¼¼°èÀÇ µ¥ÀÌÅÍ Á¤¸® ½ÃÀå
Data Wrangling
»óǰÄÚµå : 1544077
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2024³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 193 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,464,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 25,393,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ µ¥ÀÌÅÍ Á¤¸® ½ÃÀåÀº 2030³â±îÁö 79¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2023³â¿¡ 22¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ µ¥ÀÌÅÍ Á¤¸® ½ÃÀåÀº 2030³â¿¡´Â 79¾ï ´Þ·¯¿¡ ´ÞÇϸç, ºÐ¼® ±â°£ÀÎ 2023-2030³â CAGRÀº 19.9%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ µ¥ÀÌÅÍ Á¤¸® ¼­ºñ½º´Â CAGR 17.6%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 21¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. µ¥ÀÌÅÍ Á¤¸® Åø ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ Áß CAGR 20.8%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº ÃßÁ¤ 5¾ï 9,200¸¸ ´Þ·¯, Áß±¹Àº CAGR 18.4%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ µ¥ÀÌÅÍ Á¤¸® ½ÃÀåÀº 2023³â¿¡ 5¾ï 9,200¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2023-2030³â CAGR 18.4%·Î ÃßÀÌÇϸç, 2030³â±îÁö 12¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 18.2%¿Í 16.9%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 14.1%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ µ¥ÀÌÅÍ Á¤¸® ½ÃÀå µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

µ¥ÀÌÅÍ Á¤¸®¶õ ¹«¾ùÀ̸ç, ¿Ö ºòµ¥ÀÌÅÍÀÇ ¼º°ø¿¡ ÇʼöÀûÀΰ¡?

µ¥ÀÌÅÍ Á¤¸®´Â Á¾Á¾ µ¥ÀÌÅÍ ¸Õ¡(data munging)À̶ó°íµµ Çϸç, ¿ø½Ã µ¥ÀÌÅ͸¦ ÇÑ Çü½Ä¿¡¼­ ´Ù¸¥ Çü½ÄÀ¸·Î º¯È¯ÇÏ°í ¸ÅÇÎÇÏ¿© ºÐ¼®¿¡ ´ëºñÇÏ´Â °úÁ¤ÀÔ´Ï´Ù. µ¥ÀÌÅÍ ÁغñÀÇ Áß¿äÇÑ ´Ü°è´Â ¿ø½Ã µ¥ÀÌÅ͸¦ Á¤¸®Çϰí, ±¸Á¶È­Çϰí, º¸´Ù ÀÌÇØÇϱ⠽±°í À¯¿ëÇÑ ÇüÅ·ΠdzºÎÇÏ°Ô ¸¸µå´Â °ÍÀÔ´Ï´Ù. ±â¾÷°ú Á¶Á÷Àº IoT ±â±â, ¼Ò¼È¹Ìµð¾î, Æ®·£Àè¼Ç ½Ã½ºÅÛ µî ´Ù¾çÇÑ ¼Ò½º¿¡¼­ ¹æ´ëÇÑ ¾çÀÇ ºñÁ¤Çü µ¥ÀÌÅ͸¦ ÃàÀûÇϰí ÀÖÀ¸¹Ç·Î ºòµ¥ÀÌÅͰ¡ Æø¹ßÀûÀ¸·Î Áõ°¡ÇÔ¿¡ µû¶ó µ¥ÀÌÅÍ Á¤¸®ÀÇ Á߿伺ÀÌ Ä¿Áö°í ÀÖ½À´Ï´Ù. È¿°úÀûÀÎ µ¥ÀÌÅÍ Á¤¸®´Â ÀÌ µ¥ÀÌÅ͸¦ Á¤È®ÇÏ°Ô ºÐ¼®ÇÏ¿© ½Ç¿ëÀûÀÎ ÀλçÀÌÆ®À» Á¦°øÇϰí, Àü·«Àû ÀÇ»ç°áÁ¤À» ÃËÁøÇϸç, ¾÷¹« È¿À²¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ÀÌ Áß¿äÇÑ ´Ü°è°¡ ¾ø´Ù¸é, ¿ø½Ã µ¥ÀÌÅÍ´Â ºÒ¿ÏÀüÇϰí Àϰü¼ºÀÌ ¾øÀ¸¸ç ºÎÁ¤È®ÇÑ °æ¿ì°¡ ¸¹±â ¶§¹®¿¡ ¼öÁýµÈ µ¥ÀÌÅÍÀÇ ´ëºÎºÐÀº Ȱ¿ëµÇÁö ¸øÇÑ Ã¤·Î ³²°Ô µË´Ï´Ù.

µ¥ÀÌÅÍ Á¤¸®°¡ µ¥ÀÌÅÍ Ç°Áú°ú ºÐ¼®À» ¾î¶»°Ô Çâ»ó½Ãų ¼ö Àִ°¡?

µ¥ÀÌÅÍ Á¤¸®´Â µ¥ÀÌÅÍ Á¤¸® ´Ü°è¿¡¼­ ´©¶ôµÈ °ª, ¿À·ù, ºÒÀÏÄ¡ µîÀÇ ¹®Á¦¸¦ ÇØ°áÇÏ¿© µ¥ÀÌÅÍ Ç°ÁúÀ» Çâ»ó½Ãŵ´Ï´Ù. ÀÌ °úÁ¤¿¡´Â µ¥ÀÌÅÍ Çü½Ä Á¤±ÔÈ­, °ª ¼öÁ¤, µ¥ÀÌÅÍ ÄÁÅØ½ºÆ®¸¦ dzºÎÇÏ°Ô Çϱâ À§ÇÑ µ¥ÀÌÅͼ¼Æ®ÀÇ ÅëÇÕ µî µ¥ÀÌÅÍ º¯È¯ ¹× º¸°­µµ Æ÷ÇԵ˴ϴÙ. ¿¹¸¦ µé¾î ±â¾÷³» ´Ù¾çÇÑ ºÎ¼­ÀÇ µ¥ÀÌÅ͸¦ ÅëÇÕÇÏ¿© ¾÷¹«¿¡ ´ëÇÑ Á¾ÇÕÀûÀÎ ½Ã°¢À» Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ µ¥ÀÌÅÍ ±¸Á¶È­ ´Ü°è¿¡¼­´Â µ¥ÀÌÅ͸¦ ¸Ó½Å·¯´× ¾Ë°í¸®Áò¿¡ ÀûÇÕÇÑ ¸ðµ¨·Î º¯È¯ÇÏ´Â µî ºÐ¼®¿¡ ´õ ÀûÇÕÇÑ Çü½ÄÀ¸·Î µ¥ÀÌÅ͸¦ Á¤¸®ÇÒ ¼ö ÀÖµµ·Ï µµ¿ÍÁÝ´Ï´Ù. µ¥ÀÌÅÍ Ç°Áú°ú ±¸Á¶¸¦ °³¼±ÇÔÀ¸·Î½á µ¥ÀÌÅÍ Á¤¸®´Â º¸´Ù Á¤±³Çϰí Á¤È®ÇÑ ºÐ¼®À» ¿ëÀÌÇÏ°Ô Çϰí, ±â¾÷ÀÌ µ¥ÀÌÅÍ Àڻ꿡¼­ ¿¹ÃøÀû ÀλçÀÌÆ®¿Í Àü·«Àû ÀÎÅÚ¸®Àü½º¸¦ µµÃâÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù.

µ¥ÀÌÅÍ Á¤¸®ÀÇ °úÁ¦´Â?

µ¥ÀÌÅÍ Á¤¸®´Â ±× Á߿伺¿¡µµ ºÒ±¸Çϰí, º¹ÀâÇÏ°í ½Ã°£ÀÌ ¸¹ÀÌ °É¸®¸ç Á¾Á¾ ¾î·Á¿î °úÁ¤ÀÔ´Ï´Ù. ÁÖ¿ä °úÁ¦ Áß Çϳª´Â µ¥ÀÌÅÍ Àü¹®°¡°¡ ¼öÀÛ¾÷À¸·Î °ü¸®Çϱ⿡´Â ³Ê¹« ¸¹Àº ¾ç°ú À¯ÇüÀÇ µ¥ÀÌÅÍ·Î ÀÎÇØ ¾Ðµµ´çÇÒ ¼ö ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. µ¥ÀÌÅÍ ¼Ò½º¸¶´Ù ±¸Á¶, ǰÁú ¼öÁØ, Æ÷ÇÔµÈ Á¤º¸ÀÇ À¯ÇüÀÌ ´Ù¸£±â ¶§¹®¿¡ °¢±â ´Ù¸¥ Á¢±Ù ¹æ½ÄÀÌ ÇÊ¿äÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ µ¥ÀÌÅÍ Á¤¸® Åø¿Í ±â¼úÀº µ¥ÀÌÅÍ »ý¼ºÀÇ ºü¸¥ ¼Óµµ¿Í »õ·Ó°Ô µîÀåÇÏ´Â ºñÁ¤Çü µ¥ÀÌÅÍ À¯Çü¿¡ ´ëÀÀÇϱâ À§ÇØ Áö¼ÓÀûÀ¸·Î ÁøÈ­ÇØ¾ß ÇÕ´Ï´Ù. ƯÈ÷ GDPR(EU °³ÀÎÁ¤º¸º¸È£±ÔÁ¤)À̳ª HIPAA¿Í °°Àº ±ÔÁ¦¸¦ ÁؼöÇÏ°í ±â¹Ð ¹× °³ÀÎÁ¤º¸¸¦ Ãë±ÞÇÏ´Â °æ¿ì, µ¥ÀÌÅÍ Ã³¸® °úÁ¤¿¡¼­ µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã¿Í º¸¾ÈÀ» º¸ÀåÇÏ´Â °Íµµ Áß¿äÇÑ °úÁ¦ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ °úÁ¦¸¦ ÇØ°áÇϱâ À§Çؼ­´Â ¼÷·ÃµÈ µ¥ÀÌÅÍ Àü¹®°¡»Ó¸¸ ¾Æ´Ï¶ó µ¥ÀÌÅÍ Á¤¸®ÀÇ ¿©·¯ Ãø¸éÀ» ÀÚµ¿È­Çϰí È¿À²¼º°ú Á¤È®¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ´Â °í±Þ ÅøÀÌ ÇÊ¿äÇÕ´Ï´Ù.

µ¥ÀÌÅÍ Á¤¸® ½ÃÀåÀÇ ¼ºÀå ¿øµ¿·ÂÀº?

µ¥ÀÌÅÍ Á¤¸® ½ÃÀåÀÇ ¼ºÀåÀº ºñÁî´Ï½º Àü·«¿¡¼­ µ¥ÀÌÅÍ ºÐ¼®ÀÇ Á߿伺ÀÌ ³ô¾ÆÁü¿¡ µû¶ó ¸î °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. µðÁöÅÐ ±â¼ú·Î ÀÎÇØ »ý¼ºµÇ´Â µ¥ÀÌÅÍÀÇ ±Þ°ÝÇÑ Áõ°¡´Â Á¶Á÷ÀÌ °æÀï ¿ìÀ§¸¦ È®º¸Çϱâ À§ÇØ µ¥ÀÌÅ͸¦ Ȱ¿ëÇϰíÀÚ ÇÏ´Â Å« °è±â°¡ µÇ°í ÀÖ½À´Ï´Ù. ºÐ¼® ±â¼úÀÌ °íµµÈ­µÊ¿¡ µû¶ó ¾çÁúÀÇ ÁغñµÈ µ¥ÀÌÅÍ¿¡ ´ëÇÑ ¼ö¿ä´Â ±× ¾î´À ¶§º¸´Ù ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ÀΰøÁö´É°ú ¸Ó½Å·¯´×ÀÇ Çõ½Åµµ Å« ¿øµ¿·ÂÀÌ µÇ°í Àִµ¥, ÀÌ ±â¼úµéÀº Á¤È®ÇÑ ¸ðµ¨À» ÈÆ·Ã½Ã۱â À§ÇØ ´ë·®ÀÇ °ü¸®µÈ µ¥ÀÌÅͼ¼Æ®¸¦ ÇÊ¿ä·Î Çϱ⠶§¹®ÀÔ´Ï´Ù. ¶ÇÇÑ ¾÷°è Àü¹Ý¿¡ °ÉÃÄ µ¥ÀÌÅͺ£À̽º ÀÇ»ç°áÁ¤ÀÌ ÃßÁøµÇ¸é¼­ µ¥ÀÌÅÍ Á¤¸®´Â º¹ÀâÇÑ µ¥ÀÌÅÍ È¯°æ¿¡¼­ °¡Ä¡ ÀÖ´Â ÀλçÀÌÆ®¸¦ µµÃâÇϰíÀÚ ÇÏ´Â ±â¾÷¿¡°Ô ÇʼöÀûÀÎ ¿ª·®À¸·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ´õ ³ôÀº µ¥ÀÌÅÍ Ç°Áú°ú ÇÁ¶óÀ̹ö½Ã¿¡ ´ëÇÑ ±ÔÁ¦ ¾Ð·ÂÀ¸·Î ÀÎÇØ ±â¾÷Àº ÄÄÇöóÀÌ¾ð½º¿Í º¸¾ÈÀ» º¸ÀåÇÏ´Â °í±Þ µ¥ÀÌÅÍ Á¤¸® ¼Ö·ç¼Ç¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹è°æ¿¡¼­ µ¥ÀÌÅÍ Á¤¸®´Â µ¥ÀÌÅÍ °ü¸® ¹× ºÐ¼®À̶ó´Â ³ÐÀº °üÁ¡¿¡¼­ º¼ ¶§, µ¥ÀÌÅÍ Á¤¸®´Â °è¼ÓÇØ¼­ ¼ºÀåÇϰí ÀÖ´Â Áß¿äÇÑ ºÐ¾ß¶ó°í ÇÒ ¼ö ÀÖ½À´Ï´Ù.

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹(ÃÑ 44°Ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Data Wrangling Market to Reach US$7.9 Billion by 2030

The global market for Data Wrangling estimated at US$2.2 Billion in the year 2023, is expected to reach US$7.9 Billion by 2030, growing at a CAGR of 19.9% over the analysis period 2023-2030. Data Wrangling Services, one of the segments analyzed in the report, is expected to record a 17.6% CAGR and reach US$2.1 Billion by the end of the analysis period. Growth in the Data Wrangling Tools segment is estimated at 20.8% CAGR over the analysis period.

The U.S. Market is Estimated at US$592.0 Million While China is Forecast to Grow at 18.4% CAGR

The Data Wrangling market in the U.S. is estimated at US$592.0 Million in the year 2023. China, the world's second largest economy, is forecast to reach a projected market size of US$1.2 Billion by the year 2030 trailing a CAGR of 18.4% over the analysis period 2023-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 18.2% and 16.9% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 14.1% CAGR.

Global Data Wrangling Market - Key Trends and Drivers Summarized

What Is Data Wrangling and Why Is It Fundamental to Big Data Success?

Data wrangling, often referred to as data munging, is the process of transforming and mapping raw data from one form into another to prepare it for analysis. This essential phase of data preparation involves cleaning, structuring, and enriching raw data into a more digestible and useful format. The importance of data wrangling has escalated with the explosion of big data, as businesses and organizations accumulate vast amounts of unstructured data from various sources including IoT devices, social media, and transactional systems. Effective data wrangling ensures that this data can be accurately analyzed to provide actionable insights, drive strategic decision-making, and enhance operational efficiency. Without this critical step, much of the data collected would remain untapped, as raw data is often incomplete, inconsistent, or imprecise.

How Does Data Wrangling Enhance Data Quality and Analysis?

Data wrangling enhances the quality of data by addressing issues such as missing values, errors, and inconsistencies during the cleaning phase. This process also involves transforming and enriching data, which may include normalizing data formats, correcting values, and integrating datasets to enrich the data's context. For instance, data from different departments within a company can be amalgamated to provide a comprehensive view of operations. Furthermore, the structuring phase of data wrangling helps in organizing the data into a more appropriate format for analysis, such as converting data into model-ready formats for machine learning algorithms. By improving data quality and structure, data wrangling facilitates more sophisticated and accurate analyses, allowing businesses to unlock predictive insights and strategic intelligence from their data assets.

What Are the Challenges Associated with Data Wrangling?

Despite its importance, data wrangling can be a complex, time-consuming, and often challenging process. One of the primary challenges is the sheer volume and variety of data, which can be overwhelming for data professionals to manage manually. Each data source may require a different approach due to varying structures, quality levels, and the types of information contained. Additionally, data wrangling tools and techniques must continuously evolve to keep up with the rapid pace of data creation and the emerging varieties of unstructured data. Another significant challenge is ensuring data privacy and security during the wrangling process, especially when handling sensitive or personal information in compliance with regulations such as GDPR or HIPAA. These challenges necessitate not only skilled data professionals but also advanced tools that can automate many aspects of data wrangling to improve efficiency and accuracy.

What Drives the Growth in the Data Wrangling Market?

The growth in the data wrangling market is driven by several factors, reflecting the increasing importance of data analytics in business strategy. The exponential growth of data generated by digital technologies is a major catalyst, as organizations seek to harness this data for competitive advantage. As analytics technologies become more sophisticated, the demand for high-quality, well-prepared data is higher than ever. Innovations in artificial intelligence and machine learning are also significant drivers, as these technologies require large volumes of curated datasets to train accurate models. Furthermore, the push towards data-driven decision-making across industries has made data wrangling an essential capability for companies looking to extract valuable insights from complex data landscapes. Additionally, regulatory pressures for higher data quality and privacy are pushing businesses to invest in advanced data wrangling solutions that ensure compliance and security. Together, these drivers ensure that data wrangling remains a critical and growing field within the broader landscape of data management and analytics.

Select Competitors (Total 44 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â