세계의 프라이빗 5G 네트워크 시장 - 기회, 과제, 전략, 예측(2024-2030년)
Private 5G Networks: 2024 - 2030 - Opportunities, Challenges, Strategies & Forecasts
상품코드 : 1474075
리서치사 : SNS Telecom & IT
발행일 : 2024년 05월
페이지 정보 : 영문 2,480 Pages; 113 Tables & Figures
 라이선스 & 가격 (부가세 별도)
US $ 2,500 ₩ 3,609,000
PDF & Excel (Single User License) help
PDF 보고서를 1명만 이용할 수 있는 라이선스입니다. 인쇄 가능하며 인쇄물의 이용 범위는 PDF 이용 범위와 동일합니다.
US $ 3,500 ₩ 5,053,000
PDF & Excel (Company Wide License)


한글목차

요약

프라이빗 5G 네트워크는 확립된 시장이며 10년 이상 전부터 존재합니다. iNET(Infrastructure Networks)의 퍼미언 분지에서 700MHz LTE 네트워크, 탐넷의 북해 해외 4G 인프라, 리오 틴토의 서호주 광산업무 전용 LTE 네트워크 등 초기 설치는 2010년대 초반으로 거슬러 올라갑니다. 그러나 대부분의 국내 시장에서 3GPP 정의형 5G 표준을 기반으로 하는 프라이빗 셀룰러 네트워크와 NPN은 PoC 테스트 및 소규모 배포에서 Industry 4.0 및 고급 용도 시나리오의 기초를 구축하는 독립형 5G 네트워크의 생산 등급 구현 로 이동하기 시작한 곳입니다.

LTE 기술에 비해 프라이빗 5G 네트워크(지역에 따라 5G MPN, 5G 캠퍼스 네트워크, 로컬 5G, e-Um 5G 시스템이라고도 함)는 처리량, 지연, 신뢰성, 가용성 및 연결 밀도 측면에서 훨씬 엄격합니다. 성능 요구 사항에 대응할 수 있습니다. 특히, 5G URLLC와 mMTC 기능은 2030년대 6G 네트워크로의 미래 전환 경로와 함께 기계, 로봇 및 제어 시스템 간의 산업 등급 통신에서 물리적 유선 연결을 대체하는 실행 가능한 옵션으로 위치하고 있습니다. 또한 5G는 소유 비용이 상대적으로 높음에도 불구하고 무선 노드당 커버 반경의 넓이, 확장성, 결정성, 보안 기능 및 이동성 지원으로 향후 몇 년동안 연결 센서 및 기타 엔드 포인트 수가 크게 증가할 것으로 예상되는 IIoT 환경에서 간섭을 받기 쉬운 면허 불필요한 무선 기술을 대체할 가능성에 강한 관심이 전해지고 있습니다.

중국은 공장, 창고, 광산, 발전소, 변전소, 석유 및 가스시설, 항만 등의 산업환경에서 5G 접속의 채용을 가속시키는 것을 목적으로 한 국가자금에 의한 지침 덕분에 이상적이고 가장 성숙한 국가 시장이라는 점에 주목할 만합니다. 배경을 설명하면 중국 최대 프라이빗 5G 네트워크는 특정 지연, 안정성 및 보안 요구 사항에 따라 온프레미스 또는 에지 클라우드 기반 코어 네트워크 기능이 지원하는 수백에서 수천 개의 전용 RAN 노드로 구성될 수 있습니다. 예를 들어 소비자 일렉트로닉스 제조업체 Midea의 주주 공업 단지에서는 실내외의 5G NR 액세스 포인트를 2,500대 설치하고, 약 104에이커의 부지 전체에 작업원, 기계, 로봇, 차량을 접속하고 있으며, 철강 제조업체의 WISCO(Wuhan Iron & Steel Corporation)는 무한(후베이성)의 철강 공장에서 중기를 원격 조작하기 위해 85개의 멀티 섹터 매크로셀과 100개의 스몰셀로 구성된 듀얼 레이어 프라이빗 5G 네트워크를 설치하여 복건성을 거점이 되는 제조업체인 Wanhua Chemical은 최근 감시 카메라와 IoT 센서 등 8,000대 이상의 5G RedCap(Reduced Capability) 디바이스에 대응하는 커스터마이즈된 무선 네트워크를 구축했습니다.

미국, 독일, 프랑스, 일본, 한국, 대만과 같은 최종 사용자 기업이 디지털화 및 자동화 노력을 강화하는 동안 프라이빗 5G 네트워크는 생산 라인의 신속한 재구성에 사용되는 무선 연결된 기계 분산 PLC 환경, AMR 및 AGV에 의한 인트라 물류, AR 지원 지침 및 문제 해결, 머신 비전 기반 품질 관리, 제조 차량 무선 소프트웨어 플래시, 원격 조작 크레인, 무인 채굴 장비, 무인 항공기 BVLOS 조작, 복잡한 산업 시스템의 디지털 트윈 모델, ATO, 건널목 및 역 홈의 안전성을 위한 비디오 분석, 항공기 엔진 부품의 원격 육안 검사, 비행 라인에서 정비 작업을 위한 실시간 협업, XR 기반 군사 훈련, NICU에서 유아를 보기 위한 부모님의 가상 방문, 기존 솔루션에서는 접근하기 어려운 곳에서의 라이브 방송 제작, 대규모 스포츠 이벤트 중의 크리티컬 통신, 와규 생산을 위한 소의 비육과 번식의 최적화 등, 다양한 이용 사례를 서포트하기 위해 서서히 도입되었습니다.

이 보고서는 세계 5G 네트워크 시장을 상세하게 평가하고 밸류체인, 시장 성장 촉진요인, 도입 장벽, 실현 기술, 경영 및 비즈니스 모델, 수직 산업, 응용 시나리오, 주요 동향, 미래 로드맵, 표준화, 주파수 대역의 가용성과 할당, 규제 상황, 사례 연구, 생태계 진출 기업의 프로파일과 전략 등을 요약합니다.

목차

제1장 서론

제2장 프라이빗 5G 네트워크 개요

제3장 프라이빗 5G 네트워크의 시스템 아키텍처 및 기술

제4장 주요 수직 산업 및 용도

제5장 스펙트럼 가용성, 할당 및 사용

제6장 표준화, 규제 및 공동 활동

제7장 프라이빗 5G 네트워크 사례 연구

제8장 주요 생태계 진출기업

제9장 시장 규모 및 예측

제10장 결론 및 전략적 추천

AJY
영문 목차

영문목차

Synopsis

Private LTE networks are a well-established market and have been around for more than a decade, albeit as a niche segment of the wider cellular infrastructure segment - iNET's (Infrastructure Networks) 700 MHz LTE network in the Permian Basin, Tampnet's offshore 4G infrastructure in the North Sea, Rio Tinto's private LTE network for its Western Australia mining operations and other initial installations date back to the early 2010s. However, in most national markets, private cellular networks or NPNs (Non-Public Networks) based on the 3GPP-defined 5G standard are just beginning to move beyond PoC (Proof-of-Concept) trials and small-scale deployments to production-grade implementations of standalone 5G networks, which are laying the foundation for Industry 4.0 and advanced application scenarios.

Compared to LTE technology, private 5G networks - also referred to as 5G MPNs (Mobile Private Networks), 5G campus networks, local 5G or e-Um 5G systems depending on geography - can address far more demanding performance requirements in terms of throughput, latency, reliability, availability and connection density. In particular, 5G's URLLC (Ultra-Reliable, Low-Latency Communications) and mMTC (Massive Machine-Type Communications) capabilities, along with a future-proof transition path to 6G networks in the 2030s, have positioned it as a viable alternative to physically wired connections for industrial-grade communications between machines, robots and control systems. Furthermore, despite its relatively higher cost of ownership, 5G's wider coverage radius per radio node, scalability, determinism, security features and mobility support have stirred strong interest in its potential as a replacement for interference-prone unlicensed wireless technologies in IIoT (Industrial IoT) environments, where the number of connected sensors and other endpoints is expected to increase significantly over the coming years.

It is worth noting that China is an outlier and the most mature national market thanks to state-funded directives aimed at accelerating the adoption of 5G connectivity in industrial settings such as factories, warehouses, mines, power plants, substations, oil and gas facilities and ports. To provide some context, the largest private 5G installations in China can comprise hundreds to even thousands of dedicated RAN (Radio Access Network) nodes supported by on-premise or edge cloud-based core network functions depending on specific latency, reliability and security requirements. For example, home appliance manufacturer Midea's Jingzhou industrial park hosts 2,500 indoor and outdoor 5G NR access points to connect workers, machines, robots and vehicles across an area of approximately 104 acres, steelmaker WISCO (Wuhan Iron & Steel Corporation) has installed a dual-layer private 5G network - spanning 85 multi-sector macrocells and 100 small cells - to remotely operate heavy machinery at its steel plant in Wuhan (Hubei), and Fujian-based manufacturer Wanhua Chemical has recently built a customized wireless network that will serve upwards of 8,000 5G RedCap (Reduced Capability) devices, primarily surveillance cameras and IoT sensors.

As end user organizations in the United States, Germany, France, Japan, South Korea, Taiwan and other countries ramp up their digitization and automation initiatives, private 5G networks are progressively being implemented to support use cases as diverse as wirelessly connected machinery for the rapid reconfiguration of production lines, distributed PLC (Programmable Logic Controller) environments, AMRs (Autonomous Mobile Robots) and AGVs (Automated Guided Vehicles) for intralogistics, AR (Augmented Reality)-assisted guidance and troubleshooting, machine vision-based quality control, wireless software flashing of manufactured vehicles, remote-controlled cranes, unmanned mining equipment, BVLOS (Beyond Visual Line-of-Sight) operation of drones, digital twin models of complex industrial systems, ATO (Automatic Train Operation), video analytics for railway crossing and station platform safety, remote visual inspections of aircraft engine parts, real-time collaboration for flight line maintenance operations, XR (Extended Reality)-based military training, virtual visits for parents to see their infants in NICUs (Neonatal Intensive Care Units), live broadcast production in locations not easily accessible by traditional solutions, operations-critical communications during major sporting events, and optimization of cattle fattening and breeding for Wagyu beef production.

Despite prolonged teething problems in the form of a lack of variety of non-smartphone devices, high 5G IoT module costs due to low shipment volumes, limited competence of end user organizations in cellular wireless systems and conservatism with regards to new technology, early adopters are affirming their faith in the long-term potential of private 5G by investing in networks built independently using new shared and local area licensed spectrum options, in collaboration with private network specialists or via traditional mobile operators. Some private 5G installations have progressed to a stage where practical and tangible benefits - particularly efficiency gains, cost savings and worker safety - are becoming increasingly evident.

Notable examples include but are not limited to:

Some of the most technically advanced features of 5G Advanced - 5G's next evolutionarily phase - are also being trialed over private wireless installations. Among other examples, Chinese automaker Great Wall Motor is using an indoor 5G Advanced network for time-critical industrial control within a car roof production line as part of an effort to prevent wire abrasion in mobile application scenarios, which results in production interruptions with an average downtime of 60 hours a year.

In addition, against the backdrop of geopolitical trade tensions and sanctions that have restricted established telecommunications equipment suppliers from operating in specific countries, private 5G networks have emerged as a means to test domestically produced 5G network infrastructure products in controlled environments prior to large-scale deployments or vendor swaps across national or regional public mobile networks. For instance, Russian industrial groups are trialing private 5G networks in pilot zones within their production sites, using indigenously built 5G equipment operating in Band n79 (4.8-4.9 GHz) spectrum.

To capitalize on the long-term potential of private 5G, a number of new alternative suppliers have also developed 5G infrastructure offerings tailored to the specific needs of industrial applications. For example, satellite communications company Globalstar has launched a 3GPP Release 16-compliant multipoint terrestrial RAN system that is optimized for dense private wireless deployments in Industry 4.0 automation environments while German engineering conglomerate Siemens has developed an in-house private 5G network solution for use at its own plants as well as those of industrial customers.

SNS Telecom & IT estimates that annual investments in private 5G networks for vertical industries will grow at a CAGR of approximately 42% between 2024 and 2027, eventually accounting for nearly $3.5 Billion by the end of 2027. Although much of this growth will be driven by highly localized 5G networks covering geographically limited areas for Industry 4.0 applications in manufacturing and process industries, sub-1 GHz wide area critical communications networks for public safety, utilities and railway communications are also anticipated to begin their transition from LTE, GSM-R and other legacy narrowband technologies to 5G towards the latter half of the forecast period, as 5G Advanced becomes a commercial reality. Among other features for mission-critical networks, 3GPP Release 18 - which defines the first set of 5G Advanced specifications - adds support for 5G NR equipment operating in dedicated spectrum with less than 5 MHz of bandwidth, paving the way for private 5G networks operating in sub-500 MHz, 700 MHz, 850 MHz and 900 MHz bands for public safety broadband, smart grid modernization and FRMCS (Future Railway Mobile Communication System).

The "Private 5G Networks: 2024 - 2030 - Opportunities, Challenges, Strategies & Forecasts"report presents an in-depth assessment of the private 5G network market, including the value chain, market drivers, barriers to uptake, enabling technologies, operational and business models, vertical industries, application scenarios, key trends, future roadmap, standardization, spectrum availability and allocation, regulatory landscape, case studies, ecosystem player profiles and strategies. The report also presents global and regional market size forecasts from 2024 to 2030. The forecasts cover three infrastructure submarkets, 16 vertical industries and five regional markets.

The report comes with an associated Excel datasheet suite covering quantitative data from all numeric forecasts presented in the report, as well as a database of over 7,000 global private cellular engagements - including more than 2,200 private 5G installations - as of Q2'2024.

Summary of Private 5G Engagements

Below is a summary of existing and planned private 5G engagements across 16 vertical sectors:

Key Findings

The report has the following key findings:

Topics Covered

The report covers the following topics:

Forecast Segmentation

Market forecasts are provided for each of the following submarkets and their subcategories:

Infrastructure Submarkets

Cell Sizes

Frequency Ranges

End User Markets

Regional Markets

Key Questions Answered

The report provides answers to the following key questions:

Table of Contents

Chapter 1: Introduction

Chapter 2: An Overview of Private 5G Networks

Chapter 3: System Architecture & Technologies for Private 5G Networks

Chapter 4: Key Vertical Industries & Applications

Chapter 5: Spectrum Availability, Allocation & Usage

Chapter 6: Standardization, Regulatory & Collaborative Initiatives

Chapter 7: Case Studies of Private 5G Networks

Chapter 8: Key Ecosystem Players

Chapter 9: Market Sizing & Forecasts

Chapter 10: Conclusion & Strategic Recommendations

(주)글로벌인포메이션 02-2025-2992 kr-info@giikorea.co.kr
ⓒ Copyright Global Information, Inc. All rights reserved.
PC버전 보기