Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ½º¸¶Æ® Àç·á ½ÃÀåÀº 2025³â¿¡ 859¾ï ´Þ·¯·Î ÃßÁ¤µÇ°í ¿¹Ãø ±â°£ µ¿¾È CAGR 9.0%·Î ¼ºÀåÇÒ Àü¸ÁÀ̸ç, 2032³â¿¡´Â 1,570¾ï ´Þ·¯¿¡ À̸¦ Àü¸ÁÀÔ´Ï´Ù.
½º¸¶Æ® Àç·á´Â ¿Âµµ, ¾Ð·Â, Àü±âÀå, ÀÚ±âÀå, ºû, ÈÇРȯ°æ µîÀÇ ¿ÜºÎ Àڱؿ¡ µ¿ÀûÀ¸·Î ¹ÝÀÀÇϵµ·Ï ¼³°èµÈ ÷´Ü Àç·áÀÔ´Ï´Ù. ±âÁ¸ÀÇ Àç·á¿Í ´Þ¸® ÁÖº¯ÀÇ º¯È¿¡ ÀûÀÀ, °¨Áö, ¹ÝÀÀÇÏ´Â ´É·ÂÀ» °¡Áö°í ÀÚ±ØÀÌ Á¦°ÅµÇ¸é ¿ø·¡ »óÅ·Πµ¹¾Æ°¡´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ÀϹÝÀûÀÎ ¿¹·Î´Â Çü»ó ±â¾ï ÇÕ±Ý, ¾ÐÀü Àç·á, ÀÏ·ºÆ®·ÎÅ©·Î¹Í ÄÚÆÃ, ÀÚ°¡ º¹¿ø¼º Æú¸®¸Ó µîÀÌ ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Àç·á´Â Ç×°ø¿ìÁÖ, ÀÚµ¿Â÷, ÇコÄɾî, °ÇÃà, ÀÏ·ºÆ®·Î´Ð½º »ê¾÷ µî Æø³ÐÀº ºÐ¾ß¿¡¼ ÀÀ¿ëµÇ¾î ±â´É¼º, ¿¡³ÊÁö È¿À², ¼º´ÉÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ±âº»ÀûÀ¸·Î ½º¸¶Æ® Àç·á´Â ¼öµ¿Àû ¹°Áú°ú »óÈ£ÀÛ¿ëÀûÀÌ°í ¹ÝÀÀÀûÀÎ ½Ã½ºÅÛ °£ÀÇ °ÝÂ÷¸¦ ¸Þ¿ì´Â °ÍÀÔ´Ï´Ù.
±Þ¼ÓÇÑ ±â¼ú Áøº¸
±Þ¼ÓÇÑ ±â¼ú ¹ßÀüÀº ¾÷°è Àü¹Ý¿¡¼ ´Ù±â´É¼º, ÀûÀÀ ¼º´É ¹× ½Ç½Ã°£ ÀÀ´ä¼ºÀ» °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á ½ÃÀåÀÇ Çõ½ÅÀûÀÎ ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù. ³ª³ë±â¼ú, AI ÁÖµµÀÇ Àç·á ¼³°è, IoT ÅëÇÕÀÇ Çõ½ÅÀº Ç×°ø¿ìÁÖ, ÇコÄɾî, ¿¡³ÊÁö ºÐ¾ß¿¡¼ÀÇ Ã¤¿ëÀ» °¡¼ÓÈÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ È¹±âÀûÀÎ ±â¼úÀº ºñ¿ë Àý°¨, Áö¼Ó°¡´É¼º Çâ»ó, ÀÚ°¡¼öº¹¼º º¹ÇÕÀç·á¿¡¼ »ýüÀÀ´ä¼º Æú¸®¸Ó¿¡ À̸£´Â »õ·Î¿î ¿ëµµÀÇ °³Ã´ÀÌ ÁøÇàµÇ¾î, ½º¸¶Æ® Àç·á´Â Â÷¼¼´ë Á¦Á¶¾÷°ú Áö´ÉÇü ÀÎÇÁ¶óÀÇ Ãʼ®À¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù. ÀÌ ±â¼¼´Â ½ÃÀåÀ» È®´ëÇÏ°í ¿µÇâÀ» ¹ÌÄ¡´Â °ÍÀÔ´Ï´Ù.
³ôÀº Á¦Á¶ ºñ¿ë
³ôÀº Á¦Á¶ ºñ¿ëÀº È®À强À» Á¦ÇÑÇÏ°í ¾÷°è Àüü·ÎÀÇ º¸±ÞÀ» ¹æÇØÇÔÀ¸·Î½á ½º¸¶Æ® Àç·á ½ÃÀåÀÇ Å« ¹æÇذ¡ µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ºñ¿ë »ó½ÂÀº º¹ÀâÇÑ ÇÕ¼º °øÁ¤, Ư¼ö Àåºñ ¹× Á¦ÇÑµÈ ¿ø·áÀÇ ÀÌ¿ë °¡´É¼ºÀ¸·Î ÀÎÇØ ¹ß»ýÇÕ´Ï´Ù. ±× °á°ú ½ÅÈï±â¾÷ ¹× Áß°ß±â¾÷Àº ÁøÀÔ À庮¿¡ Á÷¸éÇÏ¿© ÃÖÁ¾ »ç¿ëÀÚ´Â ºñ¿ë È¿À²ÀÌ ³ª»Û °Í¿¡ ÁÖÀúÇÕ´Ï´Ù. ÀÌ·Î ÀÎÇØ ±â¼ú Çõ½ÅÀÌ ÀúÇØµÇ°í »ó¾÷Ȱ¡ Áö¿¬µÇ¸ç ½º¸¶Æ® Àç·á´Â º¸´Ù ±¤¹üÀ§Çϰí Çõ½ÅÀûÀÎ Àü°³°¡ ¾Æ´Ï¶ó Æ´»õ ½ÃÀå¿¡¼ ÀÌÀÍ·üÀÌ ³ôÀº ¿ëµµ·Î Á¦Çѵ˴ϴÙ.
ÇコÄÉ¾î ¹× ¹ÙÀÌ¿À¸ÞµðÄà ¿ëµµ
½º¸¶Æ® Àç·áÀº ÇコÄÉ¾î ¹× ¹ÙÀÌ¿À¸ÞµðÄà ¿£Áö´Ï¾î¸µÀÇ º¯È ±âȸ¸¦ Ç®¾î °¡°í ÀÖ½À´Ï´Ù. ¿ëµµ ºÐ¾ß´Â ÀÌ½Ä °¡´ÉÇÑ ÀåÄ¡ ¹× ¾à¹° Àü´Þ ½Ã½ºÅÛ¿¡¼ ¹ÝÀÀ¼º »óó µå·¹½Ì ¹× ¹ÙÀÌ¿À ¼¾¼¿¡ À̸£±â±îÁö ´Ù¾çÇÕ´Ï´Ù. »ý¸®Àû Á¶°Ç¿¡ ÀûÀÀÇϰí Àڱؿ¡ ¹ÝÀÀÇϰí ȯÀÚÀÇ °á°ú¸¦ Çâ»ó½ÃŰ´Â ´É·ÂÀº ÀÓ»ó ÇöÀå¿¡¼ÀÇ Ã¤¿ëÀ» ÃËÁøÇÕ´Ï´Ù. °í·ÉȰ¡ ÁøÇàµÇ°í ¸ÂÃãÇü ÀÇ·á¿¡ ´ëÇÑ ¼ö¿ä°¡ ³ô¾ÆÁö´Â °¡¿îµ¥ ½º¸¶Æ® Àç·á´Â Áø´Ü, Ä¡·á, ÀçȰÀ» À§ÇÑ È®Àå °¡´ÉÇÑ ¼Ö·ç¼ÇÀ» Á¦°øÇϰí, ÇコÄɾ Çõ½Å°ú ÅõÀÚÀÇ °í¼ºÀå ÇÁ·ÐƼ¾î·Î ÀÚ¸®Àâ°í ÀÖ½À´Ï´Ù.
Á¦ÇÑÀûÀÎ ÀÎ½Ä ¹× ä¿ë
½º¸¶Æ® Àç·áÀÇ ÀÎÁöµµ ¹× ä¿ëÀÌ Á¦ÇÑÀûÀ̶ó´Â °ÍÀº ÁÖ¿ä »ê¾÷ Àüü ¼ö¿ä¸¦ Á¤Ã¼½ÃÄÑ ½ÃÀå ¼ºÀåÀÇ Å« ¹æÇذ¡ µÇ°í ÀÖ½À´Ï´Ù. ÀÚ°¡ º¹±¸, ÀûÀÀ ¹ÝÀÀ, ¿¡³ÊÁö È¿À² µî ½º¸¶Æ® ¼ÒÀçÀÇ ±â´ÉÀÌ ³Î¸® ÀÌÇØµÇÁö ¸øÇϸé ÀáÀçÀûÀÎ »ç¿ëÀÚ´Â ÅõÀÚ¸¦ ÁÖÀúÇÏ°Ô µË´Ï´Ù. ÀÌ·Î ÀÎÇØ Çõ½ÅÀÇ »çÀÌŬÀÌ Áö¿¬µÇ°í, ÀÚ±Ý Á¶´ÞÀÌ Á¦ÇѵǸç, ÁÖ·ù ¿ëµµ¿¡ ´ëÇÑ ÅëÇÕÀÌ Áö¿¬µË´Ï´Ù. °á°úÀûÀ¸·Î Áö½ÄÀÇ °ÝÂ÷´Â »ó¾÷ȸ¦ Á¦ÇÑÇÏ°í ±Ô¸ðÀÇ °æÁ¦¸¦ ¾ïÁ¦ÇÏ¸ç Æ¯È÷ ½ÅÈï ½ÃÀå°ú ºÐ¾ß¸¦ Ⱦ´ÜÇÏ´Â Àü°³¿¡¼ °æÀï·ÂÀ» ¾àȽÃŵ´Ï´Ù.
COVID-19ÀÇ ¿µÇâ
COVID-19ÀÇ ´ëÀ¯ÇàÀº ¼¼°è °ø±Þ¸ÁÀ» È¥¶õ½ÃÄÑ ¿¬±¸°³¹ß ÀÏÁ¤À» ´ÊÃß°í ½º¸¶Æ® Àç·áÀÇ Àü°³¸¦ ÀϽÃÀûÀ¸·Î Áö¿¬½ÃÄ×½À´Ï´Ù. ±×·¯³ª ¹ÝÀÀ¼º PPE, ¹ÙÀÌ¿À¼¾¼, Ç×¹ÙÀÌ·¯½º ÄÚÆÃ µî ÇコÄÉ¾î ¿ëµµ ºÐ¾ßÀÇ ±â¼ú Çõ½Åµµ ÃËÁøÇß½À´Ï´Ù. ÀÌ À§±â´Â ¿ªµ¿ÀûÀΠȯ°æ¿¡ ´ëÀÀÇÒ ¼ö ÀÖ´Â ÀûÀÀ¼ºÀÌ ÀÖ´Â ´Ù±â´É Àç·áÀÇ Çʿ伺À» ºÎ°¢½ÃÄ×½À´Ï´Ù. ÆÒµ¥¹Í ÈÄÀÇ ºÎÈïÀº ƯÈ÷ ź·Â¼º, ÀÚµ¿È, °Ç° ¾Èº¸¸¦ ¼±È£ÇÏ´Â ºÐ¾ß¿¡¼ ¼ö¿ä¸¦ À翬ÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ½º¸¶Æ® Àç·á´Â ÀÎÇÁ¶ó¸¦ ÇâÈÄ °ÈÇÏ´Â Àü·«Àû ÀÚ»êÀ¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾ÐÀü Àç·á ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ Àü¸Á
¾ÐÀü Àç·á ºÎ¹®Àº ¼¾¼, ¾×Ãß¿¡ÀÌÅÍ ¹× ¿¡³ÊÁö ¼öÈ® ½Ã½ºÅÛ¿¡¼ ³Î¸® »ç¿ëµÇ±â ¶§¹®¿¡ ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±â°èÀû ÀÀ·ÂÀ» Àü±â ½ÅÈ£·Î º¯È¯ÇÏ´Â ´É·ÂÀº ÀÚµ¿Â÷ ¾ÈÀü ½Ã½ºÅÛ, ÀÇ·á Áø´Ü ¹× »ê¾÷ ÀÚµ¿È¿¡ ÇʼöÀûÀÔ´Ï´Ù. Àç·á °¨µµ, ¼ÒÇüÈ, ÁýÀûÈÀÇ ²÷ÀÓ¾ø´Â °³¼±À¸·Î »õ·Î¿î ¿ëµµ·Î ±× À¯¿ë¼ºÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù. Á¤È®¼º°ú ÀÀ´ä¼º¿¡ ´ëÇÑ ¿ä±¸°¡ ³ô¾ÆÁü¿¡ µû¶ó ¾ÐÀü Àç·á´Â ½º¸¶Æ® ½Ã½ºÅÛ ¾ÆÅ°ÅØÃ³ÀÇ Áß½ÉÀÌ µÇ°í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È CAGRÀÌ °¡Àå ³ô¾ÆÁö´Â °ÍÀº º¯È¯±â ºÐ¾ßÀÔ´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ½Ç½Ã°£ °¨Áö ¹× Á¦¾î ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϱ⠶§¹®¿¡ º¯È¯±â ºÐ¾ß°¡ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ·¯ÇÑ ±¸¼º ¿ä¼Ò´Â ±â°èÀû, ¿Àû ¹× Àü±âÀû ¿¡³ÊÁö ÇüŸ¦ »ê¾÷ Àü¹Ý¿¡ °ÉÃÄ ½Ç¿ëÀûÀÎ ½ÅÈ£·Î º¯È¯ÇÏ´Â µ¥ Áß¿äÇÕ´Ï´Ù. IoT, ·Îº¿ ¿£Áö´Ï¾î¸µ ¹× ¿þ¾î·¯ºí ±â¼úÀÇ ¹ßÀüÀ¸·Î ¼ºÀåÀÌ ÃËÁøµÇ°í Æ®·£½º¹ÌÅÍ´Â Áö´ÉÀûÀÎ Çǵå¹é ·çÇÁ¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ½º¸¶Æ® ÀÎÇÁ¶ó¿Í »ýü ÀÇ·á±â±â¿¡¼ÀÇ ¿ªÇÒ È®´ë´Â Æ®·£½ºµà¼¸¦ ½ÃÀå ³» °í¼Ó ¼ºÀå ¿£ÁøÀ¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº °ß°íÇÑ Á¦Á¶ »ýŰè, ¿¬±¸°³¹ß ÅõÀÚ Áõ°¡, ÀÚµ¿Â÷ ¹× ÀüÀÚ ºÐ¾ßÀÇ ¿Õ¼ºÇÑ ¼ö¿ä·Î ÀÎÇØ ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Áß±¹, ÀϺ», Çѱ¹ µîÀÇ ±¹°¡µéÀº ½º¸¶Æ® Àç·áÀÇ ±â¼ú Çõ½Å°ú Àü°³·Î ¼±µµÇϰí ÀÖ½À´Ï´Ù. ÷´Ü Àç·á¿Í ½º¸¶Æ® ÀÎÇÁ¶ó¸¦ ÃßÁøÇÏ´Â Á¤ºÎÀÇ ÀÌ´Ï¼ÅÆ¼ºê°¡ ÀÌ Áö¿ªÀÇ ¼ºÀåÀ» ´õ¿í °ÈÇϰí ÀÖ½À´Ï´Ù. ºñ¿ë È¿À²ÀûÀÎ »ý»ê ´É·Â°ú ¼ºÀåÇÏ´Â ¼ÒºñÀÚ ±â¹ÝÀ» ÅëÇØ Áö¿ªÀº °³¹ß ¹× »ó¾÷ÈÀÇ Àü·«Àû ±â¹ÝÀÌ µÇ¾ú½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È Àû±ØÀûÀÎ ±â¼ú Çõ½Å, Á¶±â µµÀÔ, °·ÂÇÑ Á¦µµÀû Áö¿øÀ¸·Î ºÏ¹Ì°¡ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¹Ì±¹Àº ¹æÀ§, Ç×°ø¿ìÁÖ, »ý¹°ÀÇÇÐ ºÐ¾ß¿¡¼ ¸¹Àº µ·À» ¹Þ°í ½º¸¶Æ® ÀçÁú ¿¬±¸¿¡¼ ÁÖµµÇϰí ÀÖ½À´Ï´Ù. Çмú°è¿Í »ê¾÷°èÀÇ Àü·«Àû ÆÄÆ®³Ê½ÊÀÌ »ó¾÷ȸ¦ °¡¼ÓÈÇϰí ÀÖ½À´Ï´Ù. °Ô´Ù°¡ Áö¼Ó°¡´É¼º, ÀÚµ¿È, ÷´Ü ÇコÄÉ¾î ¼Ö·ç¼ÇÀ» Áß½ÃÇÏ´Â ÀÌ Áö¿ªÀº ½º¸¶Æ® Àç·á ÅëÇÕÀ» À§ÇÑ ºñ¿ÁÇÑ Åä¾çÀ» Çü¼ºÇϰí ÀÖÀ¸¸ç, ºÏ¹Ì¸¦ ¼¼°è ¼ºÀåÀÇ ±âÆøÁ¦·Î ÀÚ¸®Àâ°í ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Smart Materials Market is accounted for $85.9 billion in 2025 and is expected to reach $157.0 billion by 2032 growing at a CAGR of 9.0% during the forecast period. Smart Materials are advanced materials engineered to respond dynamically to external stimuli such as temperature, pressure, electric or magnetic fields, light, or chemical environments. Unlike conventional materials, they possess the ability to adapt, sense, and react to changes in their surroundings, often returning to their original state once the stimulus is removed. Common examples include shape-memory alloys, piezoelectric materials, electrochromic coatings, and self-healing polymers. These materials find applications across aerospace, automotive, healthcare, construction, and electronics industries, offering enhanced functionality, energy efficiency, and performance. Essentially, smart materials bridge the gap between passive substances and interactive, responsive systems.
Rapid Technological Advancements
Rapid technological advancements are catalyzing transformative growth in the market by enabling multifunctional capabilities, adaptive performance, and real-time responsiveness across industries. Innovations in nanotechnology, AI-driven material design, and IoT integration are accelerating adoption in aerospace, healthcare, and energy sectors. These breakthroughs are reducing costs, enhancing sustainability, and unlocking new applications-from self-healing composites to bio-responsive polymers-positioning smart materials as a cornerstone of next-gen manufacturing and intelligent infrastructure. The momentum is both market-expanding and impact-driven.
High Production Costs
High production costs significantly hinder the smart materials market by limiting scalability and deterring widespread adoption across industries. These elevated costs stem from complex synthesis processes, specialized equipment, and limited raw material availability. As a result, startups and mid-sized firms face entry barriers, while end-users hesitate due to poor cost-benefit ratios. This stifles innovation, slows commercialization, and restricts smart materials to niche, high-margin applications rather than broader, transformative deployment.
Healthcare and Biomedical Applications
Smart materials are unlocking transformative opportunities in healthcare and biomedical engineering. Applications range from implantable devices and drug delivery systems to responsive wound dressings and biosensors. Their ability to adapt to physiological conditions, respond to stimuli, and enhance patient outcomes is driving adoption across clinical settings. With aging populations and rising demand for personalized medicine, smart materials offer scalable solutions for diagnostics, therapeutics, and rehabilitation-positioning healthcare as a high-growth frontier for innovation and investment.
Limited Awareness and Adoption
Limited awareness and adoption of smart materials significantly hinder market growth by stalling demand across key industries. Without widespread understanding of their capabilities-such as self-healing, adaptive response, or energy efficiency-potential users remain hesitant to invest. This slows innovation cycles, restricts funding, and delays integration into mainstream applications. The resulting knowledge gap limits commercialization, curbs economies of scale, and weakens competitive momentum, especially in emerging markets and cross-sector deployments.
Covid-19 Impact
The COVID-19 pandemic disrupted global supply chains and delayed R&D timelines, temporarily slowing smart materials deployment. However, it also catalyzed innovation in healthcare applications, including responsive PPE, biosensors, and antiviral coatings. The crisis underscored the need for adaptive, multifunctional materials capable of responding to dynamic environments. Post-pandemic recovery is expected to reignite demand, particularly in sectors prioritizing resilience, automation, and health security-repositioning smart materials as strategic assets in future-proofing infrastructure.
The piezoelectric materials segment is expected to be the largest during the forecast period
The piezoelectric materials segment is expected to account for the largest market share during the forecast period, due to their widespread use in sensors, actuators, and energy harvesting systems. Their ability to convert mechanical stress into electrical signals makes them indispensable in automotive safety systems, medical diagnostics, and industrial automation. Continuous improvements in material sensitivity, miniaturization, and integration are expanding their utility across emerging applications. As demand for precision and responsiveness grows, piezoelectric materials will remain central to smart system architectures.
The transducers segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the transducers segment is predicted to witness the highest growth rate, due to surging demand for real-time sensing and control systems. These components are critical in converting energy forms-mechanical, thermal, or electrical-into actionable signals across industries. Growth is fueled by advancements in IoT, robotics, and wearable technologies, where transducers enable intelligent feedback loops. Their expanding role in smart infrastructure and biomedical devices positions them as a high-velocity growth engine within the market.
During the forecast period, the Asia Pacific region is expected to hold the largest market share due to robust manufacturing ecosystems, rising R&D investments, and strong demand from automotive and electronics sectors. Countries like China, Japan, and South Korea are leading in smart material innovation and deployment. Government initiatives promoting advanced materials and smart infrastructure further bolster regional growth. The region's cost-effective production capabilities and expanding consumer base make it a strategic hub for both development and commercialization.
Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, owing to aggressive innovation, early adoption, and strong institutional support. The U.S. leads in smart material research, with significant funding from defense, aerospace, and biomedical sectors. Strategic partnerships between academia and industry are accelerating commercialization. Additionally, the region's emphasis on sustainability, automation, and advanced healthcare solutions is creating fertile ground for smart material integration-positioning North America as a global growth catalyst.
Key players in the market
Some of the key players profiled in the Smart Materials Market include Kyocera Corporation, TDK Corporation, 3M Company, BASF SE, DuPont de Nemours, Inc., Evonik Industries AG, Arkema S.A., Saint-Gobain S.A., Gentex Corporation, L3Harris Technologies, Inc., APC International, Ltd., CeramTec GmbH, CTS Corporation, Noliac A/S and Murata Manufacturing Co., Ltd.
In June 2025, BASF Coatings and Toyota Motor Europe have forged a strategic alliance to enhance the Toyota Body&Paint program across Europe.. The collaboration aims to uphold sustainable and efficient refinish practices, fostering continuous improvement and expanding business opportunities within the Toyota and Lexus body shop network.
In January 2025, Arkema has partnered with Japanese start-up OOYOO Ltd. to develop advanced gas separation membranes for CO2 capture. This collaboration aims to enhance the efficiency and cost-effectiveness of carbon capture technologies, contributing to global decarbonization efforts.