¼¼°èÀÇ ¿£Áö´Ï¾î¸µ ÇÃ¶ó½ºÆ½ ½ÃÀå
Engineering Plastics
»óǰÄÚµå : 1528005
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2024³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 308 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,387,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 25,161,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¿£Áö´Ï¾î¸µ ÇÃ¶ó½ºÆ½ ½ÃÀåÀº 2030³â±îÁö 2,489¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸ÁÀÔ´Ï´Ù.

2023³â¿¡ 1,579¾ï ´Þ·¯·Î ÃßÁ¤µÈ ¿£Áö´Ï¾î¸µ ÇÃ¶ó½ºÆ½ ½ÃÀåÀº 2030³â¿¡´Â 2,489¾ï ´Þ·¯¿¡ À̸¦ Àü¸ÁÀÌ°í ¿¹Ãø ±â°£ µ¿¾È º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)Àº 6.7%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ¾ÆÅ©¸±·Î´ÏÆ®¸±-ºÎŸµð¿£-½ºÆ¼·»(ABS)Àº º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 7.0%·Î ¼ºÀåÀ» Áö¼ÓÇÏ¿© ºÐ¼® ±â°£ Á¾·á ½Ã 936¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Æú¸®¾Æ¹Ìµå ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 6.2%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 417¾ï ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 10.0%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¹Ì±¹ ¿£Áö´Ï¾î¸µ ÇÃ¶ó½ºÆ½ ½ÃÀåÀº 2023³â 417¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 583¾ï ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ¿¹Ãø ±â°£ µ¿¾È º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)Àº 10.0%ÀÔ´Ï´Ù. ´Ù¸¥ ÁÖ¸ñÇÒ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)Àº °¢°¢ 3.6%¿Í 6.1%·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 4.2%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°è ¿£Áö´Ï¾î¸µ ÇÃ¶ó½ºÆ½ ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ ¿ä¾à

¿£Áö´Ï¾î¸µ ÇÃ¶ó½ºÆ½À̶õ ¹«¾ùÀ̸ç, ¾î¶»°Ô Çö´ë »ê¾÷À» Çü¼ºÇϰí Àִ°¡?

¿£Áö´Ï¾î¸µ ÇÃ¶ó½ºÆ½Àº ¹ü¿ë ÇÃ¶ó½ºÆ½¿¡ ºñÇØ °­µµ, ¿­¾ÈÁ¤¼º, ³»¾àǰ¼ºÀÌ ¿ì¼öÇϱ⠶§¹®¿¡ °í¼º´É ¿ëµµ¿¡ »ç¿ëµÇ´Â ÇÃ¶ó½ºÆ½ÀÇ ÀÏÁ¾ÀÔ´Ï´Ù. ÀϹÝÀûÀÎ ÇÃ¶ó½ºÆ½°ú ´Þ¸® ¿£Áö´Ï¾î¸µ ÇÃ¶ó½ºÆ½Àº °¡È¤ÇÑ È¯°æ°ú ±â°èÀû ½ºÆ®·¹½º¸¦ °ßµô ¼ö Àֱ⠶§¹®¿¡ ÀÚµ¿Â÷, Ç×°ø¿ìÁÖ, ÀüÀÚ Àåºñ, »ê¾÷±â°è µî¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. ¿£Áö´Ï¾î¸µ ÇÃ¶ó½ºÆ½ÀÇ ÀϹÝÀûÀÎ À¯ÇüÀ¸·Î´Â Æú¸®¾Æ¹Ìµå(³ªÀÏ·Ð), Æú¸®Ä«º¸³×ÀÌÆ®, Æú¸®¾Æ¼¼Å», ¿­°¡¼Ò¼º Æú¸®¿¡½ºÅ׸£ µîÀÌ ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Àç·á´Â °í¿Â, °íÇÏÁß, Àå½Ã°£ È­Çй°Áú¿¡ ³ëÃâ½Ã ¹«°á¼ºÀ» À¯ÁöÇÏ´Â ´É·ÂÀÌ Æ¯Â¡ÀÔ´Ï´Ù. ¶ÇÇÑ »çÃâ ¼ºÇü, CNC ±â°è °¡°ø, 3D ÇÁ¸°ÆÃ µîÀÇ Á¦Á¶ °øÁ¤¿¡¼­ ¹ü¿ë¼ºÀÌ Àֱ⠶§¹®¿¡ º¹ÀâÇÑ Çü»ó°ú °íÁ¤¹ÐµµÀÇ ºÎǰÀ» ¸¸µé ¼ö ÀÖ½À´Ï´Ù.

±â¼úÀÇ Áøº¸´Â ¿£Áö´Ï¾î¸µ ÇÃ¶ó½ºÆ½ÀÇ Æ¯¼º°ú ¿ëµµ¸¦ ¾î¶»°Ô Çâ»ó½ÃÄ״°¡?

ÃÖ±Ù ±â¼úÀÇ Áøº¸·Î ¿£Áö´Ï¾î¸µ ÇÃ¶ó½ºÆ½ÀÇ Æ¯¼ºÀÌ Å©°Ô Çâ»óµÇ¾î ´Ù¾çÇÑ ÇÏÀÌÅ×Å© ÀÀ¿ë ºÐ¾ß¿¡ ÇʼöÀûÀÔ´Ï´Ù. Æú¸®¸Ó °úÇÐÀÇ Çõ½ÅÀº ³»¿­¼º, ±â°èÀû °­µµ ¹× ±¤ÇÐ Åõ¸í¼ºÀÇ Çâ»óÀ» º¸¿©ÁÖ´Â ºí·»µå¿Í º¹ÇÕüÀÇ °³¹ß·Î À̾îÁ³½À´Ï´Ù. ¿¹¸¦ µé¾î, À¯¸® ¼¶À¯ ¹× ź¼Ò¼¶À¯¿Í °°Àº ¼¶À¯ °­È­ÀÇ µµÀÔÀº ÀϺΠ±Ý¼Óº¸´Ù ÈξÀ °¡º±°í °­µµ°¡ ³ôÀº Àç·á¸¦ »ý»êÇϸç, ÀÌ´Â Ç×°ø¿ìÁÖ ¹× ÀÚµ¿Â÷ ºÐ¾ß¿¡¼­ ¸Å¿ì Áß¿äÇÑ Æ¯¼ºÀ̵Ǿú½À´Ï´Ù. ¶ÇÇÑ Additive ManufacturingÀÇ ¹ßÀüÀ¸·Î ¿£Áö´Ï¾î¸µ ÇÃ¶ó½ºÆ½À» »ç¿ëÇÏ¿© ºÎǰÀ» Á÷Á¢ ÀμâÇÒ ¼ö ÀÖ¾î ±âÁ¸ Á¦Á¶ ¹æ¹ý°ú °ü·ÃµÈ ½Ã°£°ú ºñ¿ëÀ» Àý°¨ÇÏ¿© ÇÁ·ÎÅäŸÀÔ °³¹ß ´Ü°è¿¡ Çõ¸íÀ» °¡Á®¿Ã ¼ö ÀÖ½À´Ï´Ù. Çß½À´Ï´Ù.

¿£Áö´Ï¾î¸µ ÇÃ¶ó½ºÆ½ÀÇ »ç¿ëÀº Áö¼Ó°¡´É¼º°ú ȯ°æº¸Àü¿¡ ¾î¶² ¿µÇâÀ» ¹ÌÄ¡´Â°¡?

¿£Áö´Ï¾î¸µ ÇÃ¶ó½ºÆ½ÀÇ »ç¿ëÀº ȯ°æ º¸Àü°ú Áö¼Ó°¡´É¼º¿¡µµ Å« ¿ªÇÒÀ» ÇÕ´Ï´Ù. ¿£Áö´Ï¾î¸µ ÇÃ¶ó½ºÆ½ ¼ÒÀç´Â ÀçȰ¿ëÀÌ °¡´ÉÇϰí Á¦Á¶ ¹× Æó±â½Ã ȯ°æ ºÎÇϰ¡ Àûµµ·Ï ¼³°èµÇ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ¿¹¸¦ µé¾î, ¹ÙÀÌ¿À ¿£Áö´Ï¾î¸µ ÇÃ¶ó½ºÆ½Àº Àç»ý°¡´ÉÇÑ ÀÚ¿øÀ¸·Î °³¹ßµÇ¾î È­¼® ¿¬·á¿¡ ´ëÇÑ ÀÇÁ¸¼ºÀ» ÁÙÀ̰í ÀÌ»êȭź¼Ò ¹èÃâ·®À» ÁÙÀÔ´Ï´Ù. °Ô´Ù°¡, ÀÌ·¯ÇÑ ÇÃ¶ó½ºÆ½Àº °æ·®À̱⠶§¹®¿¡ ÀÚµ¿Â÷ Á¦Á¶¿¡ »ç¿ëµÇ´Â °æ¿ì ´õ ¿¬ºñ°¡ ÁÁÀº ÀÚµ¿Â÷·Î À̾îÁ® ȯ°æ ½ÇÀû¸¦ Å©°Ô ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¿£Áö´Ï¾î¸µ ÇÃ¶ó½ºÆ½ÀÇ ³»±¸¼º°ú ¼ö¸íÀº Á¦Ç°ÀÇ ¼ö¸íÁֱⰡ ±æ¾îÁö°í ºó¹øÇÑ ±³Ã¼ Çʿ伺À» ÁÙÀÌ°í Æó±â¹°À» ÃÖ¼ÒÈ­ÇÕ´Ï´Ù.

¿£Áö´Ï¾î¸µ ÇÃ¶ó½ºÆ½ ½ÃÀåÀÇ ¼ºÀåÀÇ ¿øµ¿·ÂÀº?

¿£Áö´Ï¾î¸µ ÇÃ¶ó½ºÆ½ ½ÃÀåÀÇ ¼ºÀåÀº Àç·á °úÇÐÀÇ Çõ½Å, ÃÖÁ¾ ÀÌ¿ë »ê¾÷ ¼ö¿ä Áõ°¡, ¼ÒºñÀÚ ÇൿÀÇ º¯È­ µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ¾ß±âµË´Ï´Ù. »ê¾÷°è°¡ Á¦Ç°ÀÇ ¼º´É°ú ¿¡³ÊÁö È¿À²À» ³ôÀ̱â À§ÇØ º¸´Ù °¡º±°í ³»±¸¼º ÀÖ´Â ¼ÒÀ縦 ¿ä±¸ÇÏ°Ô µÊ¿¡ µû¶ó ¿£Áö´Ï¾î¸µ ÇÃ¶ó½ºÆ½ ¼ö¿ä´Â Áõ°¡ÀÇ ±æÀ» µû¶ó°¡°í ÀÖ½À´Ï´Ù. ƯÈ÷ ÀÚµ¿Â÷ »ê¾÷ÀÌ ±î´Ù·Î¿î ¼¼°è ¹èÃâ°¡½º ±âÁØ¿¡ ºÎÇÕÇϱâ À§ÇØ ÀÚµ¿Â÷ °æ·®È­¸¦ Ãß±¸Çϰí ÀÖÀ¸¸ç ¿£Áö´Ï¾î¸µ ÇÃ¶ó½ºÆ½ ºÐ¾ßÀÇ ´ëÆøÀûÀÎ ¼ºÀåÀ» À̲ø°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀüÀÚ »ê¾÷ÀÇ ±Þ¼ÓÇÑ È®´ë·Î °í¿Â°ú Àü±âÀû ½ºÆ®·¹½º¸¦ °ßµô ¼ö ÀÖ´Â ÇÃ¶ó½ºÆ½ÀÌ ÇÊ¿äÇØ ½ÃÀåÀ» ´õ¿í ¹Ð¾î ¿Ã¸®°í ÀÖ½À´Ï´Ù. ³»±¸¼ºÀÌ ¶Ù¾î³ª°í Áö¼Ó°¡´ÉÇÑ Á¦Ç°À» ã´Â ¼ÒºñÀÚ°¡ ´Ã¾î³²¿¡ µû¶ó Á¦Á¶¾÷ü´Â ±â´ë¿¡ ºÎÀÀÇϱâ À§ÇØ ¿£Áö´Ï¾î¸µ ÇÃ¶ó½ºÆ½¿¡ ÁÖ¸ñÇÕ´Ï´Ù. ¸¶Áö¸·À¸·Î, ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÁÙÀ̱â À§ÇÑ ±ÔÁ¦ ¾Ð·Â°ú Àμ¾Æ¼ºê´Â ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ ¿£Áö´Ï¾î¸µ ÇÃ¶ó½ºÆ½°ú °°Àº ¼±ÁøÀûÀ̰í Áö¼Ó °¡´ÉÇÑ ¼ÒÀçÀÇ Ã¤ÅÃÀ» °è¼Ó ÃßÁøÇϰí ÀÖ½À´Ï´Ù.

Á¶»ç ´ë»ó ±â¾÷ ¿¹(Àü112»ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

BJH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Engineering Plastics Market to Reach US$248.9 Billion by 2030

The global market for Engineering Plastics estimated at US$157.9 Billion in the year 2023, is expected to reach US$248.9 Billion by 2030, growing at a CAGR of 6.7% over the analysis period 2023-2030. Acrylonitrile-Butadiene-Styrene (ABS), one of the segments analyzed in the report, is expected to record a 7.0% CAGR and reach US$93.6 Billion by the end of the analysis period. Growth in the Polyamide segment is estimated at 6.2% CAGR over the analysis period.

The U.S. Market is Estimated at US$41.7 Billion While China is Forecast to Grow at 10.0% CAGR

The Engineering Plastics market in the U.S. is estimated at US$41.7 Billion in the year 2023. China, the world's second largest economy, is forecast to reach a projected market size of US$58.3 Billion by the year 2030 trailing a CAGR of 10.0% over the analysis period 2023-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 3.6% and 6.1% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 4.2% CAGR.

Global Engineering Plastics Market - Key Trends and Drivers Summarized

What Are Engineering Plastics, and How Are They Shaping Modern Industries?

Engineering plastics are a class of plastics that are used in high-performance applications due to their superior strength, thermal stability, and chemical resistance compared to commodity plastics. Unlike standard plastics, engineering plastics can withstand harsh environments and mechanical stresses, which makes them ideal for use in automotive, aerospace, electronics, and industrial machinery. Some common types of engineering plastics include polyamides (nylon), polycarbonates, polyacetals, and thermoplastic polyesters. These materials are characterized by their ability to maintain integrity under high temperatures, loads, and prolonged exposure to chemicals. They are also favored for their versatility in manufacturing processes such as injection molding, CNC machining, and 3D printing, allowing for the creation of complex shapes and high precision parts.

How Have Advances in Technology Enhanced the Properties and Uses of Engineering Plastics?

Recent technological advancements have significantly enhanced the properties of engineering plastics, making them more integral to various high-tech applications. Innovations in polymer science have led to the development of blends and composites that exhibit improved heat resistance, greater mechanical strength, and enhanced optical clarity. For instance, the introduction of fiber reinforcements like glass and carbon fibers has resulted in materials that are much lighter yet stronger than some metals, which is a crucial attribute in the aerospace and automotive sectors. Additionally, advancements in additive manufacturing have allowed for the direct printing of parts using engineering plastics, which has revolutionized the prototype development phase by reducing time and costs associated with traditional manufacturing methods.

What Impact Does the Use of Engineering Plastics Have on Sustainability and Environmental Conservation?

The use of engineering plastics also plays a significant role in environmental conservation and sustainability. These materials are increasingly designed to be recyclable or to have a lower environmental impact during production and disposal. For example, bio-based engineering plastics are being developed from renewable resources, which reduce dependency on fossil fuels and decrease carbon emissions. Furthermore, the lightweight nature of these plastics leads to more fuel-efficient vehicles when used in automotive manufacturing, significantly lowering the environmental footprint. The durability and longevity of engineering plastics also mean that products have longer life cycles, reducing the need for frequent replacements and minimizing waste.

What Drives the Growth of the Engineering Plastics Market?

The growth in the engineering plastics market is driven by several factors, including innovations in material science, increased demand from end-use industries, and shifting consumer behaviors. As industries push for lighter, more durable materials to enhance product performance and energy efficiency, the demand for engineering plastics continues to rise. Specifically, the automotive sector seeks to reduce vehicle weight to comply with stringent global emissions standards, driving substantial growth in the engineering plastics sector. Additionally, the rapid expansion of the electronics industry requires plastics that can withstand high temperatures and electrical stresses, further boosting the market. Consumer behavior also plays a critical role; as more consumers demand durable and sustainable products, manufacturers turn to engineering plastics to meet these expectations. Finally, regulatory pressures and incentives for reducing environmental impact continue to push the adoption of advanced, sustainable materials like engineering plastics across various sectors.

Select Competitors (Total 112 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â