¼¼°èÀÇ µö·¯´× Ĩ ½ÃÀå ±Ô¸ð Á¶»ç : Ĩ À¯Çüº°, ±â¼úº°, »ê¾÷º°, Áö¿ªº° ¿¹Ãø(2022-2032³â)
Global Deep Learning Chip Market Size Study, by Chip Type, by Technology, by Industry Vertical, and Regional Forecasts 2022-2032
»óǰÄÚµå
:
1534224
¸®¼Ä¡»ç
:
Bizwit Research & Consulting LLP
¹ßÇàÀÏ
:
2024³â 08¿ù
ÆäÀÌÁö Á¤º¸
:
¿µ¹® 285 Pages
¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
¤± Add-on °¡´É: °í°´ÀÇ ¿äû¿¡ µû¶ó ÀÏÁ¤ÇÑ ¹üÀ§ ³»¿¡¼ CustomizationÀÌ °¡´ÉÇÕ´Ï´Ù. ÀÚ¼¼ÇÑ »çÇ×Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.
¼¼°è µö·¯´× Ĩ ½ÃÀåÀº 2023³â ¾à 110¾ï 5,000¸¸ ´Þ·¯·Î Æò°¡µÇ¸ç, 2024³âºÎÅÍ 2032³â±îÁö ¿¹Ãø ±â°£ µ¿¾È 35.27%ÀÇ CAGR·Î °ßÁ¶ÇÑ ¼ºÀåÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
µö·¯´× ĨÀº ÀΰøÁö´É(AI) ÀÛ¾÷, ƯÈ÷ µö·¯´× ¾Ë°í¸®ÁòÀÇ ¼Óµµ¸¦ ³ôÀ̱â À§ÇØ ¼³°èµÈ Àü¿ë Çϵå¿þ¾îÀÔ´Ï´Ù. ÀÌ Ä¨Àº ½Å°æ¸Á°ú °ü·ÃµÈ º¹ÀâÇÑ °è»êÀ» ÃÖÀûÈÇÏ¿© ¼º´É°ú È¿À²¼ºÀ» ³ôÀÔ´Ï´Ù. ÁÖ¿ä ±â´ÉÀ¸·Î´Â º´·Ä ó¸® ±â´É, ³ôÀº ¸Þ¸ð¸® ´ë¿ªÆø, ³·Àº Àü·Â ¼Òºñ µîÀÌ ÀÖ½À´Ï´Ù. ÀÌ ½ÃÀåÀÇ ÁÖ¿ä ¾÷ü·Î´Â ¿£ºñµð¾Æ¿Í ÀÎÅÚ, ±¸±Û µîÀÌ ÀÖÀ¸¸ç, °¢ ¾÷ü´Â ÀÚÀ²ÁÖÇàÂ÷, ÀÇ·á ¿µ»ó ó¸®, ÀÚ¿¬¾î ó¸® µî ´Ù¾çÇÑ ¾ÖÇø®ÄÉÀ̼ÇÀ» À§ÇÑ Ã·´Ü ĨÀ» °³¹ßÇϰí ÀÖÀ¸¸ç, AI ±â¹Ý ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡´Â µö·¯´× Ĩ »ê¾÷ÀÇ ±Þ°ÝÇÑ ¼ºÀåÀ» °ßÀÎÇϰí ÀÖ½À´Ï´Ù.
¼¼°è µö·¯´× Ĩ ½ÃÀåÀº ¾çÀÚ ÄÄÇ»ÆÃÀÇ µîÀå°ú ·Îº¿°øÇÐ ºÐ¾ß¿¡¼ÀÇ µö·¯´× Ĩ µµÀÔ È®´ë°¡ ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ·Îº¿ °øÇп¡¼ µö·¯´× ĨÀÇ ÅëÇÕÀÌ È®´ëµÇ¸é¼ º¹ÀâÇÑ µ¥ÀÌÅ͸¦ ó¸®ÇÏ°í °íµµÀÇ ÀÛ¾÷À» ¼öÇàÇÒ ¼ö ÀÖ´Â ´É·ÂÀÌ °ÈµÇ¸é¼ ½ÃÀå È®´ëÀÇ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. µö·¯´× ĨÀº ·Îº¿ÀÌ µ¥ÀÌÅ͸¦ ÅëÇØ ÇнÀÇϰí, »õ·Î¿î »óȲ¿¡ ÀûÀÀÇϸç, ½Ã°£ÀÌ Áö³²¿¡ µû¶ó ¼º´ÉÀ» Çâ»ó½Ãų ¼ö ÀÖ°ÔÇÔÀ¸·Î½á Á¦Á¶, ÇコÄɾî, ÀÚÀ² ½Ã½ºÅÛ µîÀÇ »ê¾÷¿¡¼ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ÀÌ µÎ °¡Áö ¿µÇâ·ÂÀÌ ½ÃÀåÀÇ ¼ºÀå ±Ëµµ¿¡ Å« ÈûÀ» ½Ç¾îÁÖ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÚü °³¹ß ¹× ÀÚÀ² Á¦¾î°¡ °¡´ÉÇÑ ÀÚÀ² ·Îº¿ÀÇ Áõ°¡´Â Å« ¼ºÀå ±âȸ¸¦ Á¦°øÇϰí ÀÖ½À´Ï´Ù. ±×·¯³ª ¾÷°è´Â ¼÷·ÃµÈ Àü¹®°¡ ºÎÁ·°ú °°Àº µµÀü °úÁ¦¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. Å×½ºÆ®, ¹ö±× ¼öÁ¤, Ŭ¶ó¿ìµå ±¸Çö µî ÁÖ·Î µö·¯´× ĨÀÌ °ü¸®ÇÏ´Â ÀÛ¾÷Àº ÇÊ¿äÇÑ Àü¹® Áö½ÄÀÇ ºÎÁ·À¸·Î ¾î·Á¿òÀ» °Þ°í ÀÖ½À´Ï´Ù.
¼¼°è µö·¯´× Ĩ ½ÃÀå Á¶»ç¿¡¼ °í·ÁÇÑ ÁÖ¿ä Áö¿ªÀº ¾Æ½Ã¾ÆÅÂÆò¾ç, ºÏ¹Ì, À¯·´, ¶óƾ¾Æ¸Þ¸®Ä« ¹× ±âŸ Áö¿ªÀÔ´Ï´Ù. 2023³â¿¡´Â ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ÀÌ´Â ´Ù¾çÇÑ ¾ÖÇø®ÄÉÀ̼ǿ¡¼ µö·¯´× ±â¼úÀÇ ºü¸¥ äÅðú ÅëÇÕÀÌ ÀÌ·ç¾îÁö°í ÀÖÀ½À» º¸¿©ÁÝ´Ï´Ù. ÀÌ·¯ÇÑ ¼ºÀåÀº ÀΰøÁö´É¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡, ±â¼ú ÀÎÇÁ¶ó È®´ë, ÇコÄɾî, ÀÚµ¿Â÷, ±ÝÀ¶ µîÀÇ »ê¾÷¿¡¼ °í±Þ ºÐ¼®¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÀÎÇÑ °ÍÀÔ´Ï´Ù. Áß±¹, Àεµ, ÀϺ», È£ÁÖ µî ÁÖ¿ä ½ÃÀåµéÀÌ ÀÌ·¯ÇÑ Ãß¼¼¸¦ ÁÖµµÇϰí ÀÖÀ¸¸ç, µö·¯´×À» Ȱ¿ëÇÏ¿© °¢ ºÐ¾ßÀÇ Çõ½Å°ú È¿À²¼ºÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù.
¸ñÂ÷
Á¦1Àå µö·¯´× Ĩ ¼¼°è ½ÃÀå ÁÖ¿ä ¿ä¾à
- µö·¯´× Ĩ ¼¼°è ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø(2022-2032³â)
- Áö¿ªº° °³¿ä
- ºÎ¹®º° °³¿ä
- ÁÖ¿ä µ¿Çâ
- °æ±âÈÄÅðÀÇ ¿µÇâ
- ¾Ö³Î¸®½ºÆ®ÀÇ °á·Ð°ú Á¦¾È
Á¦2Àå µö·¯´× Ĩ ¼¼°è ½ÃÀå Á¤ÀÇ¿Í Á¶»ç °¡Á¤
- Á¶»ç ¸ñÀû
- ½ÃÀå Á¤ÀÇ
- Á¶»ç °¡Á¤
- Æ÷ÇÔ°ú Á¦¿Ü
- Á¦ÇÑ»çÇ×
- °ø±ÞÃø ºÐ¼®
- ÀÔ¼ö °¡´É¼º
- ÀÎÇÁ¶ó
- ±ÔÁ¦ ȯ°æ
- ½ÃÀå °æÀï
- °æÁ¦¼º(¼ÒºñÀÚÀÇ °üÁ¡)
- ¼ö¿äÃø ºÐ¼®
- ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©
- ±â¼úÀÇ Áøº¸
- ģȯ°æ
- ¼ÒºñÀÚ Àǽİú ¼ö¿ë
- Á¶»ç ¹æ¹ý
- Á¶»ç ´ë»ó ¿¬µµ
- ÅëÈ È¯»êÀ²
Á¦3Àå µö·¯´× Ĩ ¼¼°è ½ÃÀå ¿ªÇÐ
- ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
- ¾çÀÚ ÄÄÇ»ÆÃÀÇ ÃâÇö
- ·Îº¿À¸·ÎÀÇ ±¸Çö °È
- ½ÃÀå °úÁ¦
- ½ÃÀå ±âȸ
- ÀÚÀ²Çü ·Îº¿ÀÇ ÃâÇö
- ´Ù¾çÇÑ »ê¾÷¿¡¼ÀÇ Ã¤¿ë È®´ë
Á¦4Àå µö·¯´× Ĩ ¼¼°è ½ÃÀå »ê¾÷ ºÐ¼®
- Porter's Five Forces ¸ðµ¨
- °ø±Þ ±â¾÷ÀÇ ±³¼··Â
- ±¸¸ÅÀÚÀÇ ±³¼··Â
- ½Å±Ô Âü¿©¾÷üÀÇ À§Çù
- ´ëüǰÀÇ À§Çù
- °æÀï ±â¾÷ °£ÀÇ °æÀï °ü°è
- Porter's Five Forces ¸ðµ¨·ÎÀÇ ¹Ì·¡ÁöÇâÀû Á¢±Ù¹ý
- Porter's Five ForcesÀÇ ¿µÇ⠺м®
- PESTEL ºÐ¼®
- Á¤Ä¡
- °æÁ¦
- »çȸ
- 񃬣
- ȯ°æ
- ¹ý·ü
- ÁÖ¿ä ÅõÀÚ ±âȸ
- ÁÖ¿ä ¼º°ø Àü·«
- ÆÄ±«Àû µ¿Çâ
- ¾÷°è Àü¹®°¡ÀÇ °üÁ¡
- ¾Ö³Î¸®½ºÆ®ÀÇ °á·Ð°ú Á¦¾È
Á¦5Àå µö·¯´× Ĩ ¼¼°è ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø : Ĩ À¯Çüº°, 2022-2032³â
- ºÎ¹® ´ë½Ãº¸µå
- µö·¯´× Ĩ ¼¼°è ½ÃÀå : ¸ÅÃâ µ¿Ç⠺м®, 2022³â¡¤2032³â
Á¦6Àå µö·¯´× Ĩ ¼¼°è ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø : ±â¼úº°, 2022-2032³â
- ºÎ¹® ´ë½Ãº¸µå
- µö·¯´× Ĩ ¼¼°è ½ÃÀå : ¸ÅÃâ µ¿Ç⠺м®, 2022³â¡¤2032³â
- ½Ã½ºÅÛ¿ÂĨ(SoC)
- ½Ã½ºÅÛ ÀÎ ÆÐŰÁö(SIP)
- ¸ÖƼĨ ¸ðµâ
- ±âŸ
Á¦7Àå µö·¯´× Ĩ ¼¼°è ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø : ¾÷°èº°, 2022-2032³â
- ºÎ¹® ´ë½Ãº¸µå
- µö·¯´× Ĩ ¼¼°è ½ÃÀå : ¸ÅÃâ µ¿Ç⠺м®, 2022³â¡¤2032³â
- ¹Ìµð¾î¡¤±¤°í
- BFSI
- IT ¹× Åë½Å
- ¼Ò¸Å
- ÇコÄɾî
- ÀÚµ¿Â÷
- ±âŸ
Á¦8Àå µö·¯´× Ĩ ¼¼°è ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø : Áö¿ªº°, 2022-2032³â
- ºÏ¹Ì
- À¯·´
- ¿µ±¹
- µ¶ÀÏ
- ÇÁ¶û½º
- ½ºÆäÀÎ
- ÀÌÅ»¸®¾Æ
- ±âŸ À¯·´
- ¾Æ½Ã¾ÆÅÂÆò¾ç
- Áß±¹
- Àεµ
- ÀϺ»
- È£ÁÖ
- Çѱ¹
- ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
- ¶óƾ¾Æ¸Þ¸®Ä«
- ºê¶óÁú
- ¸ß½ÃÄÚ
- ±âŸ ¶óƾ¾Æ¸Þ¸®Ä«
- Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
- »ç¿ìµð¾Æ¶óºñ¾Æ
- ³²¾ÆÇÁ¸®Ä«°øÈ±¹
- ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
Á¦9Àå °æÀï Á¤º¸
- ÁÖ¿ä ±â¾÷ SWOT ºÐ¼®
- ÁÖ¿ä ½ÃÀå Àü·«
- ±â¾÷ °³¿ä
- Alphabet Inc
- ÁÖ¿ä Á¤º¸
- °³¿ä
- À繫(µ¥ÀÌÅÍ °¡¿ë¼º¿¡ µû¶ó ´Ù¸§)
- Á¦Ç° °³¿ä
- ½ÃÀå Àü·«
- Qualcomm Incorporated
- Xilinx, Inc.
- Bitmain Technologies Ltd.
- Advanced Micro Devices, Inc.
- Intel Corporation
- NVIDIA Corporation
- Baidu, Inc.
- Amazon.com, Inc.
- Samsung Electronics Co. Ltd.
Á¦10Àå Á¶»ç °úÁ¤
- Á¶»ç °úÁ¤
- µ¥ÀÌÅÍ ¸¶ÀÌ´×
- ºÐ¼®
- ½ÃÀå ÃßÁ¤
- °ËÁõ
- ÃâÆÇ
- Á¶»ç ¼Ó¼º
ksm
¿µ¹® ¸ñÂ÷
Global Deep Learning Chip Market was valued at approximately USD 11.05 billion in 2023 and is expected to grow at a robust CAGR of 35.27% over the forecast period from 2024 to 2032. Deep learning chips are specialized hardware designed to accelerate artificial intelligence (AI) tasks, particularly deep learning algorithms. These chips optimize complex computations involved in neural networks, enhancing performance and efficiency. Key features include parallel processing capabilities, high memory bandwidth, and low power consumption. Major players in this market include NVIDIA, Intel, and Google, each developing advanced chips for various applications like autonomous vehicles, medical imaging, and natural language processing. The increasing demand for AI-driven solutions fuels the rapid growth of the deep learning chip industry.
The Global Deep Learning Chip Market is driven by the advent of quantum computing and the increasing deployment of deep learning chips in robotics. the growing integration of deep learning chips in robotics enhances their ability to process complex data and perform sophisticated tasks, driving market expansion. These chips enable robots to learn from data, adapt to new situations, and improve performance over time, making them crucial in industries such as manufacturing, healthcare, and autonomous systems. This dual influence significantly boosts the market's growth trajectory. Moreover, rising number of autonomous robots, capable of self-development and autonomous control, presents significant growth opportunities. However, the industry faces challenges such as a shortage of skilled professionals. Tasks such as testing, bug fixing, and cloud implementation, primarily managed by deep learning chips, suffer from a lack of requisite expertise.
The key regions considered for the Global Deep Learning Chip Market study includes Asia Pacific, North America, Europe, Latin America, and Rest of the World. In 2023, Asia-Pacific region is projected to exhibit the highest CAGR during the forecast period, indicating a rapid adoption and integration of deep learning technologies in various applications. This growth is driven by increasing investments in artificial intelligence, expanding technological infrastructure, and rising demand for advanced analytics in industries such as healthcare, automotive, and finance. Key markets such as China, India, Japan, and Australia are leading this trend, leveraging deep learning to enhance innovation and efficiency in their respective sectors.
Major market players include in report are:
- Alphabet Inc
- Qualcomm Incorporated
- Xilinx, Inc.
- Bitmain Technologies Ltd.
- Advanced Micro Devices, Inc.
- Intel Corporation
- NVIDIA Corporation
- Baidu, Inc.
- Amazon.com, Inc.
- Samsung Electronics Co. Ltd.
The detailed segments and sub-segments of the market are explained below:
By Chip Type
By Technology
- System-on-chip (SoC)
- System-in-package (SIP)
- Multi-chip module
- Others
By Industry Vertical
- Media & Advertising
- BFSI
- IT & Telecom
- Retail
- Healthcare
- Automotive
- Others
By Region:
- North America
- U.S.
- Canada
- Europe
- UK
- Germany
- France
- Spain
- Italy
- ROE
- Asia Pacific
- China
- India
- Japan
- Australia
- South Korea
- RoAPAC
- Latin America
- Brazil
- Mexico
- RoLA
- Middle East & Africa
- Saudi Arabia
- South Africa
- RoMEA
Years considered for the study are as follows:
- Historical year - 2022
- Base year - 2023
- Forecast period - 2024 to 2032
Key Takeaways:
- Market Estimates & Forecast for 10 years from 2022 to 2032.
- Annualized revenues and regional level analysis for each market segment.
- Detailed analysis of geographical landscape with Country level analysis of major regions.
- Competitive landscape with information on major players in the market.
- Analysis of key business strategies and recommendations on future market approach.
- Analysis of competitive structure of the market.
- Demand side and supply side analysis of the market
Table of Contents
Chapter 1. Global Deep Learning Chip Market Executive Summary
- 1.1. Global Deep Learning Chip Market Size & Forecast (2022-2032)
- 1.2. Regional Summary
- 1.3. Segmental Summary
- 1.3.1. By Chip Type
- 1.3.2. By Technology
- 1.3.3. By Industry Vertical
- 1.4. Key Trends
- 1.5. Recession Impact
- 1.6. Analyst Recommendation & Conclusion
Chapter 2. Global Deep Learning Chip Market Definition and Research Assumptions
- 2.1. Research Objective
- 2.2. Market Definition
- 2.3. Research Assumptions
- 2.3.1. Inclusion & Exclusion
- 2.3.2. Limitations
- 2.3.3. Supply Side Analysis
- 2.3.3.1. Availability
- 2.3.3.2. Infrastructure
- 2.3.3.3. Regulatory Environment
- 2.3.3.4. Market Competition
- 2.3.3.5. Economic Viability (Consumer's Perspective)
- 2.3.4. Demand Side Analysis
- 2.3.4.1. Regulatory frameworks
- 2.3.4.2. Technological Advancements
- 2.3.4.3. Environmental Considerations
- 2.3.4.4. Consumer Awareness & Acceptance
- 2.4. Estimation Methodology
- 2.5. Years Considered for the Study
- 2.6. Currency Conversion Rates
Chapter 3. Global Deep Learning Chip Market Dynamics
- 3.1. Market Drivers
- 3.1.1. Emergence of Quantum Computing
- 3.1.2. Enhanced Implementation in Robotics
- 3.2. Market Challenges
- 3.2.1. Dearth of Skilled Workforce
- 3.3. Market Opportunities
- 3.3.1. Emergence of Autonomous Robots
- 3.3.2. Growing Adoption in Various Industries
Chapter 4. Global Deep Learning Chip Market Industry Analysis
- 4.1. Porter's 5 Force Model
- 4.1.1. Bargaining Power of Suppliers
- 4.1.2. Bargaining Power of Buyers
- 4.1.3. Threat of New Entrants
- 4.1.4. Threat of Substitutes
- 4.1.5. Competitive Rivalry
- 4.1.6. Futuristic Approach to Porter's 5 Force Model
- 4.1.7. Porter's 5 Force Impact Analysis
- 4.2. PESTEL Analysis
- 4.2.1. Political
- 4.2.2. Economical
- 4.2.3. Social
- 4.2.4. Technological
- 4.2.5. Environmental
- 4.2.6. Legal
- 4.3. Top investment opportunity
- 4.4. Top winning strategies
- 4.5. Disruptive Trends
- 4.6. Industry Expert Perspective
- 4.7. Analyst Recommendation & Conclusion
Chapter 5. Global Deep Learning Chip Market Size & Forecasts by Chip Type 2022-2032
- 5.1. Segment Dashboard
- 5.2. Global Deep Learning Chip Market: Chip Type Revenue Trend Analysis, 2022 & 2032 (USD Billion)
- 5.2.1. GPU
- 5.2.2. ASIC
- 5.2.3. FPGA
- 5.2.4. CPU
- 5.2.5. Others
Chapter 6. Global Deep Learning Chip Market Size & Forecasts by Technology 2022-2032
- 6.1. Segment Dashboard
- 6.2. Global Deep Learning Chip Market: Technology Revenue Trend Analysis, 2022 & 2032 (USD Billion)
- 6.2.1. System-on-chip (SoC)
- 6.2.2. System-in-package (SIP)
- 6.2.3. Multi-chip module
- 6.2.4. Others
Chapter 7. Global Deep Learning Chip Market Size & Forecasts by Industry Vertical 2022-2032
- 7.1. Segment Dashboard
- 7.2. Global Deep Learning Chip Market: Industry Vertical Revenue Trend Analysis, 2022 & 2032 (USD Billion)
- 7.2.1. Media & Advertising
- 7.2.2. BFSI
- 7.2.3. IT & Telecom
- 7.2.4. Retail
- 7.2.5. Healthcare
- 7.2.6. Automotive
- 7.2.7. Others
Chapter 8. Global Deep Learning Chip Market Size & Forecasts by Region 2022-2032
- 8.1. North America Deep Learning Chip Market
- 8.1.1. U.S. Deep Learning Chip Market
- 8.1.1.1. Chip Type breakdown size & forecasts, 2022-2032
- 8.1.1.2. Technology breakdown size & forecasts, 2022-2032
- 8.1.1.3. Industry Vertical breakdown size & forecasts, 2022-2032
- 8.1.2. Canada Deep Learning Chip Market
- 8.2. Europe Deep Learning Chip Market
- 8.2.1. U.K. Deep Learning Chip Market
- 8.2.2. Germany Deep Learning Chip Market
- 8.2.3. France Deep Learning Chip Market
- 8.2.4. Spain Deep Learning Chip Market
- 8.2.5. Italy Deep Learning Chip Market
- 8.2.6. Rest of Europe Deep Learning Chip Market
- 8.3. Asia-Pacific Deep Learning Chip Market
- 8.3.1. China Deep Learning Chip Market
- 8.3.2. India Deep Learning Chip Market
- 8.3.3. Japan Deep Learning Chip Market
- 8.3.4. Australia Deep Learning Chip Market
- 8.3.5. South Korea Deep Learning Chip Market
- 8.3.6. Rest of Asia Pacific Deep Learning Chip Market
- 8.4. Latin America Deep Learning Chip Market
- 8.4.1. Brazil Deep Learning Chip Market
- 8.4.2. Mexico Deep Learning Chip Market
- 8.4.3. Rest of Latin America Deep Learning Chip Market
- 8.5. Middle East & Africa Deep Learning Chip Market
- 8.5.1. Saudi Arabia Deep Learning Chip Market
- 8.5.2. South Africa Deep Learning Chip Market
- 8.5.3. Rest of Middle East & Africa Deep Learning Chip Market
Chapter 9. Competitive Intelligence
- 9.1. Key Company SWOT Analysis
- 9.2. Top Market Strategies
- 9.3. Company Profiles
- 9.3.1. Alphabet Inc
- 9.3.1.1. Key Information
- 9.3.1.2. Overview
- 9.3.1.3. Financial (Subject to Data Availability)
- 9.3.1.4. Product Summary
- 9.3.1.5. Market Strategies
- 9.3.2. Qualcomm Incorporated
- 9.3.3. Xilinx, Inc.
- 9.3.4. Bitmain Technologies Ltd.
- 9.3.5. Advanced Micro Devices, Inc.
- 9.3.6. Intel Corporation
- 9.3.7. NVIDIA Corporation
- 9.3.8. Baidu, Inc.
- 9.3.9. Amazon.com, Inc.
- 9.3.10. Samsung Electronics Co. Ltd.
Chapter 10. Research Process
- 10.1. Research Process
- 10.1.1. Data Mining
- 10.1.2. Analysis
- 10.1.3. Market Estimation
- 10.1.4. Validation
- 10.1.5. Publishing
- 10.2. Research Attributes
°ü·ÃÀÚ·á