Ŭ¶ó¿ìµå ȯ°æÀ» Ȱ¿ëÇϰíÀÚ ÇÏ´Â »óȲ¿¡¼­ ÇϵÓÀÇ ±â´ÉÀº ´õ¿í Áß¿äÇØÁ³À¸¸ç, Ãֽе¥ÀÌÅÍ Áß½É È¯°æÀ» °ü¸®ÇÏ´Â µ¥ ÀÖ¾î ÇϵÓÀÇ Áö¼ÓÀûÀÎ À¯È¿¼ºÀ» º¸ÀåÇϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

ÄÄÆ÷³ÍÆ®(¼­ºñ½º, ¼ÒÇÁÆ®¿þ¾î, Çϵå¿þ¾î), ÃÖÁ¾»ç¿ëÀÚ(¼Ò¸Å, Á¤ºÎ, ÀºÇà/±ÝÀ¶¼­ºñ½º/º¸Çè(BFSI), IT/ITES, ÇコÄɾî, IT/Åë½Å, ±âŸ ÃÖÁ¾»ç¿ëÀÚ)

Á¶»ç ´ë»ó ±â¾÷ ¿¹(ÃÑ 111°³»ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Hadoop Market to Reach US$913.4 Billion by 2030

The global market for Hadoop estimated at US$142.2 Billion in the year 2024, is expected to reach US$913.4 Billion by 2030, growing at a CAGR of 36.3% over the analysis period 2024-2030. Hadoop Services, one of the segments analyzed in the report, is expected to record a 38.1% CAGR and reach US$472.0 Billion by the end of the analysis period. Growth in the Hadoop Software segment is estimated at 36.2% CAGR over the analysis period.

The U.S. Market is Estimated at US$38.5 Billion While China is Forecast to Grow at 34.4% CAGR

The Hadoop market in the U.S. is estimated at US$38.5 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$134.1 Billion by the year 2030 trailing a CAGR of 34.4% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 33.2% and 31.0% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 24.9% CAGR.

Global Hadoop Market - Key Trends and Drivers Summarized

Hadoop is a pivotal framework in the realm of big data, offering robust storage and efficient processing capabilities across distributed computer clusters. As data generation continues to escalate—especially from social media and the Internet of Things (IoT)—Hadoop's relevance grows, serving as a critical tool for businesses to manage vast amounts of data with agility and precision. Initially developed to address the challenges of indexing and searching large web data sets, Hadoop has evolved significantly since its inception. Doug Cutting and Mike Cafarella's project, Nutch, laid the foundation for Hadoop, which was later refined and expanded at Yahoo. By 2008, Hadoop had become an open-source project managed by the Apache Software Foundation, fostering a global community of developers. Its core components, including the Hadoop Distributed File System (HDFS), YARN, MapReduce, and newer additions like Hadoop Ozone and Submarine, are essential for distributed data storage, resource management, and parallel processing.

One of Hadoop's most significant strengths is its ability to handle vast quantities of data, whether structured, semi-structured, or unstructured. This flexibility allows organizations to adapt quickly without the need for extensive pre-processing, making Hadoop suitable for diverse data types and formats, including text, images, and videos. Hadoop's scalability is another key feature; it can easily expand by adding nodes, minimizing administrative overhead. This design ensures that data processing remains resilient and reliable, even in the event of node failures. Additionally, Hadoop's open-source nature significantly reduces the costs associated with big data management, particularly for storing large data volumes. Major tech companies like Facebook and Amazon utilize Hadoop to manage and analyze their vast data sets, showcasing the framework's versatility across various industries.

Several factors drive the growth of Hadoop adoption. Technological advancements in storage and computing power have made managing larger datasets more feasible and cost-effective. The surge in data generation from IoT devices necessitates robust data processing and analytics capabilities, which Hadoop provides. The increasing demand for real-time data processing and analytics is met by integrating tools like Apache Kafka and Apache Storm into the Hadoop ecosystem. The proliferation of machine learning and AI applications further drives the need for platforms like Hadoop that can support the extensive data infrastructure required for these technologies. Compliance with data protection regulations, advancements in data formats, and the shift towards cloud computing also contribute to Hadoop's growth. As organizations seek to provide personalized customer experiences and leverage cloud environments, Hadoop's capabilities become even more critical, ensuring its continued relevance in managing modern data-driven environments.

SCOPE OF STUDY:

The report analyzes the Hadoop market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Component (Services, Software, Hardware); End-Use (Retail, Government, BFSI, IT & ITES, Healthcare, Telecommunications, Other End-Uses)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 111 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â