¼¼°èÀÇ µ¥ÀÌÅÍ ·©±Û¸µ ½ÃÀå : ½ÃÀå ±Ô¸ð, Á¡À¯À², µ¿Ç⠺м® º¸°í¼­ - Àü°³ ¸ðµåº°, ÄÄÆ÷³ÍÆ®º°, ºñÁî´Ï½º ±â´Éº°, Á¶Á÷ ±Ô¸ðº°, ¾÷°èº°, Áö¿ªº° Àü¸Á ¹× ¿¹Ãø(2024-2031³â)
Global Data Wrangling Market Size, Share & Trends Analysis Report By Deployment Mode (On-premise, and Cloud), By Component, By Business Function, By Organization Size, By Vertical, By Regional Outlook and Forecast, 2024 - 2031
»óǰÄÚµå : 1645313
¸®¼­Ä¡»ç : KBV Research
¹ßÇàÀÏ : 2025³â 01¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 364 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 3,600 £Ü 5,208,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy & Paste °¡´ÉÇÕ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 4,320 £Ü 6,250,000
PDF (Multi User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ 10¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy & Paste °¡´ÉÇÕ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,048 £Ü 8,750,000
PDF (Corporate User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy & Paste °¡´ÉÇÕ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ µ¥ÀÌÅÍ ·©±Û¸µ ½ÃÀå ±Ô¸ð´Â ¿¹Ãø ±â°£ µ¿¾È 13.9%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î ½ÃÀå ¼ºÀåÇÒ Àü¸ÁÀ̸ç, 2031³â±îÁö 76¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¶ÇÇÑ ¾÷°è Àü¹Ý¿¡¼­ ÀΰøÁö´É(AI)°ú ¸Ó½Å·¯´×(ML)¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁü¿¡ µû¶ó °íǰÁúÀÇ ±¸Á¶È­µÈ µ¥ÀÌÅÍ¿¡ ´ëÇÑ Çʿ伺ÀÌ Ä¿Áö°í ÀÖ½À´Ï´Ù. ÀÌ´Â AI ¸ðµ¨ÀÇ È¿À²¼º°ú Á¤È®¼ºÀ» ³ôÀÌ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. Á¦´ë·Î ÁغñµÇÁö ¾ÊÀº µ¥ÀÌÅÍ´Â ¹ÙÀ̾, ¿À·ù, ºÎÁ¤È®¼ºÀ» ÃÊ·¡ÇÏ¿© ¸ðµ¨ ¿¹ÃøÀÇ ½Å·Ú¼ºÀ» ÀúÇϽÃų ¼ö ÀÖ½À´Ï´Ù. µû¶ó¼­ AI°¡ Áö¼ÓÀûÀ¸·Î ÁøÈ­ÇÔ¿¡ µû¶ó Áö´ÉÇü ÀÚ±â ÇнÀÇü µ¥ÀÌÅÍ ·©±Û¸µ Åø¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÌ ½ÃÀåÀÌ ´õ¿í ÃßÁøµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

±×·¯³ª µ¥ÀÌÅÍ ·©±Û¸µ ¼Ö·ç¼ÇÀ» ±¸ÇöÇÏ·Á¸é Á¶Á÷ÀÌ °í±Þ ¼ÒÇÁÆ®¿þ¾î, IT ÀÎÇÁ¶ó ¹× ¼÷·ÃµÈ Àü¹®°¡¿¡°Ô ¸¹Àº ÅõÀÚ¸¦ ÇØ¾ß Çϱ⠶§¹®¿¡ »ó´çÇÑ À繫 ¹®Á¦°¡ ¼ö¹ÝµË´Ï´Ù. ÀÌ·¯ÇÑ ¼Ö·ç¼Ç¿¡´Â AI ±¸µ¿ ÀÚµ¿È­, ¸Ó½Å·¯´× ¾Ë°í¸®Áò, Ŭ¶ó¿ìµå ±â¹Ý ÇÁ·Î¼¼½ÌÀÌ Æ÷ÇԵǾî ÀÖÀ¸¸ç, ÀÌ ¸ðµç °Í¿¡ ¸¹Àº ºñ¿ëÀÌ µì´Ï´Ù. µû¶ó¼­ ÀÌ·¯ÇÑ ¿äÀÎÀº ½ÃÀå ¼ºÀåÀ» ¹æÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

Àü°³ ¸ðµåº° Àü¸Á

Àü°³ ¸ðµå¿¡ µû¶ó ½ÃÀåÀº Ŭ¶ó¿ìµå¿Í ¿ÂÇÁ·¹¹Ì½º·Î ºÐ·ùµË´Ï´Ù. Ŭ¶ó¿ìµå ºÎ¹®Àº 2023³â ½ÃÀå¿¡¼­ 37%ÀÇ ¼öÀÍ Á¡À¯À²À» ȹµæÇß½À´Ï´Ù. µ¥ÀÌÅÍ ºÐ¼® ±â´ÉÀÇ ÃÖ½ÅÈ­¸¦ ¸ñÇ¥·Î ÇÏ´Â ±â¾÷Àº Ŭ¶ó¿ìµå ±â¹Ý ·©±Û¸µ Ç÷§ÆûÀ» Ȱ¿ëÇÏ¿© ÀÚµ¿ µ¥ÀÌÅÍ Ã³¸®, AI ÁÖµµ º¯È¯, ¿øÈ°ÇÑ ¸ÖƼ Ŭ¶ó¿ìµå ÅëÇÕÀ» ½ÇÇöÇÕ´Ï´Ù. ½Ç½Ã°£ ºÐ¼®, ¿ø°Ý ¾×¼¼½º ¹× ¼¼°è Çù¾÷¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ±â¾÷Àº ¸¹Àº ¾çÀÇ ÀÎÇÁ¶ó ÅõÀÚ ¾øÀÌ ¿©·¯ ¼Ò½ºÀÇ µ¥ÀÌÅ͸¦ È¿À²ÀûÀ¸·Î ó¸®ÇÏ°í °ü¸®ÇÒ ¼ö ÀÖÀ¸¹Ç·Î Ŭ¶ó¿ìµå äÅÃÀÌ ´õ¿í ÃËÁøµË´Ï´Ù.

ÄÄÆ÷³ÍÆ®º° Àü¸Á

ÄÄÆ÷³ÍÆ®¸¦ ±â¹ÝÀ¸·Î ½ÃÀåÀº ¼Ö·ç¼Ç°ú ¼­ºñ½º·Î ³ª´¹´Ï´Ù. ¼­ºñ½º ºÎ¹®Àº 2023³â ½ÃÀå¿¡¼­ 28%ÀÇ ¼öÀÍ Á¡À¯À²À» ±â·ÏÇß½À´Ï´Ù. ¸¹Àº Á¶Á÷, ƯÈ÷ Áß¼Ò±â¾÷°ú ·¹°Å½Ã ÀÎÇÁ¶ó¸¦ º¸À¯ÇÑ ´ë±â¾÷Àº º¹ÀâÇÑ µ¥ÀÌÅÍ º¯È¯, ¸¶À̱׷¹ÀÌ¼Ç ¹× ÄÄÇöóÀ̾𽺠ÇÁ·Î¼¼½º¸¦ È¿°úÀûÀ¸·Î °ü¸®Çϱâ À§ÇÑ ³»ºÎ Àü¹® Áö½ÄÀÌ ºÎÁ·ÇÕ´Ï´Ù. ±× °á°ú µ¥ÀÌÅÍ Á¤¸®, Áߺ¹ Á¦°Å, °­È­, °ËÁõ µîÀÇ ÀÛ¾÷À» ó¸®Çϱâ À§ÇØ Å¸»ç ¼­ºñ½º Á¦°ø¾÷ü¿¡ ÀÇÁ¸ÇÏ¿© µ¥ÀÌÅÍÀÇ Á¤È®¼º, Àϰü¼º ¹× ºÐ¼®À» ÁغñÇÒ ¼ö ÀÖ½À´Ï´Ù.

ºñÁî´Ï½º ±â´Éº° Àü¸Á

ºñÁî´Ï½º ±â´ÉÀ» ¹ÙÅÁÀ¸·Î ½ÃÀåÀº À繫¿Í IT, ¿µ¾÷ ¹× ¸¶ÄÉÆÃ, Àλç, ¿î¿µ µîÀ¸·Î ³ª´¹´Ï´Ù. À繫 ¹× IT ºÎ¹®Àº 2023³â ½ÃÀå¿¡¼­ 28%ÀÇ ¼öÀÍ Á¡À¯À²À» ȹµæÇß½À´Ï´Ù. ÀºÇà, º¸Çè ȸ»ç, ÅõÀÚ È¸»ç µî ±ÝÀ¶ ±â°üÀº Á¤È®ÇÑ ºÐ¼®À» À§ÇØ Ã»¼Ò, ±¸Á¶È­, ÅëÇÕÇØ¾ß ÇÏ´Â ¾öû³­ ¾çÀÇ °Å·¡, ½ÃÀå ¹× °í°´ µ¥ÀÌÅ͸¦ ó¸®ÇÕ´Ï´Ù. ¹ÙÁ© III, IFRS, SOX ÄÄÇöóÀÌ¾ð½º¿Í °°Àº ±ÔÁ¤Àº ¾ö°ÝÇÑ µ¥ÀÌÅÍ °Å¹ö³Í½º¿Í °¨»ç ÃßÀûÀ» ¿ä±¸Çϸç È¿À²ÀûÀÎ µ¥ÀÌÅÍ ·©±Û¸µ ¼Ö·ç¼ÇÀÌ ÇÊ¿äÇÕ´Ï´Ù.

Á¶Á÷ ±Ô¸ðº° Àü¸Á

Á¶Á÷ ±Ô¸ðº°·Î º¸¸é ½ÃÀåÀº Áß¼Ò±â¾÷°ú ´ë±â¾÷À¸·Î ³ª´µ¾îÁ® ÀÖ½À´Ï´Ù. Áß¼Ò±â¾÷ ºÎ¹®Àº 2023³â ½ÃÀå¿¡¼­ 25%ÀÇ ¼öÀÍ Á¡À¯À²À» ±â·ÏÇß½À´Ï´Ù. Áß¼Ò±â¾÷(SME)Àº Á¾Á¾ IT ¿¹»ê°ú »ç³» µ¥ÀÌÅÍ Àü¹® Áö½ÄÀÌ Á¦ÇѵǾî ÀÖ¾î Àú·ÅÇÑ °¡°ÝÀ¸·Î »ç¿ëÇϱ⠽¬¿î µ¥ÀÌÅÍ ·©±Û¸µ ¼Ö·ç¼Ç¿¡ ÀÇÁ¸ÇÕ´Ï´Ù. ±¸µ¶ ±â¹Ý SaaS ¸ðµ¨°ú ¿Âµð¸Çµå µ¥ÀÌÅÍ Ã³¸® ¼­ºñ½ºÀÇ ÃâÇöÀ¸·Î Áß¼Ò±â¾÷Àº ¾öû³­ ¼±Çà ÅõÀÚ ¾øÀÌ AI¸¦ Ȱ¿ëÇÑ µ¥ÀÌÅÍ º¯È¯ µµ±¸¿¡ ¾×¼¼½ºÇÒ ¼ö ÀÖ½À´Ï´Ù.

¾÷°èº° Àü¸Á

¾÷°è¸¦ ±â¹ÝÀ¸·Î ½ÃÀåÀº BFSI, Á¤ºÎ ¹× °ø°ø ºÎ¹®, ¿¡³ÊÁö ¹× À¯Æ¿¸®Æ¼, Á¦Á¶, ¼Ò¸Å, °Ç°­ °ü¸®, IT ¹× Åë½Å, ±âŸ·Î ºÐ·ùµË´Ï´Ù. Á¤ºÎ ¹× °ø°ø ºÎ¹® ºÎ¹®Àº 2023³â ½ÃÀå¿¡¼­ 11%ÀÇ ¼öÀÍ Á¡À¯À²À» ȹµæÇß½À´Ï´Ù. Á¤ºÎ´Â ¾öû³­ ¾çÀÇ Àα¸ Á¶»ç µ¥ÀÌÅÍ, ¼¼±Ý ±â·Ï, ¹ý ÁýÇà µ¥ÀÌÅͺ£À̽º, ±ä±Þ ´ëÀÀ ½Ã½ºÅÛÀ» ´Ù·ç°í ÀÖÀ¸¸ç, Á¤È®ÇÑ ºÐ¼®°ú ÀÇ»ç °áÁ¤À» À§Çؼ­´Â È¿À²ÀûÀÎ µ¥ÀÌÅÍ ·©±Û¸µÀÌ ÇÊ¿äÇÕ´Ï´Ù. °ø°ø ºÎ¹® ±â°üÀº ½º¸¶Æ® ½ÃƼ Ȱµ¿, »çÀ̹ö º¸¾È ¸ð´ÏÅ͸µ, ºÎ¼­ °£ Çù¾÷À» Áö¿øÇϱâ À§ÇØ ±ú²ýÇϰí ÅëÇÕµÈ µ¥ÀÌÅÍ ¼¼Æ®µµ ÇÊ¿äÇÕ´Ï´Ù.

Áö¿ªº° Àü¸Á

Áö¿ªº°·Î º¸¸é ½ÃÀåÀº ºÏ¹Ì, À¯·´, ¾Æ½Ã¾ÆÅÂÆò¾ç, ¶óƾ¾Æ¸Þ¸®Ä«, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«¿¡ °ÉÃÄ ºÐ¼®µÇ°í ÀÖ½À´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾ç ºÎ¹®Àº 2023³â ½ÃÀå¿¡¼­ 23%ÀÇ ¼öÀÍ Á¡À¯À²À» ȹµæÇß½À´Ï´Ù. Áß±¹, Àεµ, ÀϺ», Çѱ¹ µîÀÇ ±¹°¡¿¡¼­´Â AI ÁÖµµ ºÐ¼®, ºòµ¥ÀÌÅÍ Ã³¸®, ½Ç½Ã°£ ºñÁî´Ï½º ÀÎÅÚ¸®Àü½º°¡ ±ÞÁõÇϰí ÀÖÀ¸¸ç È®Àå °¡´ÉÇÏ°í ºñ¿ë È¿À²ÀûÀÎ µ¥ÀÌÅÍ ·©±Û¸µ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ª¿¡¼­´Â ½ÅÈï±â¾÷°ú Áß¼Ò±â¾÷ÀÌ ´Ã°í ÀÖÀ¸¸ç, Ŭ¶ó¿ìµå ±â¹Ý ¹× ¿Âµð¸Çµå µ¥ÀÌÅÍ °ü¸® Ç÷§ÆûÀÇ Ã¤Åõµ ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ½ÃÀå ¹üÀ§ ¹× Á¶»ç ¹æ¹ý

Á¦2Àå ½ÃÀå ¿ä¶÷

Á¦3Àå ½ÃÀå °³¿ä

Á¦4Àå °æÀï ºÐ¼®-¼¼°è

Á¦5Àå ¼¼°èÀÇ µ¥ÀÌÅÍ ·©±Û¸µ ½ÃÀå : Àü°³ ¸ðµåº°

Á¦6Àå ¼¼°èÀÇ µ¥ÀÌÅÍ ·©±Û¸µ ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

Á¦7Àå ¼¼°èÀÇ µ¥ÀÌÅÍ ·©±Û¸µ ½ÃÀå : ºñÁî´Ï½º ±â´Éº°

Á¦8Àå ¼¼°èÀÇ µ¥ÀÌÅÍ ·©±Û¸µ ½ÃÀå : Á¶Á÷ ±Ô¸ðº°

Á¦9Àå ¼¼°èÀÇ µ¥ÀÌÅÍ ·©±Û¸µ ½ÃÀå : ¾÷°èº°

Á¦10Àå ¼¼°èÀÇ µ¥ÀÌÅÍ ·©±Û¸µ ½ÃÀå : Áö¿ªº°

Á¦11Àå ±â¾÷ ÇÁ·ÎÆÄÀÏ

Á¦12Àå µ¥ÀÌÅÍ ·©±Û¸µ ½ÃÀåÀÇ ¼º°ø Çʼö Á¶°Ç

AJY
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

The Global Data Wrangling Market size is expected to reach $7.60 billion by 2031, rising at a market growth of 13.9% CAGR during the forecast period.

The North America segment witnessed 46% revenue share in the market in 2023. The region has a high concentration of AI-powered analytics firms, cloud service providers, and enterprise software vendors, making it a hub for advanced data wrangling solutions. Additionally, stringent regulatory compliance requirements, such as GDPR-like data privacy laws in the U.S. and Canada, further drive demand for secure and automated data wrangling tools.

In today's digital landscape, businesses and organizations generate vast amounts of data from multiple sources. With the rapid expansion of IoT (Internet of Things) devices, social media platforms, cloud applications, and enterprise systems, data is being produced at an unprecedented rate. This data explosion is characterized by structured (e.g., databases, spreadsheets) and unstructured formats (e.g., images, videos, logs, emails), making managing it increasingly complex. Hence, the growing complexity and volume of data propel the widespread adoption of advanced data wrangling platforms.

Additionally, The increasing reliance on Artificial Intelligence (AI) and Machine Learning (ML) across industries has amplified the need for high-quality, structured data. This plays a vital role in enhancing the efficiency and accuracy of AI models. Poorly prepared data can introduce biases, errors, and inaccuracies, leading to unreliable model predictions. Thus, with AI continuously evolving, the demand for intelligent, self-learning data wrangling tools is expected to grow, further propelling this market.

However, The implementation of data wrangling solutions comes with substantial financial challenges, as organizations must invest heavily in advanced software, IT infrastructure, and skilled professionals. These solutions often incorporate AI-driven automation, machine learning algorithms, and cloud-based processing, all of which require significant upfront costs. Hence, these factors may hamper the growth of the market.

Deployment Mode Outlook

On the basis of deployment mode, the market is classified into cloud and on-premise. The cloud segment acquired 37% revenue share in the market in 2023. Businesses seeking to modernize their data analytics capabilities leverage cloud-based wrangling platforms for automated data processing, AI-driven transformations, and seamless multi-cloud integrations. The rising demand for real-time analytics, remote accessibility, and global collaboration further drives cloud adoption, as companies can efficiently process and manage data from multiple sources without heavy infrastructure investments.

Component Outlook

Based on component, the market is bifurcated into solution and services. The services segment recorded 28% revenue share in the market in 2023. Many organizations, especially SMEs and enterprises with legacy infrastructure, lack the in-house expertise to effectively manage complex data transformation, migration, and compliance processes. As a result, they rely on third-party service providers to handle tasks such as data cleansing, deduplication, enrichment, and validation, ensuring data is accurate, consistent, and analytics-ready.

Business Function Outlook

On the basis of business function, the market is divided into finance & IT, sales & marketing, human resource, operations, and others. The finance & IT segment garnered 28% revenue share in the market in 2023. Financial institutions, including banks, insurance firms, and investment companies, process vast amounts of transactional, market, and customer data that must be cleaned, structured, and integrated for accurate analysis. Regulations like Basel III, IFRS, and SOX compliance mandate strict data governance and audit trails, necessitating efficient data wrangling solutions.

Organization Size Outlook

By organization size, the market is divided into small & medium enterprises and large enterprises. The small & medium enterprises segment witnessed 25% revenue share in the market in 2023. Small & medium enterprises (SMEs) often have limited IT budgets and in-house data expertise, making them reliant on affordable and easy-to-use data wrangling solutions. The rise of subscription-based SaaS models and on-demand data processing services has allowed SMEs to access AI-powered data transformation tools without significant upfront investments.

Vertical Outlook

Based on vertical, the market is segmented into BFSI, government & public sector, energy & utilities, manufacturing, retail, healthcare, IT & telecom, and others. The government & public sector segment procured 11% revenue share in the market in 2023. Governments handle vast amounts of census data, tax records, law enforcement databases, and emergency response systems, necessitating efficient data wrangling for accurate analysis and decision-making. Public sector agencies also require clean and integrated datasets to support smart city initiatives, cybersecurity monitoring, and interdepartmental collaboration.

Regional Outlook

Region-wise, the market is analyzed across North America, Europe, Asia Pacific, and LAMEA. The Asia Pacific segment garnered 23% revenue share in the market in 2023. Countries like China, India, Japan, and South Korea are experiencing a surge in AI-driven analytics, big data processing, and real-time business intelligence, fueling demand for scalable and cost-effective data wrangling solutions. The increasing prevalence of startups and small to medium-sized enterprises in the region is also propelling the adoption of cloud-based and on-demand data management platforms.

List of Key Companies Profiled

Global Data Wrangling Market Report Segmentation

By Deployment Mode

By Component

By Business Function

By Organization Size

By Vertical

By Geography

Table of Contents

Chapter 1. Market Scope & Methodology

Chapter 2. Market at a Glance

Chapter 3. Market Overview

Chapter 4. Competition Analysis - Global

Chapter 5. Global Data Wrangling Market by Deployment Mode

Chapter 6. Global Data Wrangling Market by Component

Chapter 7. Global Data Wrangling Market by Business Function

Chapter 8. Global Data Wrangling Market by Organization Size

Chapter 9. Global Data Wrangling Market by Vertical

Chapter 10. Global Data Wrangling Market by Region

Chapter 11. Company Profiles

Chapter 12. Winning Imperatives of Data Wrangling Market

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â