자동차 분야 AI 시장 : 기회, 용도 및 경쟁 분석
AI in Automotive: Opportunities, Applications and Competitor Analysis
상품코드 : 1609196
리서치사 : Auto2x
발행일 : 2024년 12월
페이지 정보 : 영문
 라이선스 & 가격 (부가세 별도)
£ 7,999 ₩ 15,202,000
PDF (Global License) help
PDF 보고서를 동일 기업의 모든 분이 이용할 수 있는 라이선스입니다. 인쇄 가능하며 인쇄물의 이용 범위는 PDF 이용 범위와 동일합니다.


한글목차

자동차 분야 AI는 생성형 AI 설계부터 제조, 차량 활용, 전기자동차, 자율주행, 중고차까지 전체 가치사슬을 변화시킬 수 있는 큰 잠재력을 가지고 있습니다. 하지만, 진입 기업들은 높은 투자 비용과 치열한 경쟁 등 기술적, 상업적 과제를 극복해야 합니다.

자동차 산업에서 AI는 자율주행의 차량 인식을 위한 컴퓨터 비전과 머신러닝, 제조의 로봇 공학, 차량 내 어시스턴트의 음성 인식을 위한 NLP 등 수십 년 동안 AI가 활용되어 왔습니다. 그러나 'AI가 정의하는 자동차'의 시대는 이제 막 자동차의 밸류체인 전체에 영향을 미치기 시작했습니다.

최신 자율주행차는 딥러닝 알고리즘을 활용하여 다양한 센서에서 수집된 방대한 데이터를 실시간으로 처리하고, AI를 통해 차량이 교통 상황과 장애물을 포함한 환경의 실시간 데이터를 분석할 수 있게 되어 안전한 주행을 위해 매우 중요한 역할을 합니다.

데이터 처리가 오프라인에서 차량 내로 이동함에 따라, EV 및 ADAS의 중요한 작업을 위한 데이터 처리 및 실시간 의사결정을 개선하기 위한 AI에 대한 수요가 증가하고 있습니다.

AI 스타트업에 대한 투자는 2024년 4월부터 6월까지 240억 달러로 전분기 대비 2배 이상 증가했으며, AI 스타트업은 엘론 머스크의 xAI가 60억 달러를 조달하고, OpenAI와의 경쟁에서 슈퍼컴퓨터, 건강 등 다양한 산업 분야에 걸쳐 2024년 1분기부터 2분기까지 275억 달러의 투자를 유치했으며, Microsoft, BlackRock, NVIDIA는 300억 달러 이상을 투자했습니다. 데이터센터 및 에너지 프로젝트 건설에 300억 달러 이상을 투자했습니다.

이 보고서는 자동차 산업에서 AI의 전략, 기술, 시장 잠재력을 분석하고, 경쟁사의 인사이트를 제공합니다.

목차

제1장 주요 요약

제2장 자동차 업계에서 AI의 기회

제3장 자동차 업계용 AI 기술 상세

제4장 자동차 밸류체인 전체의 AI 응용

제5장 주요 파트너십과 생태계의 개발

제6장 자동차 업계의 AI에 대한 최대 투자

제7장 규제와 윤리 기준의 진화

제8장 CXO에 대한 인터뷰

제9장 경쟁과 진출 기업 전략

제10장 혁신 허브

ksm
영문 목차

영문목차

AI in Automotive has huge potential to revolutionise the whole value chain, from generative AI design to manufacturing, vehicle utilization, EVs, Autonomous Driving and end-of-life. But players must overcome techno-commercial challenges including high investment costs and increasing competition. This report analyses the strategies, technologies and market potential of AI in Automotive and provides competitor insights...

The automotive industry has used AI for decades, such as Computer Vision and Machine Learning for vehicle perception in autonomous driving, robotics in manufacturing, and NLP for voice recognition in-car assistants.

However, the era of the "AI-defined Car" is just starting to impact the whole Automotive value chain.

The convergence of innovation breakthroughs in AI, such as huge strides in GAN and advancements in computational power, with commercial readiness and strong investments, unlock opportunities for new revenues, product differentiation, operational efficiency and regulatory compliance.

Auto2x has developed a proprietary methodology of scouting for growth opportunities and prioritising them to help stakeholders turn data into action. Access the Live Ranking with 100+ opportunities of Ai in Automotive.

The Rise of the AI-Defined Vehicle

AI-defined vehicles represent a transformative shift in automotive technology from supervised machine learning to self-learning AI taking central role

An AI-defined vehicle is distinguished by its reliance on artificial intelligence (AI) as a central component in driving operations, vehicle management, and user interactions.

Unlike traditional vehicles or even many autonomous systems that depend heavily on predefined programming and extensive sensor arrays, AI-defined vehicles use AI algorithms to process and adapt to real-world environments dynamically.

Tesla is a pioneer in this space pushing the boundaries and emphasizing adaptability, scalability, and efficiency over traditional sensor-based autonomy systems.

The Explosion of Vehicle Data and the Shift to On-Board Real-time Processing with AI

Modern autonomous vehicles leverage deep learning algorithms that process extensive data from various sensors in real-time. AI enables vehicles to analyze real-time data from their environment, including traffic conditions and obstacles, which is crucial for safe navigation.

With data processing moving from offline to on-board vehicles, demand for AI to improve data processing and real-time decision-making for critical operations in EVs and ADAS is increasing.

Innovation is marching strong Creating Opportunities for Differentiation and Revenues

AI research output has increased from less than 1 million papers in 2021 to 13 million papers in 2021, an increase of 1300%.

The analysis of the Patent Landscape Report on GenAI by the WIPO revealed that Asia companies hold the lion's share in publications. Tencent, Ping An Insurance Group and Baidu own the most GenAI patents.

Strong innovation is helping Asian players develop a competitive advantage and monetize their edge through licensing Standard Essential Patents (SEPs).

Rising Demand for AI Chips for Inference and Model Training Reveal Early Winners

Demand for more and faster Graphic Processing Units (GPUs) is getting stronger as demonstrated by the financial performance of NVIDIA, AMD and other AI leaders. GPUs are used for answering questions on existing models (inference) and during the development phase of an AI model (training).

New Generative AI Applications in Cars Enhance Customer Experiences

Generative AI can enhance automotive design, manufacturing, customer experiences with better communication between drivers and car assistants, as well as vehicle perception for Autonomous Driving from Baidu & Haomo.ai.

Investment in AI in Automotive is Booming To Control AI Infrastructure

Partnerships between AI Leaders and Automotive Players are on the Rise To Enhance Market Positioning

BYD's partnership with NVIDIA focuses on AI training and in-car computing for EVs, highlighting China's strategic push in AI integration.

Players Must Overcome Roadblocks to Unlock the Full Potential of the AI-Defined Car

To realise the full potential of AI in Automotive, players must solve technological challenges in the integration of tech, balance the high investment cost with prioritisation of applications with high ROI and develop in-house expertise to stay relevant.

Furthermore, they will have to protect their Intellectual Property, guarantee safety, privacy and security for their customers and manage regulatory mandates and ethical development requirements.

10 Reasons You Should Read This Report: Our Unique Value Proposition

This report analyses the strategies, technologies and market potential of AI in Automotive to provide competitor insights and actionable guidance.

Our Unique Methodology

Live Ranking of Top Opportunities in AI in the Automotive Industry

Auto2x synthesizes innovation metrics, data, expert opinion and proprietary methodologies to develop a long list of disruptive opportunities to innovate, generate new revenues, expand to new markets and improve operational efficiency.

We assess each opportunity based on its Market Potential and Technological Readiness Scores, which are weighted scores comprising TAM (Total Addressable Market), TAM Growth, Competition, Value addition, Investment, Technology Readiness Level (TRL), Patent filings and Scientific research, Scalability and others.

Live Database with AI-Automotive Use Cases From Design to End-of-Life

Auto2x has developed a unique database of AI applications across the value chain in Automotive and use cases in Automotive which is accessible as part of this report. The database unveils:

9 Questions This Report Answers About AI in Automotive:

Who Should Read This Report:

Companies Mentioned: +20 OEMs, +30 Suppliers and +1000 Start-ups

Table of Contents

1. Executive Summary

2. The Opportunity in AI in Automotive

3. Deep Dive in AI Technology for the Automotive Industry

4. Applications of AI across the Automotive Value Chain

5. Key Partnerships and the Development of Ecosystems

6. The Biggest Investments in AI in the Automotive Industry

7. Evolving Regulation and Ethical Standards

8. Interviews with CXOs

9. Competition and Player Strategies

10. Innovation Hubs

(주)글로벌인포메이션 02-2025-2992 kr-info@giikorea.co.kr
ⓒ Copyright Global Information, Inc. All rights reserved.
PC버전 보기