<2024> ¹Ý°íüÀüÁö ±â¼ú°³¹ß ÇöȲ ¹× ÇâÈÄ Àü¸Á
<2024> Semi-Solid Battery Technology: Development and Future Prospects
»óǰÄÚµå : 1473268
¸®¼­Ä¡»ç : SNE Research
¹ßÇàÀÏ : 2024³â 04¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® ¶Ç´Â ±¹¹® - 241 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
£Ü 6,500,000 £Ü 6,500,000
PDF (Corporate License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy & Paste °¡´ÉÇÕ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Àü°íüÀüÁö¿¡ ´ëÇÑ Àû¿ë°ú ¾ç»ê °èȹÀÌ ÁÖ¿ä ÀüÁö ¸ÞÀÌÀú ¹× ÀÚµ¿Â÷ OEMÀ¸·ÎºÎÅÍ ¹ßÇ¥°¡ µÇ°í ÀÖÀ¸³ª, ´ë±Ô¸ð ¾ç»ê¿¡´Â Àû¾îµµ 5-10³âÀÌ ¼Ò¿äµÉ °ÍÀ¸·Î ¿¹ÃøµÇ´Â °¡¿îµ¥, ±âÁ¸ LiBº¸´Ù ¾ÈÀü¼ºÀ» ³ôÀ̰í, ±ä ¼ö¸í°ú ÄÚ½ºÆ® °æÁ¦¼ºÀ» °®Ãá ¹Ý°íüÀüÁö¿¡ ´ëÇÑ ±â´ë°¡ ³ô¾ÆÁö°í ÀÖÀ¸¸ç, Áß±¹À» Áß½ÉÀ¸·Î ¸¹Àº ¾÷üµéÀÌ ¼Ó¼Ó ¹Ý°íüÀüÁö ¾ç»ê ¹× Àû¿ë °èȹÀ» ³»³õ°í ÀÖ½À´Ï´Ù.

¹Ý°íüÀüÁö´Â ¾×ü°è¿¡¼­ Àü°íüÀüÁö·Î ÀüȯµÇ´Â °úµµ±â Á¦Ç°À¸·Î °£Áֵǰí ÀÖÀ¸³ª, ÀüÁö ³»ºÎ¿¡ ÀüÇØ¾× ÀϺθ¦ ÷°¡ÇÏ¿© °è¸éÀ» °³¼±ÇÑ ÀüÁö¶ó°í ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¹Ý°íüÀüÁö´Â ¾×ü°è¿¡ ºñÇØ Àç·áü°èÀÇ º¯È­°¡ Àû°í, ºÐ¸®¸·°ú ¾×üÀüÇØÁúÀÌ »ç¿ëµÇ¸ç, ¹èÅ͸® ³»ºÎÀÇ ¾×ü ÀüÇØÁú ÇÔ·®À» ÁÙÀÓÀ¸·Î½á ¹èÅ͸®ÀÇ ºñ¿¡³ÊÁö¿ë·®°ú ¾ÈÀü¼ºÀ» ¾î´À Á¤µµ Çâ»ó½Ãų ¼ö ÀÖÀ¸¸ç, ´ëºÎºÐÀÇ Á¦Á¶¹æ¹ýÀº ÀüÅëÀûÀÎ ¸®Æ¬À̿ ¹èÅ͸® ±â¼ú°ú Àåºñ ±â¼úÀ» µû¸¨´Ï´Ù.

¹Ý°íüÀüÁö¿¡¼­´Â ¾×ü¸¦ Ãß°¡ÇÏ¸é º¹ÇÕÀ縦 ÅëÇÑ À̿ Àü´ÞÀÌ Çâ»óµÇ°í ÀüÀÚ Àü´ÞÀÌ ¼Õ»óµÇÁö ¾Ê´Â °æ¿ì¿¡ Àü±ØÀÇ Àü±âÈ­ÇÐÀû Ư¼ºÀÌ Çâ»óµË´Ï´Ù. À̸¦ À§Çؼ­´Â °íü/¾×ü °è¸éÀ» ÅëÇÑ À̿ Àü´ÞÀÌ ÃæºÐÈ÷ ³·Àº ÀúÇ×À» ³ªÅ¸³»¾ß ÇÕ´Ï´Ù. ÃÖ±ÙÀÇ in-situ polymerizationÀº ¹Ý°íüÀüÁöÀÇ ¿ø·¡ ¾×ü ¼ººÐÀ» ÀÀ°í½ÃÄÑ ¾×ü ÇÔ·®À» ³·Ãߴµ¥ »ç¿ëµÇ¾ú½À´Ï´Ù.

¹Ý°íüÀüÁö¿¡¼­ °¡Àå ¸¹Àº ÇüÅÂÀÇ ÇϳªÀÎ À¯±â-¹«±â º¹ÇÕ °íüÀüÇØÁúÀº À¯±â °íüÀüÇØÁú°ú ¹«±â °íüÀüÇØÁúÀÇ ÀåÁ¡À» °áÇÕÇÑ °ÍÀ¸·Î, »êÈ­¹° °íüÀüÇØÁú°ú °íºÐÀÚ ÀüÇØÁú º¹ÇÕÀç°¡ mainÀ¸·Î ¿ì¼öÇÑ ¿¬¼º ¹× ±â°èÀû °­µµ, ¿ì¼öÇÑ °¡°ø¼º, ´ë·® »ý»ê¿¡ ÀûÇÕÇÑ ÃæºÐÇÑ À̿ Àüµµ¼ºÀ» ³ªÅ¸³À´Ï´Ù.

CATL, WeLion, Qingtao Energy, Ganfeng Lithium, Guoxuan, Farasis, Tailan µî ´ëºÎºÐÀÇ Áß±¹¾÷ü¸¦ Áß½ÉÀ¸·Î ÁøÇàÁß¿¡ ÀÖÀ¸¸ç, LGES, Factorial Energy, SES, ProLogium¿¡¼­µµ µ¶ÀÚÀû ¶Ç´Â ÀÚµ¿Â÷ OEM°ú ÇÔ²² °³¹ßÇϰí ÀÖ½À´Ï´Ù.

¡®23³â 4¿ù »óÇÏÀÌ ¸ðÅͼ¼­ CATLÀº ÀÀÃàÇü ¹èÅ͸®(ëêö©??ò®-condensed Battery)¸¦ ¹ßÇ¥ÇÏ¿© ¸¹Àº °ü½ÉÀ» ¹ÞÀº ÀûÀÌ ÀÖ½À´Ï´Ù. ÀÌ ¹èÅ͸®´Â °íÃâ·Â ¹ÙÀÌ¿À´Ð ÀÀÃà ÀüÇØÁúÀ» »ç¿ëÇÏ°í ¸¶ÀÌÅ©·Î ¼öÁØÀÇ ÀûÀÀÇü ³×Æ®¿öÅ© ±¸Á¶¸¦ ±¸¼ºÇÏ¿© ¹èÅ͸®ÀÇ µ¿Àû ¼º´ÉÀ» Çâ»ó½ÃŰ¸é¼­ ¸®Æ¬À̿ ¼ö¼Û È¿À²À» Áõ°¡½ÃŲ °ÍÀ¸·Î¼­ ¼¿ ¿¡³ÊÁö¹Ðµµ´Â 500Wh/kg¿¡ ´ÞÇϸç, ¾ÈÁ¤¼º ¹× ºü¸¥ ´ë·®»ý»ê±îÁö °¡´ÉÇÑ °ÍÀ¸·Î ½ÃÀåÀÇ °ü½ÉÀ» ¹Þ¾Ò½À´Ï´Ù.

¹Ý°íüÀüÁöÀÇ Àû¿ëÀº ÀÌ¹Ì ½ÃÀ۵ǰí ÀÖÀ¸¸ç, WeLionÀÇ 360Wh/kg ¿¡³ÊÁö¹ÐµµÀÇ ¹Ý°íüÀüÁö 150kWh¸¦ žÀçÇÑ NIO ET7ÀÇ °æ¿ì, 1145km¸¦ ÁÖÇàÇÏ¿© ÀÏ¹Ý ¹èÅ͸®º¸´Ù ´õ ¸Õ ÁÖÇà°Å¸®¸¦ ³ªÅ¸³»¾ú°í, ¡¯24. 4¿ùºÎÅÍ ¾ç»êÀÌ ½ÃÀ۵ȴٰí ÇÕ´Ï´Ù.

SNE Research¿¡ µû¸£¸é, ±Û·Î¹ú ¹Ý°íüÀüÁö »ý»ê CAPA´Â ¡®30³â¿¡ ¾à 168GWh, ¡®35³â¿¡ 300GWh°¡ µÉ °ÍÀ¸·Î Àü¸ÁµÇ¸ç, Àüü ÀüÁö¿¡ ´ëÇÑ Á¡À¯À²À» º¸¸é, ¡®30³â ¾à 5.7%¿¡¼­ ¡®33³â 6.55%·Î peak¸¦ º¸ÀÌ´Ù°¡ Àü°íüÀüÁö°¡ º»°ÝÀûÀ¸·Î µµÀԵǸ鼭 ¡®35³â¿£ ´Ù½Ã 5.7%·Î °¨¼ÒÇÒ °ÍÀ¸·Î Àü¸ÁµË´Ï´Ù.

ÇØ´ç ¸®Æ÷Æ®¸¦ ÅëÇØ ¸®Æ¬ ¸ÞÅ» »ê¾÷ Àü¹ÝÀ» ÀÌÇØÇϰí, insight°¡ µé¾î°£ SNE ¸®¼­Ä¡ÀÇ Àü¸ÁÀ» ¹Ù¶óº¸¸ç ¸®Æ¬ ¿øÀÚÀçÀÇ ÇâÈÄ º¯µ¿À» ´ëºñÇÒ ¼ö ÀÖ´Â µµ¿òÀÌ µÇ±â¸¦ ¹Ù¶ø´Ï´Ù.

º» º¸°í¼­ÀÇ Strong Point´Â ´ÙÀ½°ú °°½À´Ï´Ù.

¸ñ Â÷

1. ¹Ý°íüÀüÁö °³¹ß µ¿Çâ

2. Àü°íü, Áذíü, ¹Ý°íü, ÇÏÀ̺긮µåÀÇ ºÐ·ù

3. ¹Ý°íüÀüÁö¿ë °íºÐÀÚ/¹«±âº¹ÇÕÀüÇØÁú

4. Àü°íü/¹Ý°íüÀüÁö ½ÉÃþ ºÐ¼®

5. ¹Ý°íüÀüÁö: EVÀÇ ÃÖÀû ¼Ö·ç¼Ç?

6. ¹Ý°íü ¸®Æ¬ÀüÁö °³¹ß: Interlayer(Áß°£Ãþ)µµÀÔ

7. °íüÀüÁö¿ë ÇÏÀ̺긮µå °è¸é(SLEI)

8. ¹Ý°íü ÀüÇØÁú Àû¿ë °íÈ¿À² ¸®Æ¬ ±Ý¼ÓÀüÁö(MOFµµÀÔ)

9. ¹Ý°íü ÀüÇØÁú Àû¿ë Li-S ÀüÁö

10. ¹Ý°íüÀüÁö »ê¾÷ µ¿Çâ

11. ¹Ý°íüÀüÁö Á¦Á¶¾÷ü ¹× ¿î¿ë ÇöȲ

12. ¹Ý°íüÀüÁö ½ÃÀå Àü¸Á

13. ¹Ý°íüÀüÁö ƯÇãºÐ¼®

¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Major battery manufacturers and automotive OEMs are planning to mass-produce all-solid-state batteries. However, large-scale production of these batteries is expected to take 5-10 years. In the meantime, there's increasing interest in semi-solid-state batteries due to their potential safety, longevity, and cost advantages over conventional lithium-ion batteries (LiBs). This anticipation is driving many companies, especially in China, to announce mass production plans for semi-solid-state batteries.

Semi-solid-state batteries serve as a transitional product between liquid-state and solid-state batteries. They incorporate a portion of electrolyte within the battery to enhance the interface. Compared to liquid-state batteries, semi-solid-state batteries necessitate minimal alterations to the material system, utilize separators and liquid electrolytes, and can decrease the volume of liquid electrolyte present. This reduction can enhance battery energy density and safety. Moreover, the manufacturing processes for semi-solid-state batteries closely align with traditional lithium-ion battery techniques and equipment.

In semi-solid-state batteries, the addition of a liquid can enhance ion transport through the composite material without compromising electron transport, leading to improved electrochemical performance of the electrodes. This requires a low-resistance ion transport through the solid/liquid interface. Recent in-situ polymerization techniques have been employed to reduce the liquid content by solidifying the original liquid components of the semi-solid-state battery.

Organic-inorganic composite solid electrolytes, one of the most prevalent forms in semi-solid-state batteries, combine the advantages of both organic and inorganic solid electrolytes. These composite materials, typically consisting of oxide solid electrolytes and polymer electrolytes, exhibit exceptional tensile strength and mechanical properties, excellent processability, and adequate ion conductivity, making them suitable for large-scale production.

The development of semi-solid-state batteries is primarily being driven by Chinese companies, including CATL, WeLion, Qingtao Energy, Ganfeng Lithium, Guoxuan, Farasis, and Tailan. Additionally, LGES, Factorial Energy, SES, and ProLogium are also independently or collaboratively developing this technology with automotive OEMs.

At the 2023 Shanghai Auto Show, CATL unveiled its highly anticipated Condensed Battery, grabbing industry attention. This groundbreaking technology utilizes a high-power bionic condensed electrolyte and features an adaptive micro-level network structure. These innovations enhance dynamic performance and lithium ion transport efficiency, resulting in an impressive cell energy density of 500 Wh/kg, surpassing conventional lithium-ion batteries. Moreover, CATL's innovation extends to stability and production capabilities, promising a reliable and scalable solution for electric vehicles in the future.

The application of solid-state batteries has already begun, and the NIO ET7 equipped with WeLion's 360Wh/kg semi-solid-state battery, boasting 150kWh, achieved a range of 1145km, surpassing conventional batteries. It's reported that mass production started in April 2024.

According to SNE Research, global solid-state battery production capacity is expected to reach approximately 168GWh by 2030 and 300GWh by 2035. In terms of overall battery market share, it is projected to peak at around 6.55% in 2033 from approximately 5.7% in 2030, before declining to 5.7% again by 2035 as solid-state batteries are widely adopted.

The strong points of this report are as follows.




Table of Contents

1. Semi-Solid-State Battery Development Trends

2. Classification of Solid-State, Semi-Solid-State, and Hybrid Batteries

3. Polymer/Inorganic Composite Electrolytes for Semi-Solid-State Batteries

4. In-Depth Analysis of All/Semi-Solid-State Batteries

5. Semi-Solid-State Batteries: The Optimal Solution for EVs?

6. Quasi-Solid Lithium Battery Development: Interlayer Application

7. Solid-State Battery Hybrid Interface (SLEI)

8. High-Efficiency Li Metal Batteries with Quasi-Solid Electrolytes (Introduction of MOFs)

9. Li-S Batteries with Quasi-Solid Electrolytes

10. Semi-Solid-State Battery Industry Trends

11. Semi-Solid-State Battery Manufacturers and Operations

12. Semi-Solid State Battery Market Outlook

13. Patent Analysis of Semi-Solid-State Batteries

References

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â