¼¼°èÀÇ ½Äǰ Áø´Ü ½Ã½ºÅÛ ½ÃÀå
Food Diagnostics Systems
»óǰÄÚµå : 1563943
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2024³â 09¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 331 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,163,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,489,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

½Äǰ Áø´Ü ½Ã½ºÅÛ ½ÃÀåÀº 2030³â±îÁö 302¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

2023³â¿¡ 203¾ï ´Þ·¯·Î ÃßÁ¤µÈ ½Äǰ Áø´Ü ½Ã½ºÅÛ ½ÃÀåÀº ¿¹Ãø ±â°£ µ¿¾È º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 5.8%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 302¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ½Äǰ Áø´Ü ½Ã½ºÅÛÀº º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 6.1%·Î ¼ºÀåÀ» Áö¼ÓÇϰí, ºÐ¼® ±â°£ÀÌ ³¡³¯ ¶§±îÁö 210¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ½Äǰ Áø´Ü Å×½ºÆ® ŰƮ ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 5.3%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 55¾ï ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 5.4%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¹Ì±¹ ½Äǰ Áø´Ü ½Ã½ºÅÛ ½ÃÀåÀº 2023³â 55¾ï ´Þ·¯·Î ÃßÁ¤µÆ½À´Ï´Ù. ¼¼°èÀÇ 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 47¾ï ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç ¿¹Ãø ±â°£ µ¿¾È º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)Àº 5.4%ÀÔ´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)Àº °¢°¢ 5.5%¿Í 4.6%·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 4.8%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ½Äǰ Áø´Ü ½Ã½ºÅÛ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ ¿ä¾à

¿Ö ½Äǰ Áø´Ü ½Ã½ºÅÛÀº ½Äǰ »ê¾÷ÀÇ ¾ÈÀü°ú ǰÁú °ü¸®¿¡ Çõ¸íÀ» ÀÏÀ¸Å°´Â°¡?

½Äǰ Áø´Ü ½Ã½ºÅÛÀº ½ÄǰÀÇ ¾ÈÀü¼º°ú ǰÁú °ü¸® ¹æ¹ýÀ» º¯È­½Ã۰í ÀÖÁö¸¸, ¿Ö ¿À´Ã³¯ ¼¼°èÀÇÀûÀÎ ½Äǰ »ê¾÷¿¡¼­ ±× ¾î´À ¶§º¸ ´Ù ÇʼöÀûÀΰ¡? ½Äǰ Áø´Ü ½Ã½ºÅÛ¿¡´Â ½ÄǰÀÇ ¿À¿° ¹°Áú, º´¿øÃ¼, ¾Ë·¹¸£°Õ ¹× ±âŸ À¯ÇØ ¹°ÁúÀ» °ËÃâÇÏ´Â µ¥ »ç¿ëµÇ´Â ´Ù¾çÇÑ ±â¼úÀÌ Æ÷ÇԵ˴ϴÙ. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ½ÄǰÀ» ±ÔÁ¦±â°ü ¹× ¼ÒºñÀÚ°¡ ¼³Á¤ÇÑ ¾ÈÀü ¹× ǰÁú ±âÁØ¿¡ ¸ÂÃß´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. ½Äǰ Áø´ÜÀº ½ÄÁßµ¶À» ¿¹¹æÇϰí, Á¦Á¶ÀÇ ¿©·¯ ´Ü°è¿¡¼­ ¿À¿°À» È®ÀÎÇϰí, ½Äǰ¿¡ ³ó¾à ¹× ÷°¡¹°°ú °°Àº À¯ÇØ ¹°ÁúÀÌ Æ÷ÇԵǾî ÀÖÁö ¾ÊÀ½À» Á¤È®ÇÏ°Ô Ç¥½ÃÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù.

½Äǰ Áø´Ü ½Ã½ºÅÛÀÌ ¾÷°è¿¡ Çõ¸íÀ» ÀÏÀ¸Å°´Â ÁÖµÈ ÀÌÀ¯ Áß Çϳª´Â ½ÄǰÀÇ ¾ÈÀü¼º°ú ÃßÀû¼ºÀ» Çâ»ó½ÃŰ´Â ´É·ÂÀÔ´Ï´Ù. ¼¼°èÀÇÀûÀÎ ½Äǰ °ø±Þ üÀÎÀÌ º¹ÀâÇØÁü¿¡ µû¶ó ¿À¿°°ú ½ÄÁßµ¶ÀÇ À§ÇèÀÌ Ä¿Áö°í ÀÖ½À´Ï´Ù. Áø´Ü ½Ã½ºÅÛÀº ½Ç½Ã°£ ¶Ç´Â ÀÌ¿¡ °¡±î¿î °Ë»ç ¼Ö·ç¼ÇÀ» Á¦°øÇÏ¿© ½Äǰ Á¦Á¶¾÷ü ¹× ±ÔÁ¦ ±â°üÀÌ »ý»ê °øÁ¤ Ãʱ⿡ ¿À¿°¹°ÁúÀ» °¨ÁöÇÏ¿© ¼ÒºñÀÚ¿¡°Ô ¾ÈÀüÇÏÁö ¾ÊÀº Á¦Ç°ÀÌ µµ´ÞÇÒ À§ÇèÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ½Äǰ ¾ÈÀü¿¡ ´ëÇÑ ÀÌ·¯ÇÑ Àû±ØÀûÀÎ Á¢±Ù¹ýÀº °øÁß º¸°ÇÀ» º¸È£ÇÒ »Ó¸¸ ¾Æ´Ï¶ó ±â¾÷µéÀÌ ºñ¿ëÀÌ ¸¹ÀÌ µå´Â ¸®Äݰú ÆòÆÇ ÀúÇϸ¦ ÇÇÇÒ ¼ö ÀÖµµ·Ï µµ¿ÍÁÝ´Ï´Ù. Åõ¸í¼º°ú ¾ÈÀü¼º¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ¿ä±¸°¡ ³ô¾ÆÁö´Â °¡¿îµ¥, ½Å·ÚÇÒ ¼ö ÀÖ´Â ½ÄǰÁø´Ü ½Ã½ºÅÛÀÇ Á߿伺Àº °ú°Å¿¡´Â ¾øÀ» Á¤µµ·Î ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù.

½Äǰ Áø´Ü ½Ã½ºÅÛÀº ¾î¶»°Ô ÀÛµ¿ÇÏ°í ¹«¾ùÀÌ ±× È¿°ú¸¦ ³ôÀ̰í Àִ°¡?

½Äǰ Áø´Ü ½Ã½ºÅÛÀº ½ÄǰÀÇ ¾ÈÀüÀ» º¸È£ÇÏ´Â µ¥ ÇʼöÀûÀÌÁö¸¸, ¾î¶»°Ô ÀÛµ¿ÇÏ°í ¿À¿° ¹°ÁúÀ» °¨ÁöÇϰí Á¦Ç°ÀÇ Ç°ÁúÀ» º¸ÀåÇÏ´Â µ¥ È¿°úÀûÀÎ °ÍÀԴϱî? ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº º´¿øÃ¼, ¾Ë·¹¸£°Õ, µ¶¼Ò, ÀÜ·ù È­Çй°ÁúÀÇ Á¸À縦 È®ÀÎÇϱâ À§ÇØ ºÐÀÚ Áø´Ü¹ý, ¸é¿ªÃøÁ¤¹ý, ¹ÙÀÌ¿À¼¾¼­, Å©·Î¸¶Åä±×·¡ÇÇ µî ´Ù¾çÇÑ ¹æ¹ý¿¡ ÀÇÁ¸ÇÕ´Ï´Ù. ¿¹¸¦ µé¾î , ÁßÇÕÈ¿¼Ò ¿¬¼â¹ÝÀÀ(PCR) °Ë»ç´Â ¹ÚÅ׸®¾Æ³ª ¹ÙÀÌ·¯½ºÀÇ DNA¸¦ ÁõÆø½ÃÄÑ ¹Ì»ý¹° ¿À¿°À» °ËÃâÇϴµ¥ ³Î¸® »ç¿ëµÇ¸ç, »ì¸ð³Ú¶ó±Õ, ´ëÀå±Õ, ¸®½ºÅ׸®¾Æ±Õ µîÀÇ À¯ÇØÇÑ ¹Ì»ý¹°À» Á¤È®ÇÏ°Ô È®ÀÎÇÕ´Ï´Ù. ¼ö ÀÖ½À´Ï´Ù. À¯»çÇϰÔ, ¸é¿ªºÐ¼®Àº Ç×ü¸¦ »ç¿ëÇÏ¿© ±Û·çÅÙ ¹× °ß°ú·ù¿Í °°Àº ƯÁ¤ ¾Ë·¹¸£°ÕÀ» °ËÃâÇÏ¿© ¾Ë·¹¸£±â°¡ ÀÖ´Â »ç¶÷µé¿¡°Ô ½ÄǰÀÌ ¾ÈÀüÇÔÀ» º¸ÀåÇÕ´Ï´Ù.

½Äǰ Áø´Ü ½Ã½ºÅÛÀÌ ¸Å¿ì È¿°úÀûÀÎ °ÍÀº ¼Óµµ, Á¤È®¼º ¹× °¨µµ ÀÔ´Ï´Ù. ´ëºÎºÐÀÇ ÃֽŠÁø´Ü ½Ã½ºÅÛÀº ¸î ½Ã°£¿¡¼­ ¸î ºÐÀÇ ºü¸¥ °á°ú¸¦ Á¦°øÇϱ⠶§¹®¿¡ ½Äǰ Á¦Á¶¾÷ü´Â ¿À¿° ¹°ÁúÀÌ °¨ÁöµÇ¸é Áï½Ã Á¶Ä¡¸¦ ÃëÇÒ ¼ö ÀÖ½À´Ï´Ù. À̰ÍÀº ½Å¼±ÇÑ ½Äǰ, À¯Á¦Ç°, À°·ù °¡°ø µî º´¿ø±ÕÀÇ °ËÃâÀÌ Áö¿¬µÇ¸é ¿À¿°ÀÌ ÆÛÁú ¼ö ÀÖ´Â »ê¾÷¿¡¼­ ƯÈ÷ Áß¿äÇÕ´Ï´Ù. ¶ÇÇÑ ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº °í°¨µµÀÌ¸ç ±âÁ¸ÀÇ °Ë»ç ¹æ¹ýÀ¸·Î È®ÀÎÇÒ ¼ö ¾ø¾ú´ø ¹Ì·®ÀÇ À¯ÇØ ¹°ÁúÀ» °ËÃâÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ¼Óµµ¿Í Á¤¹ÐµµÀÇ Á¶ÇÕÀº ½Äǰ Á¦Á¶¾÷ü°¡ ¾ö°ÝÇÑ ¾ÈÀü ±âÁØÀ» ÃæÁ·Çϸ鼭 »ý»ê °øÁ¤ÀÇ Áß´ÜÀ» ÃÖ¼ÒÈ­ÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù.

¶ÇÇÑ ½Äǰ Áø´Ü ½Ã½ºÅÛÀº ±ÔÁ¤ Áؼö¸¦ º¸ÀåÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ»ÇÕ´Ï´Ù. ½Äǰ ¾ÈÀü ±ÔÁ¦°¡ ¼¼°èÀÇÀûÀ¸·Î Á¡Á¡ ´õ ¾ö°ÝÇØÁü¿¡ µû¶ó ±â¾÷Àº Á¦Ç°À» ½ÃÀå¿¡ ³»³õ±â Àü¿¡ ´Ù¾çÇÑ ¿À¿°¹°ÁúÀ» °Ë»çÇØ¾ß ÇÕ´Ï´Ù. Áø´Ü ½Ã½ºÅÛÀº ¹Ì±¹ ½ÄǰÀǾ౹(FDA), À¯·´½Äǰ¾ÈÀü±â°ü(EFSA) ¹× ±âŸ ±¹Á¦±â±¸¿Í °°Àº ±ÔÁ¤ Áؼö¸¦ Áõ¸íÇÏ´Â µ¥ ÇÊ¿äÇÑ µ¥ÀÌÅ͸¦ Á¦°øÇÕ´Ï´Ù. Á¤È®ÇÏ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â °á°ú¸¦ Á¦°øÇÔÀ¸·Î½á ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ½Äǰ ȸ»ç°¡ ±ÔÁ¤ Áؼö¸¦ À¯ÁöÇÏ°í ¹ýÀû ¹®Á¦¸¦ ÇÇÇÏ°í ¼ÒºñÀÚ¿¡°Ô ¾ÈÀüÇÑ Á¦Ç°À» º¸ÀåÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù.

½Äǰ Áø´Ü ½Ã½ºÅÛÀº ½Äǰ ¾ÈÀü°ú °ø±Þ üÀÎ Åõ¸í¼ºÀÇ ¹Ì·¡¸¦ ¾î¶»°Ô Çü¼ºÇϰí Àִ°¡?

½Äǰ Áø´Ü ½Ã½ºÅÛÀº ÇöÀçÀÇ ¾ÈÀü ÇÁ·ÎÅäÄÝÀ» °­È­ÇÒ »Ó¸¸ ¾Æ´Ï¶ó ½Äǰ ¾ÈÀü °ú °ø±Þ üÀÎ Åõ¸í¼ºÀÇ ¹Ì·¡¸¦ Çü¼ºÇϰí ÀÖ½À´Ï´Ù. ½Äǰ Áø´Ü¿¡¼­ °¡Àå Áß¿äÇÑ µ¿Çâ Áß Çϳª ´Â ½Ç½Ã°£ ¸ð´ÏÅ͸µ ±â¼úÀÇ ½ÃÀÛÀÔ´Ï´Ù . ¼¾¼­¿Í ÀÚµ¿È­ÀÇ Áøº¸·Î ½ÄǰÁ¦Á¶¾÷ü´Â °¡°ø, ÆÐŰ¡, À¯Åë µîÀÇ »ý»ê°øÁ¤¿¡¼­ Áß¿äÇÑ Æ÷ÀÎÆ®¸¦ ¸ð´ÏÅ͸µÇÏ¿© ÀáÀçÀûÀÎ ¿À¿°¹°ÁúÀÌ ³ªÅ¸³ªÀÚ¸¶ÀÚ °ËÃâÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ ½Ç½Ã°£ ¸ð´ÏÅ͸µÀ» ÅëÇØ ½Å¼ÓÇÑ ´ëÀÀÀÌ °¡´ÉÇØ ¿À¿°ÀÌ ÆÛÁö´Â À§ÇèÀ» ÁÙÀÌ°í ½ÃÁ¤ Á¶Ä¡¸¦ Áï°¢ °­±¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.

½ÄǰÀÇ ¾ÈÀü¼ºÀ» Çâ»ó½Ãų »Ó¸¸ ¾Æ´Ï¶ó, Áø´Ü ½Ã½ºÅÛÀº ½Äǰ °ø±Þ üÀÎ ÀüüÀÇ ÃßÀû¼º°ú Åõ¸í¼ºÀ» ÃËÁøÇÕ´Ï´Ù. ¼ÒºñÀÚ°¡ ½ÄǰÀÇ ¿ø»êÁö¿Í ¾ÈÀü¼º¿¡ ´ëÇÑ ´õ ¸¹Àº Á¤º¸¸¦ ¿ä±¸ÇÏ´Â µ¿¾È Áø´Ü ½Ã½ºÅÛÀº ºí·ÏüÀÎ ±â¼ú ¹× ±âŸ µðÁöÅÐ ÃßÀû µµ±¸¿Í ÅëÇÕµÇ¾î ½ÄǰÀÇ ¿ÏÀüÇÑ ÃßÀû¼ºÀ» Á¦°øÇÕ´Ï´Ù. Áï ±â¾÷Àº ³óÀå¿¡¼­ ½ÄŹ¿¡ µµÂøÇÒ ¶§±îÁö Á¦Ç°ÀÇ Àüü ÇàÁ¤À» ÃßÀûÇÒ ¼ö ÀÖÀ¸¸ç µ¿½Ã¿¡ ¸ðµç ´Ü°è¿¡¼­ ¾ÈÀü±âÁØÀ» ÃæÁ·Çϰí ÀÖ´ÂÁö È®ÀÎÇÒ ¼ö ÀÖ½À´Ï´Ù. ÃßÀû¼º ½Ã½ºÅÛÀº ±â¾÷ÀÌ Á¦Ç°À» À±¸®ÀûÀ¸·Î Á¶´ÞÇϰí, ¾ÈÀüÇÑ Á¶°Ç ÇÏ¿¡¼­ »ý»êÇϰí, ¿À¿°¹°ÁúÀÌ È¥ÀÔµÇÁö ¾Ê¾Ò´ÂÁö È®ÀÎÇÏ´Â µ¥ µµ¿òÀÌ µÇ¸ç, ¼ÒºñÀÚ¿¡°Ô ±¸¸ÅÇÏ´Â ½Äǰ¿¡ ´ëÇÑ °Íº¸´Ù Å« ½Å·Ú¸¦ Á¦°øÇÕ´Ï´Ù.

½Äǰ Áø´Ü ½Ã½ºÅÛÀº ½Äǰ »ç±â ¹× ¶óº§ Ç¥½ÃÀÇ Á¤È®¼º¿¡ ´ëÀÀÇϴµ¥µµ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ½ÄǰÀÇ ¿ø»êÁö³ª ¼ººÐ¿¡ ´ëÇÑ À§ÀåÇ¥½Ã³ª ºÎÁ¤ÇÑ ÁÖÀåÀº ¼ÒºñÀÚÀÇ ½Å·Ú¸¦ ¼Õ»ó½ÃŰÁö ¾Ê°í, ƯÈ÷ À½½Ä ¾Ë·¹¸£±â³ª ½Ä»ç Á¦ÇÑÀÌ ÀÖ´Â »ç¶÷µé¿¡°Ô´Â °Ç°­»óÀÇ À§ÇèÀÌ µË´Ï´Ù. Áø´Ü ½Ã½ºÅÛÀº ¿ø·áÀÇ ÁøÁ¤¼ºÀ» È®ÀÎÇϰųª ½Å°íµÇÁö ¾ÊÀº ¾Ë·¹¸£°ÕÀÇ Á¸À縦 È®ÀÎÇÏ¿© ½Äǰ ºÒ¹ýÀ» °¨Áö ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, DNA °Ë»ç´Â Á¦Ç°¿¡ Æ÷ÇÔµÈ °í±âÀÇ À¯ÇüÀ» È®ÀÎÇÒ ¼ö ÀÖ¾î ¼ÒºñÀÚ°¡ ÇãÀ§ÀÇ Ç¥½Ã¿¡ ÀÇÇØ È¥µ¿µÇÁö ¾Êµµ·Ï ÇÕ´Ï´Ù. ¼¼°èÀÇ °ø±Þ¸Á¿¡¼­ ½Äǰ À§ÀåÀÌ Á¡Á¡ ¿ì·ÁµÇ°í ÀÖ´Â °¡¿îµ¥, Áø´Ü ½Ã½ºÅÛÀº Á¤È®ÇÏ°í °úÇÐÀû ±Ù°Å¿¡ ±Ù°ÅÇÑ °ËÁõÀ» Á¦°øÇÔÀ¸·Î½á ÀÌ·¯ÇÑ ¹®Á¦¿ÍÀÇ ½Î¿ò¿¡ °øÇåÇϰí ÀÖ½À´Ï´Ù.

¶ÇÇÑ ½Äǰ Áø´Ü ½Ã½ºÅÛÀº ¾÷°èÀÇ Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ³ë·ÂÀ» ÃËÁøÇÕ´Ï´Ù. ¿À¿°À» ¹æÁöÇÏ°í ½ÄÁßµ¶ ¹ß»ý °¡´É¼ºÀ» ÁÙÀÓÀ¸·Î½á ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ½Äǰ Æó±â¹°À» ÁÙÀ̰í Á¦Ç°ÀÇ ¾ÈÀü¼º°ú °¡¿ë¼ºÀ» Àå±â°£ À¯ÁöÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ¶ÇÇÑ ½Ç½Ã°£ ¸ð´ÏÅ͸µ ¹× Áø´Ü ±â¼úÀ» ÅëÇØ ¸®¼Ò½º¸¦ º¸´Ù È¿À²ÀûÀ¸·Î »ç¿ëÇÒ ¼ö ÀÖ¾î ¸®ÄÝ Çʿ伺À» ÁÙÀÌ°í °ø±Þ¸Á È¥¶õÀ» ÃÖ¼ÒÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ½Äǰ »ê¾÷ÀÌ Á¦Ç°ÀÇ ¾ÈÀü°ú ǰÁúÀ» È®º¸Çϸ鼭 ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÁÙÀÌ·Á°í ³ë·ÂÇÏ´Â µ¿¾È ÀÌ·¯ÇÑ Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ °ü½ÉÀº Á¡Á¡ ´õ Áß¿ä ÇØÁö°í ÀÖ½À´Ï´Ù.

½Äǰ Áø´Ü ½Ã½ºÅÛ ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

½Äǰ Áø´Ü ½Ã½ºÅÛ ½ÃÀåÀÇ ±Þ¼ºÀåÀº ½ÄǰÀÇ ¾ÈÀü¼º, ¼ÒºñÀÚÀÇ ÀǽÄ, ±â¼ú Çõ½Å µî Æø³ÐÀº µ¿ÇâÀ» ¹Ý¿µÇÏ¿© ¸î °¡Áö ÁÖ¿ä ¿äÀÎÀÌ µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. ÁÖ¿ä ÃËÁø¿äÀÎ Áß Çϳª´Â ¼±Áø±¹ ½ÃÀå°ú ½ÅÈï±¹ ½ÃÀå ¸ðµÎ¿¡¼­ ½Äǰ ¾ÈÀü¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ ÇÏ´Â °ÍÀÔ´Ï´Ù. ¼ÒºñÀÚ°¡ ½ÄÁßµ¶ ¹× ¿À¿°µÈ Á¦Ç°°ú °ü·ÃµÈ À§ÇèÀ» ´õ¿í °­·ÂÇÏ°Ô ÀνÄÇÒ ¼ö ÀÖ°Ô µÇ¸é¼­ ½Äǰ Á¦Á¶¾÷ü°¡ Á¦Ç°ÀÇ ÃÖ»óÀÇ ¾ÈÀü ±âÁØÀ» ÃæÁ·ÇÒ ¼ö ÀÖµµ·Ï ÇÏ´Â ¾Ð·ÂÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. º¸´Ù ¾ÈÀüÇÑ ½ÄǰÀ» ã´Â ÀÌ ¿ä±¸´Â ½Äǰ¿¡¼­ ¿À¿°¹°Áú, ¾Ë·¹¸£°Õ, º´¿øÃ¼¸¦ ½Å¼ÓÇϰí Á¤È®ÇÏ°Ô °ËÃâÇÒ ¼ö ÀÖ´Â Áøº¸µÈ Áø´Ü ½Ã½ºÅÛÀÇ µµÀÔÀ» ±â¾÷¿¡ Ã˱¸ÇÕ´Ï´Ù.

½Äǰ Áø´Ü ½Ã½ºÅÛ ½ÃÀåÀÇ ¼ºÀå¿¡ ±â¿©ÇÏ´Â ¶Ç ´Ù¸¥ Áß¿äÇÑ ¿ä¼Ò ´Â ¼¼°èÀÇ ½Äǰ ¹«¿ªÀÇ Áõ°¡ÀÔ´Ï´Ù. ½Äǰ °ø±Þ üÀÎÀÌ ±¹Á¦È­µÊ¿¡ µû¶ó ¿©·¯ °ø±Þ¾÷ü, °¡°ø¾÷ÀÚ ¹× À¯Åë¾÷ü°¡ Âü¿©ÇϹǷΠ¿À¿° À§ÇèÀÌ Áõ°¡ÇÕ´Ï´Ù. Áø´Ü ½Ã½ºÅÛÀº ÀÌ·¯ÇÑ º¹ÀâÇÑ °ø±Þ¸ÁÀ» Åë°úÇÏ´Â ½ÄǰÀÇ ¾ÈÀü¼ºÀ» º¸ÀåÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÏ¸ç ±â¾÷ÀÌ ´Ù¾çÇÑ ±¹°¡ ¹× Áö¿ªÀÇ ´Ù¾çÇÑ ¾ÈÀü ¿ä±¸ »çÇ×À» ÃæÁ·ÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ¼¼°èÀÇ ¹«¿ªÀÇ È®´ë°¡ °è¼ÓµÇ¸é °ß°íÇÑ ½Äǰ Áø´ÜÀÇ Çʿ伺ÀÌ ³ô¾ÆÁö°í ÀÌ·¯ÇÑ ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ°¡ ´õ¿í ÃËÁøµË´Ï´Ù.

½Äǰ¾ÈÀü±ÔÁ¦ÀÇ °­È­µµ Áø´Ü ½Ã½ºÅÛÀÇ Ã¤¿ë¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ¼¼°èÀÇ ±ÔÁ¦ ±â°üÀÌ ½Äǰ °Ë»ç¿¡ ´ëÇÑ º¸´Ù ¾ö°ÝÇÑ ÁöħÀ» µµÀÔÇϰí ÀÖÀ¸¸ç, ±â¾÷Àº ÀÚ»ç Á¦Ç°¿¡ ´ëÇÑ ±¤¹üÀ§ÇÑ ¿À¿° ¹°ÁúÀ» ¸ð´ÏÅ͸µÇÒ Àǹ«°¡ ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±ÔÁ¤À» ÁؼöÇϱâ À§Çؼ­´Â Á¦Ç°ÀÌ ½ÃÀå¿¡ ³ª°¡±â Àü¿¡ ÀáÀçÀû À§ÇèÀ» °¨ÁöÇÒ ¼ö ÀÖ´Â ½Å·Ú¼º ÀÖ°í È¿À²ÀûÀÎ Áø´Ü ½Ã½ºÅÛÀÌ ÇÊ¿äÇÕ´Ï´Ù. ¿¹¸¦ µé¾î ¹Ì±¹¿¡¼­´Â ½Äǰ¾ÈÀü±Ù´ëÈ­¹ý(FSMA)ÀÌ ½ÃÇàµÇ°í À¯·´¿¡¼­µµ À¯»çÇÑ ±ÔÁ¦°¡ ½ÃÇàµÊ¿¡ µû¶ó ½Å¼ÓÇϰí Á¤È®ÇÑ °Ë»ç ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ±ÔÁ¦°¡ °è¼Ó ¹ßÀüÇÔ¿¡ µû¶ó ½Äǰ Áø´Ü ½Ã½ºÅÛÀº ÄÄÇöóÀ̾𽺸¦ º¸ÀåÇÏ°í °øÁß º¸°ÇÀ» º¸È£ÇÏ´Â µ¥ Áß¿äÇÑ µµ±¸°¡ µÉ °ÍÀÔ´Ï´Ù.

¸¶Áö¸·À¸·Î Áø´Ü ½Ã½ºÅÛÀÇ ±â¼úÀû Áøº¸°¡ ½Äǰ °Ë»ç ´É·ÂÀ» È®´ëÇϰí ÀÖ½À´Ï´Ù. ºÐÀÚÁø´ÜÇÐ, ¹ÙÀÌ¿À¼¾¼­, Â÷¼¼´ë ½ÃÄö¼­ÀÇ ±â¼ú Çõ½ÅÀ» ÅëÇØ º¸´Ù ±¤¹üÀ§ÇÑ ¿À¿°¹°ÁúÀ» º¸´Ù Á¤È®ÇÏ°í ½Å¼ÓÇÏ°Ô °ËÃâÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ ±â¼úÀº ¶ÇÇÑ ÇÕ¸®ÀûÀÎ °¡°ÝÀ¸·Î ÀÌ¿ëÇϱ⠽±°í ¼Ò±Ô¸ð ½Äǰ Á¦Á¶¾÷üµµ °í±Þ °Ë»ç ¹æ¹ýÀ» äÅà ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÚµ¿È­¿Í µðÁöÅÐ ±â¼úÀº Áø´Ü ÇÁ·Î¼¼½º¸¦ °£¼ÒÈ­Çϰí ÀÎÀû ½Ç¼ö¸¦ ÁÙ¿© È¿À²¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù. ÀÌ·¯ÇÑ Çõ½ÅÀÌ ½Äǰ¾ÈÀüÀÇ ¹Ì·¡¸¦ Çü¼ºÇϰí ÀÖ´Â °¡¿îµ¥ ÃÖ÷´Ü Áø´Ü½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä´Â °è¼Ó ³ô¾ÆÁ® ½ÄǰÀÇ ¾ÈÀü¼º, ǰÁú, ¾÷°è±âÁØ¿¡ÀÇ ÀûÇÕÀÌ È®º¸µË´Ï´Ù.

Á¶»ç ´ë»ó ±â¾÷ ¿¹(Àü 58°Ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

BJH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Food Diagnostics Systems Market to Reach US$30.2 Billion by 2030

The global market for Food Diagnostics Systems estimated at US$20.3 Billion in the year 2023, is expected to reach US$30.2 Billion by 2030, growing at a CAGR of 5.8% over the analysis period 2023-2030. Food Diagnostics Systems, one of the segments analyzed in the report, is expected to record a 6.1% CAGR and reach US$21.0 Billion by the end of the analysis period. Growth in the Food Diagnostics Test Kits segment is estimated at 5.3% CAGR over the analysis period.

The U.S. Market is Estimated at US$5.5 Billion While China is Forecast to Grow at 5.4% CAGR

The Food Diagnostics Systems market in the U.S. is estimated at US$5.5 Billion in the year 2023. China, the world's second largest economy, is forecast to reach a projected market size of US$4.7 Billion by the year 2030 trailing a CAGR of 5.4% over the analysis period 2023-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 5.5% and 4.6% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 4.8% CAGR.

Global Food Diagnostics Systems Market - Key Trends and Drivers Summarized

Why Are Food Diagnostic Systems Revolutionizing Safety and Quality Control in the Food Industry?

Food diagnostic systems are transforming how food safety and quality are managed, but why have they become so vital in today’s global food industry? Food diagnostic systems encompass a range of technologies used to detect contaminants, pathogens, allergens, and other harmful substances in food products. These systems are critical in ensuring that food meets safety and quality standards set by regulatory bodies and consumers alike. Food diagnostics help prevent foodborne illnesses, identify contamination at various stages of production, and ensure that food products are accurately labeled and free from harmful substances, such as pesticides or additives.

One of the primary reasons food diagnostic systems are revolutionizing the industry is their ability to improve food safety and traceability. As global food supply chains become more complex, the risk of contamination and foodborne outbreaks increases. Diagnostic systems provide real-time or near-real-time testing solutions that allow food manufacturers and regulatory agencies to detect contaminants early in the production process, reducing the risk of unsafe products reaching consumers. This proactive approach to food safety not only protects public health but also helps companies avoid costly recalls and damage to their reputation. With increasing consumer demand for transparency and safety, the importance of reliable food diagnostic systems has never been greater.

How Do Food Diagnostic Systems Work, and What Makes Them So Effective?

Food diagnostic systems are essential in safeguarding food safety, but how do they work, and what makes them so effective in detecting contaminants and ensuring product quality? These systems rely on a variety of methods, including molecular diagnostics, immunoassays, biosensors, and chromatography, to identify the presence of pathogens, allergens, toxins, or chemical residues. For instance, polymerase chain reaction (PCR) testing is widely used to detect microbial contamination by amplifying the DNA of bacteria or viruses, allowing for precise identification of harmful microorganisms such as Salmonella, E. coli, or Listeria. Similarly, immunoassays use antibodies to detect specific allergens, such as gluten or nuts, ensuring that food products are safe for people with allergies.

What makes food diagnostic systems so effective is their speed, accuracy, and sensitivity. Many modern diagnostic systems provide rapid results, often within hours or even minutes, enabling food producers to take immediate action if a contaminant is detected. This is particularly important in industries such as fresh produce, dairy, or meat processing, where delays in detecting pathogens can lead to widespread contamination. These systems are also highly sensitive, capable of detecting trace amounts of harmful substances that would be impossible to identify with traditional testing methods. This combination of speed and precision helps food manufacturers meet stringent safety standards while minimizing disruptions to the production process.

Additionally, food diagnostic systems play a crucial role in ensuring regulatory compliance. As food safety regulations become increasingly strict around the world, companies are required to test their products for a wide range of contaminants before they reach the market. Diagnostic systems provide the data needed to demonstrate compliance with regulations from bodies like the U.S. Food and Drug Administration (FDA), the European Food Safety Authority (EFSA), and other international agencies. By providing accurate, reliable results, these systems help food companies maintain compliance, avoid legal issues, and ensure that their products are safe for consumers.

How Are Food Diagnostic Systems Shaping the Future of Food Safety and Supply Chain Transparency?

Food diagnostic systems are not only enhancing current safety protocols—they are also shaping the future of food safety and supply chain transparency. One of the most significant trends in food diagnostics is the rise of real-time monitoring technologies. With advancements in sensors and automation, food manufacturers can now monitor critical points in the production process, such as during processing, packaging, or distribution, to detect potential contaminants as soon as they appear. This real-time monitoring allows for rapid responses, reducing the risk of contamination spreading and ensuring that corrective actions can be taken immediately.

In addition to improving food safety, diagnostic systems are driving traceability and transparency across the food supply chain. As consumers demand more information about the origins and safety of their food, diagnostic systems are being integrated with blockchain technology and other digital tracking tools to provide full traceability of food products. This means that companies can track the entire journey of a product, from the farm to the table, while ensuring that it meets safety standards at every step. Traceability systems help companies verify that their products are sourced ethically, produced under safe conditions, and free from contaminants, offering consumers greater confidence in the food they purchase.

Food diagnostic systems are also playing a critical role in addressing food fraud and labeling accuracy. Mislabeling and fraudulent claims about the origin or composition of food products can undermine consumer trust and pose health risks, particularly for people with food allergies or dietary restrictions. Diagnostic systems can detect food fraud by verifying the authenticity of ingredients or identifying the presence of undeclared allergens. For instance, DNA testing can confirm the species of meat in a product, ensuring that consumers are not misled by false labeling. As food fraud becomes a growing concern in global supply chains, diagnostic systems are helping to combat these issues by providing accurate, science-based verification.

Moreover, food diagnostic systems are advancing sustainability efforts in the industry. By preventing contamination and reducing the likelihood of foodborne outbreaks, these systems help reduce food waste, ensuring that products remain safe and usable for longer periods. In addition, real-time monitoring and diagnostic technologies allow for more efficient use of resources, reducing the need for recalls and minimizing disruptions to the supply chain. This focus on sustainability is increasingly important as the food industry seeks to reduce its environmental impact while ensuring the safety and quality of its products.

What Factors Are Driving the Growth of the Food Diagnostic Systems Market?

Several key factors are driving the rapid growth of the food diagnostic systems market, reflecting broader trends in food safety, consumer awareness, and technological innovation. One of the primary drivers is the increasing demand for food safety in both developed and developing markets. As consumers become more aware of foodborne illnesses and the risks associated with contaminated products, there is growing pressure on food manufacturers to ensure that their products meet the highest safety standards. This demand for safer food is pushing companies to adopt advanced diagnostic systems that can quickly and accurately detect contaminants, allergens, and pathogens in food.

Another significant factor contributing to the growth of the food diagnostic systems market is the rise in global food trade. As food supply chains become more international, the risk of contamination increases due to the involvement of multiple suppliers, processors, and distributors. Diagnostic systems play a crucial role in ensuring that food products are safe as they move through these complex supply chains, helping companies meet the diverse safety requirements of different countries and regions. As global trade continues to expand, the need for robust food diagnostics will grow, driving further investment in these technologies.

The tightening of food safety regulations is also fueling the adoption of diagnostic systems. Regulatory bodies around the world are implementing stricter guidelines for food testing, making it mandatory for companies to monitor their products for a wide range of contaminants. Compliance with these regulations requires reliable and efficient diagnostic systems that can detect potential hazards before products reach the market. For example, the implementation of the Food Safety Modernization Act (FSMA) in the U.S. and similar regulations in Europe has increased the demand for rapid and accurate testing solutions. As regulations continue to evolve, food diagnostic systems will remain a critical tool in ensuring compliance and protecting public health.

Finally, technological advancements in diagnostic systems are expanding the capabilities of food testing. Innovations in molecular diagnostics, biosensors, and next-generation sequencing are making it possible to detect a broader range of contaminants with greater accuracy and speed. These technologies are also becoming more affordable and accessible, allowing smaller food producers to adopt advanced testing methods. Additionally, automation and digital technologies are streamlining the diagnostic process, reducing human error and improving efficiency. As these innovations continue to shape the future of food safety, the demand for cutting-edge diagnostic systems will continue to rise, ensuring that food products are safe, high-quality, and compliant with industry standards.

Select Competitors (Total 58 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â