세계의 작물 수량 예측용 기계학습 시장 보고서(2025년)
Machine Learning For Crop Yield Prediction Global Market Report 2025
상품코드 : 1727861
리서치사 : The Business Research Company
발행일 : On Demand Report
페이지 정보 : 영문 175 Pages
 라이선스 & 가격 (부가세 별도)
US $ 4,490 ₩ 6,516,000
PDF (Single User License) help
PDF 보고서를 1명만 이용할 수 있는 라이선스입니다. 인쇄 가능하며 인쇄물의 이용 범위는 PDF 이용 범위와 동일합니다.
US $ 6,490 ₩ 9,419,000
PDF (Site License) help
PDF 보고서를 동일 사업장의 모든 분이 이용할 수 있는 라이선스입니다. 인쇄 가능하며 인쇄물의 이용 범위는 PDF 이용 범위와 동일합니다.
US $ 8,490 ₩ 12,322,000
PDF (Enterprise License) help
PDF 보고서를 동일 기업의 모든 분이 이용할 수 있는 라이선스입니다. 인쇄 가능하며 인쇄물의 이용 범위는 PDF 이용 범위와 동일합니다.


ㅁ Add-on 가능: 고객의 요청에 따라 일정한 범위 내에서 Customization이 가능합니다. 자세한 사항은 문의해 주시기 바랍니다.
ㅁ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송기일은 문의해 주시기 바랍니다.

한글목차

작물 수량 예측용 기계학습 시장 규모는 향후 수년간 비약적인 성장이 예상됩니다. 2029년에는 CAGR 26.6%로 성장할 전망이며, 25억 8,000만 달러로 성장이 예측됩니다. 예측 기간의 성장 원동력은 ML 기반 예측의 정확성 및 효율성 향상, 제한된 자원만을 가진 세계 인구 증가, 농업에서 빅데이터의 상승, 기후 변화 및 환경 스트레스의 영향, 지속가능한 농업 관행 채택 증가입니다. 주요 동향으로는 AI 기술과 작물 수량 예측용 기계학습의 통합, 농업에 있어서의 IoT의 채용, 지속적인 기술의 진보, AI를 탑재한 자율 주행형 트랙터의 출현 등을 들 수 있습니다.

지속가능한 농업에 대한 요구 증가는 작물 수량 예측용 기계학습 시장의 확대를 촉진할 것으로 예측됩니다. 지속가능한 농업은 자원을 보전하고, 생물다양성을 촉진하고, 경제성을 유지하며, 현재와 미래 세대를 위해 사회적 공정성을 확보하면서 식량 및 기타 농산물을 생산하는 것을 목표로 하는 종합적인 농업 접근법입니다. 지속가능한 농업의 상승은 환경 악화, 자원 부족, 기후 변화에 대한 우려 증가와 장기적인 식량 안보 및 지역사회의 웰빙을 지원하는 보다 건강하고 탄력적인 식량 시스템에 대한 수요에 힘쓰고 있습니다. 작물 수량 예측용 기계학습은 환경에 미치는 영향을 최소화하면서 자원 활용 최적화, 폐기물 감소, 농작물 생산성 향상, 효율 개선 등 데이터 기반 의사 결정을 가능하게 함으로써 지속 가능한 농업에서 중요한 역할을 하고 있습니다. 예를 들어 2024년 2월 독일에 본사를 둔 비영리 단체인 IFOAM 오가닉스 인터내셔널은 2022년 세계 유기농업 면적이 2,000만 헥타르 이상 확대되어 총 9,600만 헥타르에 달했다고 보고했습니다. 유기농 생산자 수도 크게 증가하여 450만 명을 돌파했습니다. 그 결과 지속가능한 농업에 대한 관심 증가는 작물 수량 예측용 기계학습의 채택을 뒷받침하고 있습니다.

작물 수량 예측용 기계학습 시장의 주요 기업은 혁신적인 데이터 주도형 솔루션의 개발을 강화하기 위해 GenAI 통합 플랫폼의 개발을 우선하고 있습니다. 이러한 플랫폼은 생성형 인공지능을 다른 기술과 결합함으로써 다양한 업계와 용도로 AI 주도 인사이트 생성, 커스터마이징, 전개를 가능하게 합니다. 예를 들면, 2024년 7월, 인도를 거점으로 하는 농업 기술 기업 CropIn은, 미국을 거점으로 하는 기술 기업 Google(Gemini)과 협업해, GenAI를 탑재한 농업 인텔리전스 플랫폼 Sage를 발표했습니다. Sage의 주요 장점은 생성적 AI, 고도의 작물 및 기후 모델, 지구 관측 데이터를 통합함으로써 서로 다른 기간 동안 작물의 거동에 대한 그리드 기반의 상세한 인사이트를 제공하는 능력입니다. 이 통합을 통해 Sage는 자체 그리드 기반 농업 데이터 맵을 작성하여 탁월한 스케일, 정확도 및 속도를 제공할 수 있습니다. 이는 이해관계자가 작물의 동태, 기후의 영향, 최적의 농업관행을 분석하는 방법에 혁명을 가져오고 전 세계 농업경영에서 정보에 기반한 데이터 주도의 의사결정을 다국어로 촉진합니다.

목차

제1장 주요 요약

제2장 시장 특징

제3장 시장 동향 및 전략

제4장 시장-거시경제 시나리오 금리, 인플레이션, 지정학, 신형 코로나 바이러스 감염의 영향과 회복이 시장에 미치는 영향을 포함한 거시경제 시나리오

제5장 세계의 성장 분석 및 전략 분석 프레임워크

제6장 시장 세분화

제7장 지역별 및 국가별 분석

제8장 아시아태평양 시장

제9장 중국 시장

제10장 인도 시장

제11장 일본 시장

제12장 호주 시장

제13장 인도네시아 시장

제14장 한국 시장

제15장 서유럽 시장

제16장 영국 시장

제17장 독일 시장

제18장 프랑스 시장

제19장 이탈리아 시장

제20장 스페인 시장

제21장 동유럽 시장

제22장 러시아 시장

제23장 북미 시장

제24장 미국 시장

제25장 캐나다 시장

제26장 남미 시장

제27장 브라질 시장

제28장 중동 시장

제29장 아프리카 시장

제30장 경쟁 구도 및 기업 프로파일

제31장 기타 주요 기업 및 혁신 기업

제32장 세계 시장 경쟁 벤치마킹 및 대시보드

제33장 주요 인수합병(M&A)

제34장 최근 시장 동향

제35장 시장의 잠재력이 높은 국가, 부문 및 전략

제36장 부록

AJY
영문 목차

영문목차

Machine learning for crop yield prediction involves using ML algorithms and models to estimate the quantity of crops that can be harvested from a given farmland area. This approach utilizes historical and real-time data, including environmental conditions, soil characteristics, weather patterns, crop types, and farming practices, to generate accurate and data-driven forecasts.

The primary components of machine learning for crop yield prediction include software and services. Software consists of programs and instructions that enable computers to analyze agricultural data and optimize predictions. These solutions can be deployed both on the cloud and on-premises, catering to small, medium, and large-sized farms. The key end users include farmers, agricultural cooperatives, research institutions, government agencies, and others.

The machine learning for crop yield prediction market research report is one of a series of new reports from The Business Research Company that provides machine learning for crop yield prediction market statistics, including machine learning for crop yield prediction industry global market size, regional shares, competitors with a machine learning for crop yield prediction market share, detailed machine learning for crop yield prediction market segments, market trends and opportunities, and any further data you may need to thrive in the machine learning for crop yield prediction industry. This machine learning for crop yield prediction market research report delivers a complete perspective of everything you need, with an in-depth analysis of the current and future scenario of the industry.

The machine learning for crop yield prediction market size has grown exponentially in recent years. It will grow from $0.79 billion in 2024 to $1.01 billion in 2025 at a compound annual growth rate (CAGR) of 26.9%. The growth in the historic period can be attributed to the increasing global population and food demand, the rising use of historical data for modeling, the growing popularity of precision agriculture, increased investment and funding in agtech, and the adoption of climate-smart agriculture practices.

The machine learning for crop yield prediction market size is expected to see exponential growth in the next few years. It will grow to $2.58 billion in 2029 at a compound annual growth rate (CAGR) of 26.6%. The growth in the forecast period will be driven by improvements in the precision and effectiveness of ML-based forecasts, a growing global population with limited resources, the rise of big data in agriculture, the impact of climate change and environmental stress, and the increasing adoption of sustainable agricultural practices. Key trends include the integration of AI technology and machine learning for crop yield prediction, the adoption of IoT in agriculture, ongoing technological advancements, and the emergence of AI-powered autonomous tractors.

The growing need for sustainable agriculture practices is expected to drive the expansion of the machine learning market for crop yield prediction. Sustainable agriculture is a holistic farming approach that aims to produce food and other agricultural products while conserving resources, promoting biodiversity, maintaining economic viability, and ensuring social equity for current and future generations. The rise in sustainable agriculture is fueled by increasing concerns over environmental degradation, resource scarcity, climate change, and the demand for healthier, more resilient food systems that support long-term food security and community well-being. Machine learning for crop yield prediction plays a crucial role in sustainable agriculture by enabling data-driven decision-making to optimize resource use, reduce waste, enhance crop productivity, and improve efficiency while minimizing environmental impact. For example, in February 2024, IFOAM Organics International, a Germany-based non-profit organization, reported that the global organic farming area expanded by more than 20 million hectares in 2022, reaching a total of 96 million hectares. The number of organic producers also saw significant growth, surpassing 4.5 million, while organic food sales nearly hit 135 billion euros in the same year. Consequently, the increasing focus on sustainable agriculture is driving the adoption of machine learning for crop yield prediction.

Leading companies in the machine learning for crop yield prediction market are prioritizing the development of GenAI-integrated platforms to enhance the creation of innovative, data-driven solutions. These platforms combine generative artificial intelligence with other technologies, allowing for the generation, customization, and deployment of AI-driven insights across various industries and applications. For instance, in July 2024, CropIn, an India-based agtech company, collaborated with Google (Gemini), a US-based technology company, to introduce Sage, a GenAI-powered agri-intelligence platform. Sage's key advantage lies in its ability to deliver detailed, grid-based insights into crop behavior over different time periods by integrating generative AI, advanced crop and climate models, and Earth observation data. This integration enables Sage to produce a proprietary grid-based agricultural data map, offering exceptional scale, accuracy, and speed. It revolutionizes the way stakeholders analyze crop dynamics, climate effects, and optimal agricultural practices, facilitating informed, data-driven decisions in multiple languages across global farming operations.

In April 2024, AGCO Corporation, a US-based agricultural machinery manufacturer, acquired Trimble Agriculture in a $2 billion deal. This acquisition enables AGCO to incorporate Trimble's cutting-edge precision agriculture technologies into its product portfolio, which is expected to enhance farming efficiency and productivity significantly. Trimble Agriculture, a US-based company, specializes in providing machine learning solutions for crop yield prediction.

Major players in the machine learning for crop yield prediction market are Microsoft Corp., BASF SE, International Business Machines Corp., Bayer AG, Ninjacart, Raven Industries Inc., Cropin Technology Solutions Pvt., Terramera Inc., FarmWise Labs Inc., Sentera Inc., Taranis, Ceres Imaging Inc., CropX Inc., PrecisionHawk, Aerobotics Ltd., Fasal, IUNU Inc., AgriWebb Pty Ltd., Keymakr Inc., Trace Genomics Inc., Bloomfield Robotics, Agrograph Inc., Xyonix Inc., AiDOOS Corp., and FruitSpec.

North America was the largest region in the machine learning for crop yield prediction market in 2024. The regions covered in machine learning for crop yield prediction report are Asia-Pacific, Western Europe, Eastern Europe, North America, South America, Middle East and Africa.

The countries covered in the machine learning for crop yield prediction market report are Australia, Brazil, China, France, Germany, India, Indonesia, Japan, Russia, South Korea, UK, USA, Canada, Italy, Spain.

The machine learning for crop yield prediction market includes revenues earned by entities by providing services such as yield forecasting consulting, soil health and fertility analysis, weather impact analysis and field zone mapping. The market value includes the value of related goods sold by the service provider or included within the service offering. Only goods and services traded between entities or sold to end consumers are included.

The market value is defined as the revenues that enterprises gain from the sale of goods and/or services within the specified market and geography through sales, grants, or donations in terms of the currency (in USD, unless otherwise specified).

The revenues for a specified geography are consumption values that are revenues generated by organizations in the specified geography within the market, irrespective of where they are produced. It does not include revenues from resales along the supply chain, either further along the supply chain or as part of other products.

Machine Learning For Crop Yield Prediction Global Market Report 2025 from The Business Research Company provides strategists, marketers and senior management with the critical information they need to assess the market.

This report focuses on machine learning for crop yield prediction market which is experiencing strong growth. The report gives a guide to the trends which will be shaping the market over the next ten years and beyond.

Reasons to Purchase

Where is the largest and fastest growing market for machine learning for crop yield prediction ? How does the market relate to the overall economy, demography and other similar markets? What forces will shape the market going forward? The machine learning for crop yield prediction market global report from the Business Research Company answers all these questions and many more.

The report covers market characteristics, size and growth, segmentation, regional and country breakdowns, competitive landscape, market shares, trends and strategies for this market. It traces the market's historic and forecast market growth by geography.

The forecasts are made after considering the major factors currently impacting the market. These include the Russia-Ukraine war, rising inflation, higher interest rates, and the legacy of the COVID-19 pandemic.

Scope

Table of Contents

1. Executive Summary

2. Machine Learning For Crop Yield Prediction Market Characteristics

3. Machine Learning For Crop Yield Prediction Market Trends And Strategies

4. Machine Learning For Crop Yield Prediction Market - Macro Economic Scenario Macro Economic Scenario Including The Impact Of Interest Rates, Inflation, Geopolitics And Covid And Recovery On The Market

5. Global Machine Learning For Crop Yield Prediction Growth Analysis And Strategic Analysis Framework

6. Machine Learning For Crop Yield Prediction Market Segmentation

7. Machine Learning For Crop Yield Prediction Market Regional And Country Analysis

8. Asia-Pacific Machine Learning For Crop Yield Prediction Market

9. China Machine Learning For Crop Yield Prediction Market

10. India Machine Learning For Crop Yield Prediction Market

11. Japan Machine Learning For Crop Yield Prediction Market

12. Australia Machine Learning For Crop Yield Prediction Market

13. Indonesia Machine Learning For Crop Yield Prediction Market

14. South Korea Machine Learning For Crop Yield Prediction Market

15. Western Europe Machine Learning For Crop Yield Prediction Market

16. UK Machine Learning For Crop Yield Prediction Market

17. Germany Machine Learning For Crop Yield Prediction Market

18. France Machine Learning For Crop Yield Prediction Market

19. Italy Machine Learning For Crop Yield Prediction Market

20. Spain Machine Learning For Crop Yield Prediction Market

21. Eastern Europe Machine Learning For Crop Yield Prediction Market

22. Russia Machine Learning For Crop Yield Prediction Market

23. North America Machine Learning For Crop Yield Prediction Market

24. USA Machine Learning For Crop Yield Prediction Market

25. Canada Machine Learning For Crop Yield Prediction Market

26. South America Machine Learning For Crop Yield Prediction Market

27. Brazil Machine Learning For Crop Yield Prediction Market

28. Middle East Machine Learning For Crop Yield Prediction Market

29. Africa Machine Learning For Crop Yield Prediction Market

30. Machine Learning For Crop Yield Prediction Market Competitive Landscape And Company Profiles

31. Machine Learning For Crop Yield Prediction Market Other Major And Innovative Companies

32. Global Machine Learning For Crop Yield Prediction Market Competitive Benchmarking And Dashboard

33. Key Mergers And Acquisitions In The Machine Learning For Crop Yield Prediction Market

34. Recent Developments In The Machine Learning For Crop Yield Prediction Market

35. Machine Learning For Crop Yield Prediction Market High Potential Countries, Segments and Strategies

36. Appendix

(주)글로벌인포메이션 02-2025-2992 kr-info@giikorea.co.kr
ⓒ Copyright Global Information, Inc. All rights reserved.
PC버전 보기