¼¼°èÀÇ µö·¯´× ½ÃÀå
Deep Learning
»óǰÄÚµå : 1544083
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2024³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 292 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,009,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,027,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ µö·¯´× ½ÃÀåÀº 2030³â±îÁö 3,604¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2023³â¿¡ 505¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ µö·¯´× ½ÃÀåÀº 2023-2030³â CAGR 32.4%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 3,604¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ µö·¯´× ¼ÒÇÁÆ®¿þ¾î´Â CAGR 31.7%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 2,000¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. µö·¯´× ¼­ºñ½º ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 34.9%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 137¾ï ´Þ·¯, Áß±¹Àº CAGR 30.8%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ µö·¯´× ½ÃÀåÀº 2023³â¿¡ 137¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 531¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2023-2030³â CAGRÀº 30.8%ÀÔ´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 29.0%¿Í 27.6%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 22.2%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ µö·¯´× ½ÃÀå µ¿Çâ°ú ÃËÁø¿äÀÎ

µö·¯´×À̶õ ¹«¾ùÀ̸ç, ±â¼úÀû Àü¸ÁÀ» ¾î¶»°Ô Çü¼ºÇϰí Àִ°¡?

±â°èÇнÀÀÇ ºÎºÐÁýÇÕÀÎ µö·¯´×Àº Àΰø½Å°æ¸ÁÀ̶ó°í ºÒ¸®´Â ³úÀÇ ±¸Á¶¿Í ±â´É¿¡¼­ ¿µ°¨À» ¹ÞÀº ¾Ë°í¸®Áò¿¡ ÀÇÁ¸ÇÕ´Ï´Ù. ÆÐÅÏÀ» ÀνÄÇϰí, µ¥ÀÌÅ͸¦ ÇØ¼®Çϰí, ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖµµ·Ï ¼³°èµÈ µö·¯´×Àº ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ AI ´É·ÂÀ» ¹ßÀü½ÃŰ´Â ÃÖÀü¼±¿¡ ÀÖ½À´Ï´Ù. µö·¯´× ¾Ë°í¸®ÁòÀº ¸í½ÃÀûÀÎ Áö½Ã¿¡ µû¶ó ÀÛ¾÷À» ¿Ï·áÇÏ´Â ±âÁ¸ ÇÁ·Î±×·¡¹Ö°ú ´Þ¸® ÄÄÇ»ÅͰ¡ µ¥ÀÌÅͷκÎÅÍ ÇнÀÇÏ°í ½Ã°£ÀÌ Áö³²¿¡ µû¶ó Á¤È®µµ¸¦ Çâ»ó½Ãų ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Á¢±Ù ¹æ½ÄÀº À½¼º ÀνÄ, À̹ÌÁö ºÐ¼®, ¿¹Ãø ºÐ¼®°ú °°Àº º¹ÀâÇÑ ÀÛ¾÷¿¡¼­ ȹ±âÀûÀÎ ¹ßÀüÀ» ÀÌ·ç´Âµ¥ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. µö·¯´×Àº Àΰ£ÀÇ °³ÀÔÀ» ÃÖ¼ÒÈ­Çϸ鼭 ¹æ´ëÇÑ ¾çÀÇ µ¥ÀÌÅ͸¦ ó¸®ÇÏ°í ºÐ¼®ÇÒ ¼ö ÀÖÀ¸¹Ç·Î ÀÚµ¿È­¸¦ °­È­Çϰí, È¿À²¼ºÀ» ³ôÀ̰í, »õ·Î¿î ´É·ÂÀ» À̲ø¾î³¿À¸·Î½á »ê¾÷À» º¯È­½Ã۰í ÀÖ½À´Ï´Ù.

¿Ö µö·¯´×ÀÌ ÀΰøÁö´ÉÀÇ Çõ¸íÀ̶ó°í ºÒ¸®´Â°¡?

µö·¯´×ÀÌ AI¿¡ ¹ÌÄ¡´Â ¿µÇâÀº ¸Å¿ì Å©¸ç, °ú°Å °íÀüÀû ¾Ë°í¸®ÁòÀ¸·Î´Â ±Øº¹ÇÒ ¼ö ¾ø´Ù°í ¿©°ÜÁ³´ø ¹®Á¦¸¦ ÇØ°áÇϰí Àֱ⠶§¹®ÀÔ´Ï´Ù. µö·¯´×ÀÇ ÇÙ½ÉÀº ¿¹Ãø ºÐ¼®À» ÀÚµ¿È­ÇÏ°í ´õ ºü¸£°í Á¤È®ÇÏ°Ô ¸¸µå´Â °ÍÀÔ´Ï´Ù. ¾ð¾î ¹ø¿ª, Áúº´ Áø´Ü, ÀÚÀ²ÁÖÇàÂ÷ ¿îÀü µî º¹ÀâÇÑ ÆÐÅÏ ÀνÄÀÌ Áß¿äÇÑ È¯°æ¿¡¼­ ±× À§·ÂÀ» ¹ßÈÖÇÕ´Ï´Ù. µö·¯´× ¸ðµ¨ÀÇ °¢ ·¹À̾ ´ëÇÑ ÀÌÇØ°¡ ±í¾îÁú¼ö·Ï ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº Àΰ£ÀÇ Á÷°ü¿¡ °¡±î¿î Á¤È®µµ·Î µ¥ÀÌÅ͸¦ ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ±× °á°ú, µö·¯´× ±â¹Ý ±â¼úÀº ´Ü¼øÈ÷ ´Ü°èÀûÀ¸·Î Çâ»óµÇ´Â °ÍÀÌ ¾Æ´Ï¶ó, ÀÌÀü¿¡´Â Á¢±ÙÇϱ⠾î·Á¿ü´ø ´Ù¾çÇÑ ¿ëµµ¿¡ Àû¿ëµÉ ¼ö ÀÖ´Â ´É·ÂÀ» ºñ¾àÀûÀ¸·Î Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù.

µö·¯´× µµÀÔÀÇ °úÁ¦¿Í ÇѰè´Â?

µö·¯´×Àº ±× ÀáÀç·Â¿¡µµ ºÒ±¸Çϰí ÇØ°áÇØ¾ß ÇÒ Å« °úÁ¦¿Í ÇѰ谡 ÀÖ½À´Ï´Ù. ÁÖ¿ä °úÁ¦ Áß Çϳª´Â µö·¯´× ¸ðµ¨À» È¿°úÀûÀ¸·Î ÇнÀ½Ã۱â À§Çؼ­´Â ´ë·®ÀÇ ¶óº§¸µµÈ µ¥ÀÌÅͰ¡ ÇÊ¿äÇÏ´Ù´Â Á¡ÀÔ´Ï´Ù. ÀÌ µ¥ÀÌÅ͸¦ ¼öÁýÇÏ°í ¶óº§¸µÇÏ´Â °ÍÀº ÀÚ¿ø Áý¾àÀûÀÌ°í ºñ¿ëÀÌ ¸¹ÀÌ µì´Ï´Ù. ¶ÇÇÑ µö·¯´× ¸ðµ¨Àº ÀÇ»ç°áÁ¤ °úÁ¤ÀÌ ºÒÅõ¸íÇϹǷΠ'ºí·¢¹Ú½º'·Î Ç¥ÇöµÇ´Â °æ¿ì°¡ ¸¹À¸¸ç, ÀÇ»ç°áÁ¤ÀÌ ¾î¶»°Ô ÀÌ·ç¾îÁ³´ÂÁö ÇØ¼®ÇÏ±â ¾î·Æ½À´Ï´Ù. ÀÌ·¯ÇÑ Åõ¸í¼º ºÎÁ·Àº ÀÇ·á Áø´ÜÀ̳ª »ç¹ýÀû ÀÇ»ç°áÁ¤°ú °°ÀÌ ÀÇ»ç°áÁ¤ÀÇ ±Ù°Å¸¦ ÀÌÇØÇÏ´Â °ÍÀÌ Áß¿äÇÑ ¿ëµµ¿¡¼­ ¹®Á¦°¡ µÉ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ µö·¯´×Àº ƯÈ÷ º¹ÀâÇÑ ¸ðµ¨À» ÈÆ·Ã½Ã۱â À§ÇØ »ó´çÇÑ ÄÄÇ»ÆÃ ÆÄ¿ö¸¦ ÇÊ¿ä·Î ÇϹǷΠ¿¡³ÊÁö ¼Òºñ°¡ Áõ°¡ÇÏ°í ¿î¿µ ºñ¿ëÀÌ »ó½ÂÇÒ ¼ö ÀÖ½À´Ï´Ù.

µö·¯´× ½ÃÀåÀÇ ¼ºÀå µ¿·ÂÀº?

µö·¯´× ½ÃÀåÀÇ ¼ºÀåÀº µö·¯´× ¾Ë°í¸®ÁòÀÇ ¿ø·á°¡ µÇ´Â µðÁöÅÐ ±â±â¿¡¼­ »ý¼ºµÇ´Â µ¥ÀÌÅÍÀÇ ±Þ°ÝÇÑ Áõ°¡ µî ¿©·¯ °¡Áö ¿äÀο¡ ±âÀÎÇÕ´Ï´Ù. »ê¾÷ÀÌ µðÁöÅÐÈ­µÊ¿¡ µû¶ó ÀÌ·¯ÇÑ µ¥ÀÌÅÍ¿¡ ´ëÇÑ ÀλçÀÌÆ®À» Á¦°øÇÒ ¼ö ÀÖ´Â AI ±â´É¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, GPU ¹× TPU¿Í °°Àº Ư¼ö Çϵå¿þ¾î¿Í °°Àº ó¸® ´É·ÂÀÇ ±â¼úÀû ¹ßÀüÀº ¸ðµ¨ ÇнÀ¿¡ ¼Ò¿äµÇ´Â ½Ã°£°ú ºñ¿ëÀ» ÁÙ¿© µö·¯´×À» º¸´Ù ½±°Ô »ç¿ëÇÒ ¼ö ÀÖµµ·Ï Çϰí ÀÖ½À´Ï´Ù. º¸´Ù Ä£¼÷ÇÏ°Ô ´Ù°¡¿À°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÇコÄɾî, ÀÚµ¿Â÷, ±ÝÀ¶, ¼Ò¸Å µî ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ AI ¿ëµµÀÌ µµÀԵǰí ÀÖÀ¸¸ç, °³ÀÎÈ­µÈ ÀÇ·á, ÀÚÀ²ÁÖÇà, ÀÚµ¿ À繫 ¼³°è, °³ÀÎÈ­µÈ ¼îÇÎ °æÇè µî Çõ½ÅÀûÀÎ ¼Ö·ç¼Ç¿¡ µö·¯´×ÀÌ È°¿ëµÇ°í ÀÖ½À´Ï´Ù. ¸¶Áö¸·À¸·Î AI ¿¬±¸¿Í ½ºÅ¸Æ®¾÷¿¡ ´ëÇÑ °ø°ø ¹× ¹Î°£ ºÎ¹®ÀÇ ÅõÀÚ Áõ°¡´Â µö·¯´× ±â¼úÀÇ Çõ½Å°ú È®»êÀ» ÃËÁøÇÏ°í ½ÃÀåÀÇ Áö¼ÓÀûÀÎ ¼ºÀå°ú º¯È­¸¦ º¸ÀåÇϰí ÀÖ½À´Ï´Ù.

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹(ÁÖ¸ñ ÇÕ°è 234»ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Deep Learning Market to Reach US$360.4 Billion by 2030

The global market for Deep Learning estimated at US$50.5 Billion in the year 2023, is expected to reach US$360.4 Billion by 2030, growing at a CAGR of 32.4% over the analysis period 2023-2030. Deep Learning Software, one of the segments analyzed in the report, is expected to record a 31.7% CAGR and reach US$200.0 Billion by the end of the analysis period. Growth in the Deep Learning Services segment is estimated at 34.9% CAGR over the analysis period.

The U.S. Market is Estimated at US$13.7 Billion While China is Forecast to Grow at 30.8% CAGR

The Deep Learning market in the U.S. is estimated at US$13.7 Billion in the year 2023. China, the world's second largest economy, is forecast to reach a projected market size of US$53.1 Billion by the year 2030 trailing a CAGR of 30.8% over the analysis period 2023-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 29.0% and 27.6% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 22.2% CAGR.

Global Deep Learning Market - Key Trends and Drivers Summarized

What Is Deep Learning and How Does It Shape Our Technological Landscape?

Deep learning, a subset of machine learning, relies on algorithms inspired by the structure and function of the brain called artificial neural networks. Designed to recognize patterns, interpret data, and make decisions, deep learning is at the forefront of advancing AI capabilities across various sectors. Unlike traditional programming, where tasks are completed according to explicit instructions, deep learning algorithms enable computers to learn from data, improving their accuracy over time. This approach has been pivotal in achieving significant breakthroughs in complex tasks such as speech recognition, image analysis, and predictive analytics. The ability of deep learning to process and analyze vast quantities of data with minimal human intervention is transforming industries by enhancing automation, increasing efficiency, and unlocking new capabilities.

Why Is Deep Learning Considered a Revolution in Artificial Intelligence?

Deep learning's impact on AI is profound because it solves problems that were once considered insurmountable with classical algorithms. At its core, deep learning automates predictive analytics, making it faster and more accurate. It excels in environments where the recognition of complex patterns is crucial, such as translating languages, diagnosing medical conditions, and driving autonomous vehicles. Each layer of a deep learning model builds an increased understanding, allowing these systems to make sense of data with a level of precision that mimics human intuition. As a result, technologies powered by deep learning are not just incrementally better; they are exponentially more capable, opening up a range of applications that were previously out of reach.

What Are the Challenges and Limitations of Implementing Deep Learning?

Despite its potential, deep learning comes with significant challenges and limitations that must be addressed. One of the main issues is the requirement for large amounts of labeled data to train deep learning models effectively. Acquiring and labeling this data can be resource-intensive and expensive. Additionally, deep learning models are often described as "black boxes" because their decision-making processes can be opaque, making it difficult to interpret how decisions are made. This lack of transparency can be problematic in applications where understanding the rationale behind decisions is critical, such as in medical diagnostics or judicial decision-making. Moreover, deep learning requires substantial computational power, particularly for training complex models, which can lead to increased energy consumption and higher operational costs.

What Drives the Growth in the Deep Learning Market?

The growth in the deep learning market is driven by several factors, including the exponential increase in data generated by digital devices, which provides the raw material for deep learning algorithms. As industries continue to digitize their operations, the demand for AI capabilities that can provide insights into this data is increasing. Technological advancements in processing power, such as GPUs and specialized hardware like TPUs, are also making deep learning more accessible by reducing the time and cost associated with training models. Additionally, there is growing adoption of AI applications across various sectors, including healthcare, automotive, finance, and retail, which rely on deep learning for innovative solutions such as personalized medicine, autonomous driving, automated financial advisors, and personalized shopping experiences. Finally, the increasing investment from both public and private sectors in AI research and startups is fueling innovation and deployment of deep learning technologies, ensuring continued growth and transformation of the market.

Select Competitors (Total 234 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â