ºñÀü ÇÁ·Î¼¼½Ì À¯´Ö(VPU) ½ÃÀå ±Ô¸ð´Â 2023³â¿¡ 21¾ï 1,700¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú°í, 2024³âºÎÅÍ 2030³â±îÁöÀÇ ¿¹Ãø ±â°£ µ¿¾È 17.26%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î ¼ºÀåÇϸç, 2030³â±îÁö 75¾ï 5,900¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
ºñÀü ÇÁ·Î¼¼½Ì À¯´Ö(VPU) ½ÃÀå ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎÀº ´Ù¾çÇÑ ¿äÀο¡ ÀÇÇØ ¿µÇâÀ» ¹ÞÀ» ¼ö ÀÖ½À´Ï´Ù.
AI ¹× ¸Ó½Å·¯´× °³¹ß: °¡Àü, ¼Ò¸Å, ÇコÄɾî, ÀÚµ¿Â÷ µî ´Ù¾çÇÑ »ê¾÷¿¡¼ AI¸¦ Ȱ¿ëÇÑ ¿ëµµ¿¡ ´ëÇÑ ¿ä±¸°¡ È®´ëµÈ °á°ú, ¾öû³ ¾çÀÇ ½Ã°¢ µ¥ÀÌÅ͸¦ È¿À²ÀûÀ¸·Î ºÐ¼®Çϱâ À§ÇØ VPU °°Àº Àü¿ë Çϵå¿þ¾î°¡ Á¡Á¡ ´õ ÇÊ¿äÇØÁö°í ÀÖ½À´Ï´Ù.
¿¡Áö ÄÄÇ»ÆÃÀÇ ½ÃÀÛ ¿¡Áö ÄÄÇ»ÆÃÀÇ ½ÃÀÛÀº µ¥ÀÌÅͼ¾ÅÍ¿¡ ÁýÁßÇÏ¿© µ¥ÀÌÅ͸¦ ó¸®ÇÏ´Â ´ë½Å µ¥ÀÌÅÍ ¼Ò½º ±Ùó¿¡¼ µ¥ÀÌÅ͸¦ ó¸®ÇÏ´Â °ÍÀ» ÀǹÌÇÕ´Ï´Ù. »ê¾÷ ÀÚµ¿È, ÀÚÀ²ÁÖÇàÂ÷, °¨½Ã ½Ã½ºÅÛ µîÀÇ ¿ëµµ¿¡ ÀÖ¾î¼ ½Ã°¢ ÀÔ·ÂÀÇ ½Ç½Ã°£ 󸮸¦ ¿§Áö·Î ½Ç½ÃÇØ, ½Å¼ÓÇÑ ÀÇ»ç °áÁ¤°ú ÀúÁö¿¬À» ½ÇÇöÇϱâ À§Çؼ´Â VPU°¡ ÇʼöÀûÀÔ´Ï´Ù.
ÄÄÇ»ÅÍ ºñÀü äÅà Ȯ´ë: ÄÄÇ»ÅÍ ºñÀüÀÇ ¿ëµµ´Â ÀÇ·á ¿µ»ó, ³ó¾÷ °¨½Ã, ¹°Ã¼ °¨Áö, ¾ó±¼ ÀÎ½Ä µî ¿©·¯ ºÐ¾ß¿¡ ÆÛÁ® ÀÖ½À´Ï´Ù. VPU´Â À̹ÌÁö 󸮸¦ °¡¼ÓÈÇϰí Çϵå¿þ¾î°¡ ½Ã°¢Àû ÀԷ¿¡ Áï½Ã ÀÀ´äÇÒ ¼ö ÀÖµµ·Ï Çϱ⠶§¹®¿¡ ÀÌ·¯ÇÑ ¿ëµµÀÇ µ¿ÀÛ¿¡ ÇʼöÀûÀÔ´Ï´Ù.
IoT µð¹ÙÀ̽º¿Í ½º¸¶Æ® Ä«¸Þ¶ó¿¡ ´ëÇÑ ¿ä±¸ Áõ°¡: »ç¹°ÀÎÅͳÝ(IoT) Àåºñ ¹× ½º¸¶Æ® Ä«¸Þ¶ó Áõ°¡·Î ÀÎÇØ ¼Òºñ Àü·ÂÀÌ Àû°í º¹ÀâÇÑ À̹ÌÁö¸¦ È¿À²ÀûÀ¸·Î ó¸®ÇÒ ¼ö ÀÖ´Â VPU¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. VPU´Â ½Ã°¢Àû ÀÔ·ÂÀÇ ·ÎÄà ±â·Ï, ºÐ¼® ¹× µ¿ÀÛÀ» °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á ÀÌ·¯ÇÑ ÀåÄ¡°¡ Áö¼ÓÀûÀÎ ÀÎÅÍ³Ý ¿¬°á ¹× Ŭ¶ó¿ìµå ó¸®ÀÇ Çʿ伺À» Á¦°ÅÇÒ ¼ö ÀÖ½À´Ï´Ù.
¹«ÀÎ Ç×°ø±â¿Í ÀÚÀ² ÁÖÇà Â÷·®ÀÇ ¼ºÀå : ÄÄÇ»ÅÍ ºñÀü ±â¼úÀº Á¦½ºÃ³ ÀνÄ, Àå¾Ö¹° °¨Áö, ³»ºñ°ÔÀÌ¼Ç µîÀÇ ±â´ÉÀ¸·Î ¹«ÀÎ Ç×°ø±â¿Í ÀÚµ¿Â÷ »ê¾÷¿¡¼ Á¡Á¡ ´õ ¸¹ÀÌ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. VPU´Â ÀÚµ¿Â÷¿Í ¹«ÀÎ Ç×°ø±â°¡ ½Ã°¢Àû ÀÔ·ÂÀ» ºü¸£°í Á¤È®ÇÏ°Ô Æò°¡Çϰí Áï½Ã ÀÇ»ç °áÁ¤ÇÒ ¼ö ÀÖµµ·Ï Çϱâ À§ÇØ ÀÌ·¯ÇÑ ½Ã½ºÅÛ¿¡¼ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù.
¿¡³ÊÁö È¿À²ÀûÀÎ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä: ¹èÅ͸® ±¸µ¿ Á¦Ç° ½ÃÀåÀÌ È®´ëµÊ¿¡ µû¶ó Çϵå¿þ¾î ¼³°è¿¡¼ ¿¡³ÊÁö È¿À²ÀÌ Á¡Á¡ ´õ Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù. VPU´Â ÃÖ¼ÒÇÑÀÇ Àü·Â ¼Òºñ·Î ÃÖ´ëÀÇ ¼º´ÉÀ» ¹ßÈÖÇϵµ·Ï ¸¸µé¾îÁ³±â ¶§¹®¿¡ ¿þ¾î·¯ºí, ½º¸¶Æ®Æù, »ç¹°ÀÎÅÍ³Ý ¼¾¼ µîÀÇ ¹èÅ͸® ±¸µ¿ µð¹ÙÀ̽º¿¡ ÃÖÀûÀÔ´Ï´Ù.
½Å¼ÓÇÑ Çõ½Å : VPUÀÇ È¿À²¼º°ú ¼º´ÉÀ» ³ôÀ̱â À§ÇØ ¹ÝµµÃ¼ ±â¾÷Àº Ç×»ó »õ·Î¿î ¾ÆÀ̵ð¾î¸¦ ³»³õ°í ÀÖ½À´Ï´Ù. AI °¡¼Ó±â, ´º·² ÇÁ·Î¼¼½Ì À¯´Ö(NPU), ƯÁ¤ ÄÄÇ»ÅÍ ºñÀü ŽºÅ©¿¡ Æ¯ÈµÈ Çϵå¿þ¾î ÅëÇÕ µîÀÇ Áøº¸·Î VPUÀÇ Áøº¸¿Í ´Ù¾÷Á¾¿¡ °ÉÄ£ ¿ëµµÀÇ È®´ë°¡ ÃßÁøµÇ°í ÀÖ½À´Ï´Ù.
ºñÀü ÇÁ·Î¼¼½Ì À¯´Ö(VPU) ¼¼°è ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
ºñÀü ÇÁ·Î¼¼½Ì À¯´Ö(VPU) ½ÃÀå¿¡¼´Â ¸î °¡Áö ¿äÀÎÀÌ ¾ïÁ¦¿äÀΰú °úÁ¦·Î ÀÛ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.
³ôÀº °³¹ß ºñ¿ë: VPU¸¦ ¼³°è ¹× Á¦Á¶ÇÒ ¶§ R&D ¹× Å×½ºÆ® ºñ¿ëÀº ³ô½À´Ï´Ù. µû¶ó¼ ½ÅÈï±â¾÷°ú Áß¼Ò±â¾÷ÀÇ ÀÇ¿åÀ» ±ð¾Æ ½ÃÀå °æÀï·Â°ú Çõ½ÅÀ» ÀúÇϽÃų ¼ö ÀÖ½À´Ï´Ù.
ÅëÇÕ º¹À⼺: VPU¸¦ ÇöÀç ½Ã½ºÅÛ ¹× Àåºñ¿¡ ÅëÇÕÇÏ´Â °ÍÀº ƯÈ÷ Àü·Â ¼Òºñ, Å©±â ¹× ¼º´É¿¡ ¾ö°ÝÇÑ ¿ä±¸ »çÇ×ÀÌ ÀÖ´Â °æ¿ì ¾î·Á¿î ½Ã°£ÀÌ °É¸³´Ï´Ù. ¶ÇÇÑ Àü¹® Áö½ÄÀÌ ÇÊ¿äÇϰųª ȣȯ¼º¿¡ ¹®Á¦°¡ÀÖÀ» ¼ö ÀÖ½À´Ï´Ù.
¼÷·ÃµÈ ±Ù·ÎÀÚ¿¡ ´ëÇÑ ¾×¼¼½º Á¦ÇÑ: VPU ¼³°è, ÃÖÀûÈ, ¾ÖÇø®ÄÉÀÌ¼Ç °³¹ß °æÇèÀÌ ÀÖ´Â Àü¹®°¡¸¦ È®º¸ÇÏ´Â °ÍÀº ¾î·Æ½À´Ï´Ù. ƯÈ÷, ÈÆ·ÃµÈ ³ëµ¿·Â¿¡ ´ëÇÑ Á¢±ÙÀÌ ºÎÁ·ÇÑ Áö¿ª°ú °æÁ¦ ºÐ¾ß¿¡¼´Â ÀÌ·¯ÇÑ ºÎÁ·À¸·Î ÀÎÇØ Çõ½Å°ú µµÀÔ ³ë·ÂÀÌ Áö¿¬µÉ ¼ö ÀÖ½À´Ï´Ù.
µ¥ÀÌÅÍ º¸¾È ¹× ÇÁ¶óÀ̹ö½Ã: µ¥ÀÌÅÍ º¸¾È ¹× ÇÁ¶óÀ̹ö½Ã ¹®Á¦´Â VPU°¡ »çÁø ¹× ºñµð¿À¿Í °°Àº ¹Î°¨ÇÑ µ¥ÀÌÅ͸¦ ´ë·®À¸·Î ó¸®ÇÑ´Ù´Â »ç½Ç·Î ÀÎÇØ ¹ß»ýÇÕ´Ï´Ù. GDPR(EU °³ÀÎÁ¤º¸º¸È£±ÔÁ¤)°ú °°Àº °·ÂÇÑ º¸¾È ´ëÃ¥°ú ¹ý±Ô¿¡ ´ëÇÑ ÄÄÇöóÀ̾𽺸¦ µµÀÔÇÏ´Â °æ¿ì VPU ¹èÆ÷´Â ´õ¿í º¹ÀâÇÏ°í ºñ¿ëÀÌ ¸¹ÀÌ µì´Ï´Ù.
¼º´É º´¸ñ Çö»ó: °³¼±µÇ¾úÁö¸¸ VPU´Â ƯÈ÷ ³ôÀº Á¤È®µµ¿Í Á¤È®¼ºÀÌ ¿ä±¸µÇ´Â »óȲ°ú ½Ç½Ã°£ ¿ëµµ¿¡¼ ¼º´É¿¡ ¹®Á¦°¡ ¹ß»ýÇÒ ¼ö ÀÖ½À´Ï´Ù. È¿À²°ú Àú¼Òºñ Àü·ÂÀ» À¯ÁöÇÏ¸é¼ ÀÌ·¯ÇÑ Á¦¾àÀ» ±Øº¹ÇÏ´Â °ÍÀº ¾ÆÁ÷ ¾î·Æ½À´Ï´Ù.
½ÃÀå ¼¼ºÐÈ ¹× Ç¥ÁØÈ: ¸¹Àº º¥´õµéÀÌ ´Ù¾çÇÑ Á¦Ç°°ú ¼Ö·ç¼ÇÀ» Á¦°øÇϱ⠶§¹®¿¡ VPU ½ÃÀåÀº »ó´ëÀûÀ¸·Î ´ÜÆíȵǰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ´ÜÆíÈ´Â »óÈ£ ¿î¿ë¼º ¹®Á¦³ª Ç¥ÁØÈÀÇ ºÎÁ·À» ÃÊ·¡ÇÏ¿© °í°´ÀÌ °³º° ¿ä±¸ »çÇ׿¡ °¡Àå ÀûÇÕÇÑ VPU¸¦ ¼±ÅÃÇÏ´Â °ÍÀ» ¾î·Æ°Ô ¸¸µé ¼ö ÀÖ½À´Ï´Ù.
ȯ°æ¿¡ ´ëÇÑ ¿ì·Á: VPUÀÇ Á¦Á¶ ¹× Æó±â¿¡ ÈñÅä·ù ±Ý¼Ó ¹× À¯ÇØ ÈÇÕ¹°ÀÌ »ç¿ëµÇ¹Ç·Î ´Ù¸¥ ÀüÀÚ ºÎǰ°ú À¯»çÇÑ È¯°æ ¿µÇâÀÌ ¹ß»ýÇÒ ¼ö ÀÖ½À´Ï´Ù. VPU Á¦Á¶¾÷üµé¿¡°Ô Áö¼Ó°¡´ÉÇÑ ³ë·ÂÀ» ÅëÇØ ÀÌ·¯ÇÑ È¯°æ ¹®Á¦¸¦ ÇØ°áÇÏ´Â °ÍÀº ¶Ç ´Ù¸¥ ¼öÁØÀÇ º¹À⼺À» ÃÊ·¡ÇÕ´Ï´Ù.
´ëü ±â¼ú°úÀÇ °æÀï: Ư¼ö ASIC(ƯÁ¤ ¿ëµµ¿ë ÁýÀû ȸ·Î), CPU, GPU´Â VPU¿Í °æÀïÇÏ´Â ´ëü ±â¼úÀÇ ÀϺÎÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ´ëü ±â¼úÀº ¿ëµµ ¿ä±¸¿¡ µû¶ó À¯»çÇÑ ¼º´ÉÀ» Á¦°øÇϰųª ³·Àº ºñ¿ëÀ¸·Î Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù. À̰ÍÀº VPUÀÇ ±¤¹üÀ§ÇÑ Ã¤¿ë¿¡ ¾î·Á¿òÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù.
Vision Processing Unit Market size was valued at USD 2117 Million in 2023 and is projected to reach USD 7559 Million By 2030, growing at a CAGR of 17.26% during the forecast period 2024 to 2030.
The market drivers for the Vision Processing Unit Market can be influenced by various factors. These may include:
Developments in AI and Machine Learning: As a result of the expanding requirement for AI-driven applications across a range of industries, including consumer electronics, retail, healthcare, and automotive, specialized hardware, such as VPUs, is becoming more and more necessary in order to analyze vast volumes of visual data effectively.
The rise of edge computing: The rise of edge computing refers to the practice of processing data closer to the data source instead of centrally located in a data center. In order to provide real-time processing of visual input at the edge and facilitate quicker decision-making and lower latency in applications like industrial automation, autonomous vehicles, and surveillance systems, VPUs are essential.
Growing Adoption of Computer Vision: Applications for computer vision are expanding to many fields, including medical imaging, agricultural monitoring, object detection, and facial recognition. VPUs are essential to the operation of these applications because they speed up picture processing and allow hardware to react instantly to visual input.
Increasing Need for IoT Devices and Smart Cameras: The increasing number of Internet of Things (IoT) devices and smart cameras is boosting the demand for VPUs that can efficiently process complex images while using less power. By enabling local recording, analysis, and action on visual input, VPUs allow these devices to do away with the requirement for continual internet connectivity and cloud processing.
Growth of Drones and Autonomous Vehicles: Computer vision technology is being used more and more in the drone and car industries for functions including gesture recognition, obstacle detection, and navigation. VPUs are crucial parts of these systems because they allow cars and drones to evaluate visual input fast and precisely so they can make decisions instantly.
Demand for Energy-efficient Solutions: Energy efficiency in hardware design is becoming more and more important as the market for battery-powered products expands. Because VPUs are made to maximize performance while consuming the least amount of power, they are a great fit for battery-operated devices like wearables, smartphones, and Internet of Things sensors.
Quick Technological Innovations: To increase the effectiveness and performance of VPUs, semiconductor companies are always coming up with new ideas. The progress of VPUs and the expansion of their applications across multiple industries are being propelled by advancements like the integration of AI accelerators, neural processing units (NPUs), and specialized hardware for particular computer vision tasks.
Global Vision Processing Unit Market Restraints
Several factors can act as restraints or challenges for the Vision Processing Unit Market. These may include:
High Development Costs: Research, development, and testing costs are high when designing and creating VPUs. This may discourage startups and smaller businesses, reducing market competitiveness and innovation.
Complexity of Integration: It can be difficult and time-consuming to integrate VPUs into current systems or devices, particularly in situations where there are strict requirements for power, size, or performance. Adoption hurdles include the need for specialist knowledge and compatibility problems.
Restricted Access to Skilled Labor: Professionals with experience in VPU design, optimization, and application development are hard to come by. Innovation and implementation efforts may be slowed down by this shortage, particularly in areas or sectors of the economy where access to trained labor is scarce.
Data security and privacy: Data security and privacy issues are brought up by the fact that VPUs process sensitive data, like photos and videos, a lot. VPU deployments become more complex and expensive when strong security measures and regulatory compliance, such as GDPR, are put in place.
Performance bottlenecks: Despite improvements, VPUs may still experience problems with performance, especially in situations that call for a high degree of accuracy and precision or in real-time applications. It is still difficult to get above these restrictions while keeping efficiency and low power usage.
Market Fragmentation and Standardization: There are many vendors offering a variety of products and solutions, resulting in a relatively fragmented VPU market. This fragmentation may result in problems with interoperability, a lack of standardization, and make it harder for customers to choose the best VPU for their individual requirements.
Environmental Concerns: Because rare earth metals and hazardous compounds are used in the production of VPUs and their disposal, there may be environmental effects similar to those of other electronic components. For VPU makers, addressing these environmental issues through sustainable practices introduces still another level of complexity.
Competition from Alternative Technologies: Specialized ASICs (Application-Specific Integrated Circuits), CPUs, and GPUs are some of the alternative technologies that compete with VPUs. These alternatives could provide similar performance or at a lower cost, depending on the needs of the application. This could provide a challenge to the broad adoption of VPUs.
The Global Vision Processing Unit Market is segmented based on Architecture, Application, End-User Industry And Geography.