¼¼°è Á¦Á¶¾÷ AI ½ÃÀåÀº 2024³â¿¡ 42¾ï ´Þ·¯·Î Æò°¡µÇ¾úÀ¸¸ç, 2025³âºÎÅÍ 2034³â¿¡ °ÉÃÄ 31.2%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù.
Á¦Á¶¾÷¿¡¼ ÇÕ¸®ÈµÈ ¾Æ¿ô¼Ò½Ì ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó AIÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ±â¾÷Àº »ý»ê °ü¸®, °Ë»ç, Àç°í °ü¸® µîÀÇ ÇÁ·Î¼¼½º¸¦ ÀÚµ¿ÈÇÏ¿© »ý»ê È¿À²À» ³ôÀÌ°í ºñ¿ëÀ» Àý°¨ÇÏ¸ç »ç¾÷À» È®´ëÇϱâ À§ÇØ AI¸¦ ÅëÇÕÇϰí ÀÖ½À´Ï´Ù. AI¸¦ Ȱ¿ëÇÑ ¼Ö·ç¼ÇÀÇ °¡¿ë¼º Áõ°¡´Â ¼±µµÀûÀÎ Á¦Á¶ ¾÷ü¿¡¼ Áß¼Ò±â¾÷¿¡ À̸£±â±îÁö ¸ðµç ±Ô¸ðÀÇ ±â¾÷¿¡°Ô ÇýÅÃÀ» ÁÝ´Ï´Ù. ¼¼°è °¢±¹ÀÇ Á¤ºÎ´Â AIÀÇ ¿¬±¸°³¹ßÀ» ¿ì¼±½ÃÇϰí ÀÖÀ¸¸ç, AIÀÇ µµÀÔÀ» ÃËÁøÇϱâ À§ÇÑ ÀÚ±Ý Á¦°ø ÇÁ·Î±×·¥, ¼¼Á¦ ¿ì´ë Á¶Ä¡, ±ÔÁ¦ Áö¿ø µîÀÇ ÀçÁ¤Àû Àμ¾Æ¼ºê¸¦ Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ÀÌ´Ï¼ÅÆ¼ºê´Â ´Ù¾çÇÑ »ê¾÷¿¡¼ Çõ½ÅÀ» ÃËÁøÇÏ°í »ý»ê¼ºÀ» ³ôÀÌ°í ºñ¿ëÀ» Àý°¨ÇÏ´Â °ÍÀ» ¸ñÇ¥·Î ÇÕ´Ï´Ù.
½ÃÀåÀº ±¸¼º ¿ä¼Ò¿¡ µû¶ó Çϵå¿þ¾î, ¼ÒÇÁÆ®¿þ¾î, ¼ºñ½º·Î ±¸ºÐµË´Ï´Ù. 2024³â¿¡´Â Çϵå¿þ¾î ºÐ¾ß ½ÃÀå Á¡À¯À²ÀÌ 55%¸¦ ÃʰúÇϰí 2034³â¿¡´Â 320¾ï ´Þ·¯ ÀÌ»ó¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ·Îº¿°øÇÐ, ¿¹Áöº¸Àü, ǰÁú°ü¸® µî Á¦Á¶¾÷ AI ¿ëµµ´Â ½Ç½Ã°£ µ¥ÀÌÅÍ Ã³¸®¿¡ °í¼º´É ÄÄÆ÷³ÍÆ®¸¦ ÇÊ¿ä·Î Çϱ⠶§¹®¿¡ °íµµÀÇ ÄÄÇ»ÆÃ Çϵå¿þ¾î¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡°¡ ÀÌ ¼ºÀåÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. ¸Ó½Å·¯´× ¹× µö·¯´× ¾Ë°í¸®ÁòÀº AI ¼º´ÉÀ» Çâ»ó½ÃŰ´Â °·ÂÇÑ Çϵå¿þ¾îÀÇ Çʿ伺À» ³ôÀÔ´Ï´Ù. µ¥ÀÌÅÍ Ã³¸® ´É·ÂÀÇ ±Þ¼ÓÇÑ Áøº¸·Î ÀÚµ¿È È®´ë, »ý»ê¼º Çâ»ó, ÀÇ»ç°áÁ¤ °³¼±ÀÌ °¡´ÉÇØÁö°í ÀÖ½À´Ï´Ù.
½ÃÀå ¹üÀ§ | |
---|---|
½ÃÀÛ ¿¬µµ | 2024³â |
¿¹Ãø ¿¬µµ | 2025-2034³â |
½ÃÀÛ ±Ý¾× | 42¾ï ´Þ·¯ |
¿¹Ãø ±Ý¾× | 607¾ï ´Þ·¯ |
CAGR | 31.2% |
¹èÆ÷ ¸ðµ¨º°·Î ¿ÂÇÁ·¹¹Ì½º ¼Ö·ç¼Ç°ú Ŭ¶ó¿ìµå ¼Ö·ç¼ÇÀ¸·Î ºÐ·ùµË´Ï´Ù. 2024³â¿¡´Â Ŭ¶ó¿ìµå ºÎ¹®ÀÌ ½ÃÀåÀÇ ¾à 43%¸¦ Â÷ÁöÇß½À´Ï´Ù. °¢ ¾÷°èÀÇ ±â¾÷ÀÌ µðÁöÅÐ ÀüȯÀ» µµÀÔÇÏ¸é¼ Å¬¶ó¿ìµå ±â¹Ý AI ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ ³ô¾ÆÁö°í Á¦Á¶¾÷ÀÇ °æÀï·ÂÀÌ °ÈµÇ°í ÀÖ½À´Ï´Ù. Ŭ¶ó¿ìµå ÄÄÇ»ÆÃÀº À¯¿¬¼º°ú È®À强À» Á¦°øÇÏ¿© ¿î¿µ ºñ¿ëÀ» ÁÙÀ̰í ÇÁ·Î¼¼½º¸¦ °£¼ÒÈÇÕ´Ï´Ù. ¶ÇÇÑ ¿ø°ÝÁö¿¡ µµÀÔÇÏ¿© µ¥ÀÌÅÍÀÇ ÀúÀå°ú 󸮸¦ °ÈÇÒ ¼ö Àֱ⠶§¹®¿¡ ¹æ´ëÇÑ µ¥ÀÌÅÍ ¼¼Æ®¿¡ ÀÇÁ¸ÇÏ´Â AI ¿ëµµ¿¡ ÇʼöÀûÀÔ´Ï´Ù. ¶ÇÇÑ Å¬¶ó¿ìµå ±â¹Ý ¼Ö·ç¼ÇÀº Á¦Á¶¾÷ü, °ø±Þ¾÷ü, °í°´ °£ÀÇ ½Ç½Ã°£ Çù¾÷À» °¡´ÉÇÏ°Ô Çϰí ÀÇ»ç°áÁ¤À» °³¼±ÇÏ¸ç ½ÃÀå Ãâ½Ã ½Ã°£À» ´ÜÃàÇÕ´Ï´Ù.
½ÃÀåÀº ¸Ó½Å·¯´×, ÄÄÇ»ÅÍ ºñÀü, ÀÚ¿¬ ¾ð¾î ó¸®, ÄÁÅØ½ºÆ® ´ëÀÀ ÄÄÇ»ÆÃ µî ±â¼úº°·Î ±¸ºÐµË´Ï´Ù. ¸Ó½Å·¯´×Àº ½ÃÀåÀ» ¼±µµÇϰí 2034³â±îÁö ¾à 190¾ï ´Þ·¯¸¦ âÃâÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ ¼ºÀåÀº Áö´ÉÀûÀÎ ÀÚµ¿È¿Í µ¥ÀÌÅÍ Áß½ÉÀÇ ÀÇ»ç°áÁ¤À» À§ÇÑ ¸Ó½Å·¯´×ÀÇ »ç¿ë Áõ°¡·Î ÀÎÇÑ °ÍÀÔ´Ï´Ù. AI ÁÖµµ ǰÁú °ü¸® ¼Ö·ç¼ÇÀº Á¦Ç° °Ë»çÀÇ Á¤È®¼ºÀ» Çâ»ó½ÃŰ°í »ý»ê ¼Õ½ÇÀ» ÃÖ¼ÒÈÇÕ´Ï´Ù. Á¦Á¶¾÷¿¡¼ÀÇ ¸Ó½Å·¯´×ÀÇ Ã¤¿ëÀº ÃÖÀûÈµÈ ¿î¿µÀ» À§ÇØ µ¥ÀÌÅ͸¦ ¼öÁý, ºÐ¼® ¹× ó¸®ÇÏ´Â IoT ±â¼úÀÇ ½ÃÀÛÀ¸·Îµµ ÃßÁøµÇ°í ÀÖ½À´Ï´Ù.
ÀÌ ½ÃÀåÀº ¶ÇÇÑ Ç°Áú °ü¸®, ¿¹Áö º¸Àü, Àç°í °ü¸®, ¿¡³ÊÁö °ü¸®, »ê¾÷¿ë ·Îº¿ µîÀ» Æ÷ÇÔÇÑ ¿ëµµº°·Î ºÐ·ùµË´Ï´Ù. ¿¹Áöº¸ÀüÀº 2024³â¿¡ ¾à 25%ÀÇ ÃÖ´ë Á¡À¯À²À» Â÷ÁöÇß½À´Ï´Ù. AI¸¦ Ȱ¿ëÇÑ ¿¹Áöº¸Àü ¼Ö·ç¼ÇÀº ¸Ó½Å·¯´× ¾Ë°í¸®ÁòÀ» »ç¿ëÇÏ¿© ÀåºñÀÇ ¼º´ÉÀ» ½Ç½Ã°£À¸·Î ¸ð´ÏÅ͸µ ¹× Æò°¡ÇÏ¿© °íÀå ¹æÁö, º¸Àü ºñ¿ë Àý°¨, »ý»ê Áß´Ü ÃÖ¼Òȸ¦ Áö¿øÇÕ´Ï´Ù. »ý»ê¼º Çâ»ó°ú °¡µ¿ ÁßÁö ½Ã°£ Àý°¨¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó ÀÌ·¯ÇÑ ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
¹Ì±¹Àº 2024³â ºÏ¹Ì Á¦Á¶¾÷¿¡¼ AI ½ÃÀåÀ» ¼±µµÇÏ¿© Áö¿ª Á¡À¯À²ÀÇ ¾à 75%¸¦ Â÷ÁöÇß½À´Ï´Ù. AI ÁÖµµÀÇ ½º¸¶Æ® Á¦Á¶¿¡ ´ëÇÑ ÀÌ ³ª¶óÀÇ °·ÂÇÑ Á¤ºÎ Áö¿øÀÌ ½ÃÀå ¼ºÀåÀÇ ÁÖ¿ä ¿äÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù. Á¤Ã¥ ÀÔ¾ÈÀÚ´Â ±¹³» Á¦Á¶¾÷ÀÇ °æÀï·ÂÀ» °ÈÇϱâ À§ÇØ ÀÚµ¿È¿Í ÷´Ü ±â¼úÀ» ¿ì¼±Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ °ø±Þ¸ÁÀÇ °Àμº °È¿Í »ý»ê È¿À² ÃÖÀûÈ¿¡ ÁßÁ¡À» µÎ´Â °ÍÀº ¾÷°è¿¡¼ AIÀÇ Ã¤¿ëÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
The Global AI In Manufacturing Market was valued at USD 4.2 billion in 2024 and is projected to grow at a CAGR of 31.2% between 2025 and 2034. The increasing need for streamlined outsourcing solutions within the manufacturing sector is driving AI adoption. Companies are integrating AI to enhance production efficiency, cut costs, and scale operations by automating processes such as production control, inspection, and inventory management. The rising availability of AI-powered solutions is benefiting businesses of all sizes, from large manufacturers to small and medium enterprises. Governments worldwide are prioritizing AI research and development, offering financial incentives such as funding programs, tax breaks, and regulatory support to boost AI implementation. These initiatives are designed to drive innovation, improve productivity, and reduce costs across various industries.
The market is segmented based on components into hardware, software, and services. In 2024, the hardware segment held a market share exceeding 55% and is expected to surpass USD 32 billion by 2034. The rising demand for advanced computing hardware is fueling this growth, as AI applications in manufacturing, such as robotics, predictive maintenance, and quality control, require high-performance components for real-time data processing. Machine learning and deep learning algorithms are also driving the need for powerful hardware to improve AI performance. Rapid advancements in data processing capabilities are enabling greater automation, enhanced productivity, and better decision-making.
Market Scope | |
---|---|
Start Year | 2024 |
Forecast Year | 2025-2034 |
Start Value | $4.2 Billion |
Forecast Value | $60.7 Billion |
CAGR | 31.2% |
By deployment model, the market is categorized into on-premises and cloud solutions. In 2024, the cloud segment accounted for about 43% of the market. As companies across industries embrace digital transformation, the demand for cloud-based AI solutions is rising, enhancing competitiveness in manufacturing. Cloud computing offers flexibility and scalability, reducing operational costs and streamlining processes. Additionally, remote implementation allows for enhanced data storage and processing, which is critical for AI applications that rely on extensive datasets. Cloud-based solutions also enable real-time collaboration between manufacturers, suppliers, and customers, improving decision-making and accelerating time to market.
The market is also segmented by technology, including machine learning, computer vision, natural language processing, and context-aware computing. Machine learning led the market and is projected to generate around USD 19 billion by 2034. This growth is attributed to the increasing use of machine learning for intelligent automation and data-driven decision-making. AI-driven quality control solutions improve product inspection accuracy, minimizing production losses. Machine learning adoption in manufacturing is also being propelled by the rise of IoT technologies, which collect, analyze, and process data for optimized operations.
The market is further divided by application, including quality management, predictive maintenance, inventory management, energy management, industrial robotics, and others. Predictive maintenance held the largest share in 2024 at approximately 25%. AI-powered predictive maintenance solutions use machine learning algorithms to monitor and assess equipment performance in real-time, helping businesses prevent failures, reduce maintenance costs, and minimize production disruptions. The increasing need for higher productivity and reduced downtime is driving demand for these systems.
The United States led the North America AI in manufacturing market in 2024, holding about 75% of the regional share. The country's strong government support for AI-driven smart manufacturing is a key factor in market growth. Policymakers are prioritizing automation and advanced technologies to enhance the competitiveness of the nation's manufacturing sector. In addition, a focus on strengthening supply chain resilience and optimizing production efficiency is further driving AI adoption in the industry.