¼¼°èÀÇ µ¥ÀÌÅÍ ·©±Û¸µ ½ÃÀå Á¶»ç º¸°í¼ : »ê¾÷ ºÐ¼®, ±Ô¸ð, Á¡À¯À², ¼ºÀå, µ¿Çâ, ¿¹Ãø(2023-2030³â)
Global Data Wrangling Market Research Report - Industry Analysis, Size, Share, Growth, Trends and Forecast 2023 to 2030
µ¥ÀÌÅÍ ·©±Û¸µ ½ÃÀåÀÇ ¼¼°è ¼ö¿ä´Â 2023-2030³â µ¿¾È 20.52%ÀÇ CAGR·Î 2022³â 49¾ï 3,000¸¸ ´Þ·¯¿¡¼ 2030³â °ÅÀÇ 264¾ï 5,000¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ÃßÁ¤µË´Ï´Ù.
µ¥ÀÌÅÍ ·©±Û¸µÀº º¹ÀâÇÑ µ¥ÀÌÅÍ ¼¼Æ®¸¦ º¸´Ù ½±°Ô Á¢±ÙÇÏ°í ºÐ¼®ÇÒ ¼ö ÀÖµµ·Ï ¿À·ù¸¦ Á¦°ÅÇÏ°í °áÇÕÇÏ´Â °úÁ¤ÀÔ´Ï´Ù. ¸ðµç ºÐ¼®Àº °á±¹ ºÐ¼®¿¡ µµ¿òÀÌ µÇ´Â µ¥ÀÌÅÍ¿¡ ÀÇÇØ Á¦¾àÀ» ¹Þ°Ô µË´Ï´Ù. ºÒ¿ÏÀüÇÑ µ¥ÀÌÅÍ, ½Å·ÚÇÒ ¼ö ¾ø´Â µ¥ÀÌÅÍ, °áÇÔÀÌ ÀÖ´Â µ¥ÀÌÅÍ´Â ºÐ¼®À» Á¦¾àÇÒ ¼ö ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ ·©±Û¸µÀº µ¥ÀÌÅͰ¡ ºÐ¼®µÇ°í Ȱ¿ëµÇ±â Àü¿¡ ½Å·ÚÇÒ ¼ö ÀÖ´Â »óÅ·ΠÀ¯ÁöµÉ ¼ö ÀÖµµ·Ï º¸ÀåÇÕ´Ï´Ù. µû¶ó¼ µ¥ÀÌÅÍ ·©±Û¸µÀº ºÐ¼® ÇÁ·Î¼¼½ºÀÇ Áß¿äÇÑ ºÎºÐÀÌ µË´Ï´Ù. µ¥ÀÌÅÍ ·©±Û¸µÀº ¸®½ºÅ© °ü¸®, ÄÄÇöóÀ̾ð½º, µ¥ÀÌÅÍ º¸¾È¿¡ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ¶ÇÇÑ, µ¥ÀÌÅÍ Áߺ¹À» Á¦°ÅÇÔÀ¸·Î½á ½ºÅ丮Áö ¹× ¹é¾÷ ºñ¿ëÀ» Àý°¨ÇÏ°í °Ë»ö °á°úÀÇ ¼Óµµ¸¦ ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù.
½ÃÀå ¿ªÇÐ:
µ¥ÀÌÅÍ ·©±Û¸µÀÌ Á¦°øÇÏ´Â µµ±¸¿Í ¼ºñ½º´Â ½Å¼ÓÇÑ ºÐ¼®°ú Á¤º¸¿¡ ±â¹ÝÇÑ ÇൿÀ¸·Î °æÀï ¿ìÀ§¸¦ È®º¸ÇÒ ¼ö Àִ Ź¿ùÇÑ ÀÇ»ç°áÁ¤ ´É·Â µî ¸¹Àº ÀÌÁ¡À» Á¦°øÇÕ´Ï´Ù. ±â¾÷µéÀº µ¥ÀÌÅÍ ·©±Û¸µÀ» ÅëÇØ ºñÁö´Ï½º ¼º°ú¿¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ´Â ¼ö¸¹Àº À̺¥Æ®¸¦ ½Ç½Ã°£À¸·Î ¿¹ÃøÇÏ°í ¸ð´ÏÅ͸µÇϰí ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ °úÇÐ, AI, ¸Ó½Å·¯´×ÀÇ ±â¼ú ¹ßÀüÀ¸·Î ÀÎÇØ ÀÌ »ê¾÷Àº È®ÀåµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¿§Áö ÄÄÇ»ÆÃ ¼Ö·ç¼ÇÀÇ °³Ã´ÀÌ ½ÃÀåÀ» Ȱ¼ºÈ½Ã۰í ÀÖ½À´Ï´Ù. ½ÃÀå ¼ºÀåÀº ´õ ³ªÀº ½Å¼ÓÇÑ ÀÇ»ç °áÁ¤À» ÃËÁøÇϰí Á¤º¸¸¦ Àû½Ã¿¡ ½Å¼ÓÇÏ°Ô ºÐ¼®ÇÒ ¼ö ÀÖ´Â ºòµ¥ÀÌÅÍ ºÐ¼® ¼ÒÇÁÆ®¿þ¾îÀÇ ´É·Â¿¡ ±âÀÎÇÕ´Ï´Ù. ºòµ¥ÀÌÅÍ ºÐ¼® ¼ÒÇÁÆ®¿þ¾î¿¡ ´ëÇÑ ¼ö¿ä´Â Áö¼ÓÀûÀ¸·Î Áõ°¡Çϰí ÀÖÀ¸¸ç, ÀÌ´Â Áß¿äÇÑ ºñÁö´Ï½º ÁöÇ¥¿¡ ´ëÇÑ Á¢±Ù, °í°´ Çൿ¿¡ ´ëÇÑ ÀλçÀÌÆ®, ¼öÀÍ Áõ´ë, È¿À²¼º Çâ»ó µî ¸¹Àº ÀÌÁ¡À» Á¦°øÇϱ⠶§¹®ÀÔ´Ï´Ù.
ÀÌ Á¶»ç º¸°í¼´Â Porter's Five Forces ¸ðµ¨, ½ÃÀå ¸Å·Âµµ ºÐ¼® ¹× ¹ë·ùüÀÎ ºÐ¼®À» ´Ù·ì´Ï´Ù. ÀÌ·¯ÇÑ µµ±¸´Â ¾÷°èÀÇ ±¸Á¶¸¦ ¸íÈ®ÇÏ°Ô ÆÄ¾ÇÇÏ°í ¼¼°è ¼öÁØ¿¡¼ °æÀïÀÇ ¸Å·ÂÀ» Æò°¡ÇÏ´Â µ¥ µµ¿òÀ̵˴ϴÙ. ¶ÇÇÑ ÀÌ·¯ÇÑ µµ±¸´Â µ¥ÀÌÅÍ ·©±Û¸µ ¼¼°è ½ÃÀå¿¡¼ °¢ ºÎ¹®À» Æ÷°ýÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ ·©±Û¸µ »ê¾÷ÀÇ ¼ºÀå°ú µ¿ÇâÀº ÀÌ ¿¬±¸¿¡ ´ëÇÑ ÀüüÀûÀÎ Á¢±Ù ¹æ½ÄÀ» Á¦°øÇÕ´Ï´Ù.
Áö¿ªº° ºÐ¼®:
ÀÌ ¼½¼Ç¿¡¼´Â ºÏ¹Ì, À¯·´, ¾Æ½Ã¾ÆÅÂÆò¾ç, ¶óƾ¾Æ¸Þ¸®Ä«, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ µ¥ÀÌÅÍ ·©±Û¸µ ½ÃÀåÀÇ ÇöÀç¿Í ¹Ì·¡ ¼ö¿ä¸¦ °Á¶ÇÏ´Â Áö¿ª Àü¸ÁÀ» ´Ù·ì´Ï´Ù. ¶ÇÇÑ, ¸ðµç ÁÖ¿ä Áö¿ªÀÇ °³º° ¾ÖÇø®ÄÉÀÌ¼Ç ºÎ¹®ÀÇ ¼ö¿ä, ÃßÁ¤ ¹× ¿¹Ãø¿¡ ÃÊÁ¡À» ¸ÂÃß°í ÀÖ½À´Ï´Ù.
¸ÂÃãÇü ¿ä±¸»çÇ×ÀÌ ÀÖ´Â °æ¿ì, ÀúÈñ¿¡°Ô ¿¬¶ôÇϽʽÿÀ. ¿ì¸®ÀÇ ¿¬±¸ ÆÀÀº °í°´ÀÇ ¿ä±¸¿¡ µû¶ó ¸ÂÃãÇü º¸°í¼¸¦ Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù.
¸ñÂ÷
Á¦1Àå ¼¹®
Á¦2Àå ÁÖ¿ä ¿ä¾à
- ½ÃÀå ÇÏÀ̶óÀÌÆ®
- ¼¼°è ½ÃÀå ÇöȲ
Á¦3Àå µ¥ÀÌÅÍ ·©±Û¸µ - »ê¾÷ ºÐ¼®
- ¼·Ð : ½ÃÀå ¿ªÇÐ
- ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
- ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
- ±âȸ
- ¾÷°è µ¿Çâ
- Porter's Five Forces ºÐ¼®
- ½ÃÀå ¸Å·Âµµ ºÐ¼®
Á¦4Àå ¹ë·ùüÀÎ ºÐ¼®
- ¹ë·ùüÀÎ ºÐ¼®
- ¿øÀç·á ºÐ¼®
- ¿øÀç·á ¸®½ºÆ®
- ¿øÀç·á Á¦Á¶¾÷ü ¸®½ºÆ®
- ÁÖ¿ä ¿øÀç·á °¡°Ý µ¿Çâ
- ÀáÀçÀû ¹ÙÀÌ¾î ¸®½ºÆ®
- ¸¶ÄÉÆÃ Ã¤³Î
- Á÷Á¢ ¸¶ÄÉÆÃ
- °£Á¢ ¸¶ÄÉÆÃ
- ¸¶ÄÉÆÃ Ã¤³Î ¹ßÀü µ¿Çâ
Á¦5Àå COVID-19 ¹ß»ýÀÇ ¿µÇ⠺м®
Á¦6Àå µ¥ÀÌÅÍ ·©±Û¸µ ¼¼°è ½ÃÀå ºÐ¼® : ºÎ¹®º°
- ºÎ¹®º° °³¿ä
- ½ÇÀû µ¥ÀÌÅÍ¿Í ¿¹Ãø µ¥ÀÌÅÍ
- ºÎ¹®º° ºÐ¼®
- ¸¶ÄÉÆÃ¡¤¿µ¾÷
- À繫
- ¿ÀÆÛ·¹À̼Ç
- Àλç
- ¹ý¹«
Á¦7Àå µ¥ÀÌÅÍ ·©±Û¸µ ¼¼°è ½ÃÀå ºÐ¼® : ÄÄÆ÷³ÍÆ®º°
- ÄÄÆ÷³ÍÆ®º° °³¿ä
- ½ÇÀû µ¥ÀÌÅÍ¿Í ¿¹Ãø µ¥ÀÌÅÍ
- ÄÄÆ÷³ÍÆ®º° ºÐ¼®
- Åø
- ¼ºñ½º
Á¦8Àå µ¥ÀÌÅÍ ·©±Û¸µ ¼¼°è ½ÃÀå ºÐ¼® : Àü°³ ¸ðµ¨º°
- Àü°³ ¸ðµ¨º° °³¿ä
- ½ÇÀû µ¥ÀÌÅÍ¿Í ¿¹Ãø µ¥ÀÌÅÍ
- Àü°³ ¸ðµ¨º° ºÐ¼®
- ¿ÂÇÁ·¹¹Ì½º
- Ŭ¶ó¿ìµå
Á¦9Àå µ¥ÀÌÅÍ ·©±Û¸µ ¼¼°è ½ÃÀå ºÐ¼® : Á¶Á÷ ±Ô¸ðº°
- Á¶Á÷ ±Ô¸ðº° °³¿ä
- ½ÇÀû µ¥ÀÌÅÍ¿Í ¿¹Ãø µ¥ÀÌÅÍ
- Á¶Á÷ ±Ô¸ðº° ºÐ¼®
- ´ë±â¾÷
- Áß¼Ò±â¾÷(SME)
Á¦10Àå µ¥ÀÌÅÍ ·©±Û¸µ ¼¼°è ½ÃÀå ºÐ¼® : ¾÷°èº°
- ¾÷°èº° °³¿ä
- ½ÇÀû µ¥ÀÌÅÍ¿Í ¿¹Ãø µ¥ÀÌÅÍ
- ¾÷°èº° ºÐ¼®
- BFSI
- Åë½Å¡¤IT
- ¼Ò¸Å¿Í E-Commerce
- ÇコÄɾî¿Í »ý¸í°úÇÐ
- ¿©Çࡤȣ½ºÇÇÅ»¸®Æ¼
- Á¤ºÎ±â°ü
- Á¦Á¶¾÷
- ¿¡³ÊÁö¡¤À¯Æ¿¸®Æ¼
- ¿î¼Û¡¤¹°·ù
- ±âŸ(¹Ìµð¾î¡¤¿À¶ô, ±³À°¡¤Á¶»ç, ºÎµ¿»ê)
Á¦11Àå µ¥ÀÌÅÍ ·©±Û¸µ ¼¼°è ½ÃÀå ºÐ¼® : Áö¿ªº°
- »óÀ§ ±â¾÷ Á¡À¯À² ºÐ¼®
- ¼·Ð
- ºÏ¹Ì ¸ÅÃ⠺м®
- °³¿ä, ½ÇÀû°ú ¿¹Ãø
- ºÏ¹Ì : ºÎ¹®º°
- ºÏ¹Ì : ±¹°¡º°
- ¹Ì±¹
- ij³ª´Ù
- ¸ß½ÃÄÚ
- À¯·´ ¸ÅÃ⠺м®
- °³¿ä, ½ÇÀû°ú ¿¹Ãø
- À¯·´ : ºÎ¹®º°
- À¯·´ : ±¹°¡º°
- ¿µ±¹
- ÇÁ¶û½º
- µ¶ÀÏ
- ÀÌÅ»¸®¾Æ
- ·¯½Ã¾Æ
- ±âŸ À¯·´
- ¾Æ½Ã¾ÆÅÂÆò¾ç ¸ÅÃ⠺м®
- °³¿ä, ½ÇÀû°ú ¿¹Ãø
- ¾Æ½Ã¾ÆÅÂÆò¾ç : ºÎ¹®º°
- ¾Æ½Ã¾ÆÅÂÆò¾ç : ±¹°¡º°
- Áß±¹
- Àεµ
- ÀϺ»
- Çѱ¹
- È£ÁÖ
- ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
- ¶óƾ¾Æ¸Þ¸®Ä« ¸ÅÃ⠺м®
- °³¿ä, ½ÇÀû°ú ¿¹Ãø
- ¶óƾ¾Æ¸Þ¸®Ä« : ºÎ¹®º°
- ¶óƾ¾Æ¸Þ¸®Ä« : ±¹°¡º°
- ºê¶óÁú
- ¾Æ¸£ÇîÆ¼³ª
- Æä·ç
- Ä¥·¹
- ±âŸ ¶óƾ¾Æ¸Þ¸®Ä«
- Áßµ¿ ¹× ¾ÆÇÁ¸®Ä« ¸ÅÃ⠺м®
- °³¿ä, ½ÇÀû°ú ¿¹Ãø
- Áßµ¿ ¹× ¾ÆÇÁ¸®Ä« : ºÎ¹®º°
- Áßµ¿ ¹× ¾ÆÇÁ¸®Ä« : ±¹°¡º°
- »ç¿ìµð¾Æ¶óºñ¾Æ
- ¾Æ¶ø¿¡¹Ì¸®Æ®
- À̽º¶ó¿¤
- ³²¾ÆÇÁ¸®Ä«°øÈ±¹
- ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
Á¦12Àå µ¥ÀÌÅÍ ·©±Û¸µ ±â¾÷ °æÀï »óȲ
- µ¥ÀÌÅÍ ·©±Û¸µ ½ÃÀå °æÀï
- ÆÄÆ®³Ê½Ê/Á¦ÈÞ/ÇÕÀÇ
- ÀμöÇÕº´
- ½ÅÁ¦Ç° ¹ß¸Å
- ±âŸ °³¹ß
Á¦13Àå ±â¾÷ °³¿ä
- ±â¾÷ Á¡À¯À² ºÐ¼®
- ½ÃÀå ÁýÁßµµ
- Trifacta(¹Ì±¹)
- Datawatch(¹Ì±¹)
- Dataiku(ÇÁ¶û½º)
- IBM(¹Ì±¹)
- SAS Institute(¹Ì±¹)
- Oracle(¹Ì±¹)
- Talend(¹Ì±¹)
- Alteryx(¹Ì±¹)
- TIBCO(¹Ì±¹)
- Paxata(¹Ì±¹)
- Informatica(¹Ì±¹)
- Hitachi Vantara(¹Ì±¹)
- Teradata(¹Ì±¹)
- Datameer(¹Ì±¹)
- Cooladata(¹Ì±¹)
- Unifi(¹Ì±¹)
- Rapid Insight(¹Ì±¹)
- Infogix(¹Ì±¹)
- Zaloni(¹Ì±¹)
- Impetus(¹Ì±¹)
- Ideata Analytics(Àεµ)
- Onedot(½ºÀ§½º)
- IRI(¹Ì±¹)
- Brillio
- TMMData(¹Ì±¹)
ksm
The global demand for Data Wrangling Market is presumed to reach the market size of nearly USD 26.45 BN by 2030 from USD 4.93 BN in 2022 with a CAGR of 20.52% under the study period 2023 - 2030.
Data wrangling is the process that removes errors and combines complex data sets to make them more accessible and easier to analyze. Any analysis a business performs will ultimately be constrained by the data that informs them. Incomplete, unreliable, or faulty data can constrain the analysis. Data wrangling ensures the data stays in a reliable state before it's analyzed and leveraged. It makes data wrangling a critical part of the analytical process. Data wrangling is crucial for risk management, compliance, and data security. Additionally, removing data duplications lowers storage and backup costs while facilitating faster search results.
MARKET DYNAMICS:
Tools and services provided by data wrangling have many advantages, including better decision-making ability to gain a competitive edge by quickly analyzing and acting on the information. Companies are adopting data wrangling for real-time forecasting and monitoring of numerous events that may impact their performance. The industry is expanding because of technological advancements in data science, AI, and machine learning. Additionally, the Development of edge computing solutions is fueling the market. The market growth is due to the capacity of big data analytics software to facilitate better and faster decision-making and analyzing information promptly on time. The need for big data analytics software is continuously increasing because it offers many benefits, such as access to vital business metrics, insight into customer behaviour, increased revenue, improved efficiency, and others.
The research report covers Porter's Five Forces Model, Market Attractiveness Analysis, and Value Chain analysis. These tools help to get a clear picture of the industry's structure and evaluate the competition attractiveness at a global level. Additionally, these tools also give an inclusive assessment of each segment in the global market of data wrangling. The growth and trends of data wrangling industry provide a holistic approach to this study.
MARKET SEGMENTATION:
This section of the data wrangling market report provides detailed data on the segments at country and regional level, thereby assisting the strategist in identifying the target demographics for the respective product or services with the upcoming opportunities.
By Business Function
- Marketing And Sales
- Finance
- Operations
- HR
- Legal
By Component
By Deployment Model
By Organization Size
- Large Enterprises
- Small And Medium-Sized Enterprises (SMEs)
By Vertical
- BFSI
- Telecom And IT
- Retail And Ecommerce
- Healthcare And Life Sciences
- Travel And Hospitality
- Government
- Manufacturing
- Energy And Utilities
- Transportation And Logistics
- Others (Media And Entertainment, Education And Research, And Real Estate)
REGIONAL ANALYSIS:
This section covers the regional outlook, which accentuates current and future demand for the Data Wrangling market across North America, Europe, Asia-Pacific, Latin America, and Middle East & Africa. Further, the report focuses on demand, estimation, and forecast for individual application segments across all the prominent regions.
The research report also covers the comprehensive profiles of the key players in the market and an in-depth view of the competitive landscape worldwide. The major players in the data wrangling market include Trifacta (US), Datawatch (US), Dataiku (France), IBM (US), SAS Institute (US), Oracle (US), Talend (US), Alteryx (US), TIBCO (US), Paxata (US), Informatica (US), Hitachi Vantara (US), Teradata (US), Datameer (US), Cooladata (US), Unifi (US), Rapid Insight (US), Infogix, (US), Zaloni (US), Impetus (US), Ideata Analytics (India), Onedot (Switzerland), IRI (US), Brillio, and TMMData(US). This section consists of a holistic view of the competitive landscape that includes various strategic developments such as key mergers & acquisitions, future capacities, partnerships, financial overviews, collaborations, new product developments, new product launches, and other developments.
In case you have any custom requirements, do write to us. Our research team can offer a customized report as per your need.
TABLE OF CONTENTS
1 . PREFACE
- 1.1. Report Description
- 1.1.1. Objective
- 1.1.2. Target Audience
- 1.1.3. Unique Selling Proposition (USP) & offerings
- 1.2. Research Scope
- 1.3. Research Methodology
- 1.3.1. Market Research Process
- 1.3.2. Market Research Methodology
2 . EXECUTIVE SUMMARY
- 2.1. Highlights of Market
- 2.2. Global Market Snapshot
3 . DATA WRANGLING - INDUSTRY ANALYSIS
- 3.1. Introduction - Market Dynamics
- 3.2. Market Drivers
- 3.3. Market Restraints
- 3.4. Opportunities
- 3.5. Industry Trends
- 3.6. Porter's Five Force Analysis
- 3.7. Market Attractiveness Analysis
- 3.7.1 Market Attractiveness Analysis By Business Function
- 3.7.2 Market Attractiveness Analysis By Component
- 3.7.3 Market Attractiveness Analysis By Deployment Model
- 3.7.4 Market Attractiveness Analysis By Organization Size
- 3.7.5 Market Attractiveness Analysis By Vertical
- 3.7.6 Market Attractiveness Analysis By Region
4 . VALUE CHAIN ANALYSIS
- 4.1. Value Chain Analysis
- 4.2. Raw Material Analysis
- 4.2.1. List of Raw Materials
- 4.2.2. Raw Material Manufactures List
- 4.2.3. Price Trend of Key Raw Materials
- 4.3. List of Potential Buyers
- 4.4. Marketing Channel
- 4.4.1. Direct Marketing
- 4.4.2. Indirect Marketing
- 4.4.3. Marketing Channel Development Trend
5 . IMPACT ANALYSIS OF COVID-19 OUTBREAK
6 . GLOBAL DATA WRANGLING MARKET ANALYSIS BY BUSINESS FUNCTION
- 6.1 Overview by Business Function
- 6.2 Historical and Forecast Data
- 6.3 Analysis by Business Function
- 6.4 Marketing And Sales Historic and Forecast Sales by Regions
- 6.5 Finance Historic and Forecast Sales by Regions
- 6.6 Operations Historic and Forecast Sales by Regions
- 6.7 HR Historic and Forecast Sales by Regions
- 6.8 Legal Historic and Forecast Sales by Regions
7 . GLOBAL DATA WRANGLING MARKET ANALYSIS BY COMPONENT
- 7.1 Overview by Component
- 7.2 Historical and Forecast Data
- 7.3 Analysis by Component
- 7.4 Tools Historic and Forecast Sales by Regions
- 7.5 Services Historic and Forecast Sales by Regions
8 . GLOBAL DATA WRANGLING MARKET ANALYSIS BY DEPLOYMENT MODEL
- 8.1 Overview by Deployment Model
- 8.2 Historical and Forecast Data
- 8.3 Analysis by Deployment Model
- 8.4 On-premises Historic and Forecast Sales by Regions
- 8.5 Cloud Historic and Forecast Sales by Regions
9 . GLOBAL DATA WRANGLING MARKET ANALYSIS BY ORGANIZATION SIZE
- 9.1 Overview by Organization Size
- 9.2 Historical and Forecast Data
- 9.3 Analysis by Organization Size
- 9.4 Large Enterprises Historic and Forecast Sales by Regions
- 9.5 Small And Medium-sized Enterprises (SMEs) Historic and Forecast Sales by Regions
10 . GLOBAL DATA WRANGLING MARKET ANALYSIS BY VERTICAL
- 10.1 Overview by Vertical
- 10.2 Historical and Forecast Data
- 10.3 Analysis by Vertical
- 10.4 BFSI Historic and Forecast Sales by Regions
- 10.5 Telecom And IT Historic and Forecast Sales by Regions
- 10.6 Retail And E-Commerce Historic and Forecast Sales by Regions
- 10.7 Healthcare And Life Sciences Historic and Forecast Sales by Regions
- 10.8 Travel And Hospitality Historic and Forecast Sales by Regions
- 10.9 Government Historic and Forecast Sales by Regions
- 10.10. Manufacturing Historic and Forecast Sales by Regions
- 10.11 Energy And Utilities Historic and Forecast Sales by Regions
- 10.12 Transportation And Logistics Historic and Forecast Sales by Regions
- 10.13 Others (Media And Entertainment, Education And Research, And Real Estate) Historic and Forecast Sales by Regions
11 . GLOBAL DATA WRANGLING MARKET ANALYSIS BY GEOGRAPHY
- 11.1. Top Company Share Analysis
- 11.2. Introduction
- 11.3. North America Sales Analysis
- 11.3.1. Overview, Historic and Forecast Sales Analysis
- 11.3.2. North America By Segment Sales Analysis
- 11.3.3. North America By Country Sales Analysis
- 11.3.4. United State Sales Analysis
- 11.3.5. Canada Sales Analysis
- 11.3.6. Mexico Sales Analysis
- 11.4. Europe Sales Analysis
- 11.4.1. Overview, Historic and Forecast Sales Analysis
- 11.4.2. Europe by Segment Sales Analysis
- 11.4.3. Europe by Country Sales Analysis
- 11.4.4. United Kingdom Sales Analysis
- 11.4.5. France Sales Analysis
- 11.4.6. Germany Sales Analysis
- 11.4.7. Italy Sales Analysis
- 11.4.8. Russia Sales Analysis
- 11.4.9. Rest Of Europe Sales Analysis
- 11.5. Asia Pacific Sales Analysis
- 11.5.1. Overview, Historic and Forecast Sales Analysis
- 11.5.2. Asia Pacific by Segment Sales Analysis
- 11.5.3. Asia Pacific by Country Sales Analysis
- 11.5.4. China Sales Analysis
- 11.5.5. India Sales Analysis
- 11.5.6. Japan Sales Analysis
- 11.5.7. South Korea Sales Analysis
- 11.5.8. Australia Sales Analysis
- 11.5.9. Rest Of Asia Pacific Sales Analysis
- 11.6. Latin America Sales Analysis
- 11.6.1. Overview, Historic and Forecast Sales Analysis
- 11.6.2. Latin America by Segment Sales Analysis
- 11.6.3. Latin America by Country Sales Analysis
- 11.6.4. Brazil Sales Analysis
- 11.6.5. Argentina Sales Analysis
- 11.6.6. Peru Sales Analysis
- 11.6.7. Chile Sales Analysis
- 11.6.8. Rest of Latin America Sales Analysis
- 11.7. Middle East & Africa Sales Analysis
- 11.7.1. Overview, Historic and Forecast Sales Analysis
- 11.7.2. Middle East & Africa by Segment Sales Analysis
- 11.7.3. Middle East & Africa by Country Sales Analysis
- 11.7.4. Saudi Arabia Sales Analysis
- 11.7.5. UAE Sales Analysis
- 11.7.6. Israel Sales Analysis
- 11.7.7. South Africa Sales Analysis
- 11.7.8. Rest Of Middle East And Africa Sales Analysis
12 . COMPETITIVE LANDSCAPE OF THE DATA WRANGLING COMPANIES
- 12.1. Data Wrangling Market Competition
- 12.2. Partnership/Collaboration/Agreement
- 12.3. Merger And Acquisitions
- 12.4. New Product Launch
- 12.5. Other Developments
13 . COMPANY PROFILES OF DATA WRANGLING INDUSTRY
- 13.1. Company Share Analysis
- 13.2. Market Concentration Rate
- 13.3. Trifacta (US)
- 13.3.1. Company Overview
- 13.3.2. Company Revenue
- 13.3.3. Products
- 13.3.4. Recent Developments
- 13.4. Datawatch (US)
- 13.4.1. Company Overview
- 13.4.2. Company Revenue
- 13.4.3. Products
- 13.4.4. Recent Developments
- 13.5. Dataiku (France)
- 13.5.1. Company Overview
- 13.5.2. Company Revenue
- 13.5.3. Products
- 13.5.4. Recent Developments
- 13.6. IBM (US)
- 13.6.1. Company Overview
- 13.6.2. Company Revenue
- 13.6.3. Products
- 13.6.4. Recent Developments
- 13.7. SAS Institute (US)
- 13.7.1. Company Overview
- 13.7.2. Company Revenue
- 13.7.3. Products
- 13.7.4. Recent Developments
- 13.8. Oracle (US)
- 13.8.1. Company Overview
- 13.8.2. Company Revenue
- 13.8.3. Products
- 13.8.4. Recent Developments
- 13.9. Talend (US)
- 13.9.1. Company Overview
- 13.9.2. Company Revenue
- 13.9.3. Products
- 13.9.4. Recent Developments
- 13.10. Alteryx (US)
- 13.10.1. Company Overview
- 13.10.2. Company Revenue
- 13.10.3. Products
- 13.10.4. Recent Developments
- 13.11. TIBCO (US)
- 13.11.1. Company Overview
- 13.11.2. Company Revenue
- 13.11.3. Products
- 13.11.4. Recent Developments
- 13.12. Paxata (US)
- 13.12.1. Company Overview
- 13.12.2. Company Revenue
- 13.12.3. Products
- 13.12.4. Recent Developments
- 13.13. Informatica (US)
- 13.13.1. Company Overview
- 13.13.2. Company Revenue
- 13.13.3. Products
- 13.13.4. Recent Developments
- 13.14. Hitachi Vantara (US)
- 13.14.1. Company Overview
- 13.14.2. Company Revenue
- 13.14.3. Products
- 13.14.4. Recent Developments
- 13.15. Teradata (US)
- 13.15.1. Company Overview
- 13.15.2. Company Revenue
- 13.15.3. Products
- 13.15.4. Recent Developments
- 13.16. Datameer (US)
- 13.16.1. Company Overview
- 13.16.2. Company Revenue
- 13.16.3. Products
- 13.16.4. Recent Developments
- 13.17. Cooladata (US)
- 13.17.1. Company Overview
- 13.17.2. Company Revenue
- 13.17.3. Products
- 13.17.4. Recent Developments
- 13.18. Unifi (US)
- 13.18.1. Company Overview
- 13.18.2. Company Revenue
- 13.18.3. Products
- 13.18.4. Recent Developments
- 13.19. Rapid Insight (US)
- 13.19.1. Company Overview
- 13.19.2. Company Revenue
- 13.19.3. Products
- 13.19.4. Recent Developments
- 13.20. Infogix (US)
- 13.20.1. Company Overview
- 13.20.2. Company Revenue
- 13.20.3. Products
- 13.20.4. Recent Developments
- 13.21. Zaloni (US)
- 13.21.1. Company Overview
- 13.21.2. Company Revenue
- 13.21.3. Products
- 13.21.4. Recent Developments
- 13.22. Impetus (US)
- 13.22.1. Company Overview
- 13.22.2. Company Revenue
- 13.22.3. Products
- 13.22.4. Recent Developments
- 13.23. Ideata Analytics (India)
- 13.23.1. Company Overview
- 13.23.2. Company Revenue
- 13.23.3. Products
- 13.23.4. Recent Developments
- 13.24. Onedot (Switzerland)
- 13.24.1. Company Overview
- 13.24.2. Company Revenue
- 13.24.3. Products
- 13.24.4. Recent Developments
- 13.25. IRI (US)
- 13.25.1. Company Overview
- 13.25.2. Company Revenue
- 13.25.3. Products
- 13.25.4. Recent Developments
- 13.26. Brillio
- 13.26.1. Company Overview
- 13.26.2. Company Revenue
- 13.26.3. Products
- 13.26.4. Recent Developments
- 13.27. TMMData(US)
- 13.27.1. Company Overview
- 13.27.2. Company Revenue
- 13.27.3. Products
- 13.27.4. Recent Developments
Note - in company profiling, financial details and recent development are subject to availability or might not be covered in case of private companies