¼¼°èÀÇ »ç±â °¨Áö ¹× ¿¹¹æ¿ë AI ½ÃÀå ¿¹Ãø(-2032³â) : ÄÄÆ÷³ÍÆ®º°, Àü°³ Çüź°, Á¶Á÷ ±Ô¸ðº°, ±â¼úº°, ¿ëµµº°, ÃÖÁ¾ »ç¿ëÀÚº°, Áö¿ªº° ºÐ¼®
AI for Fraud Detection & Prevention Market Forecasts to 2032 - Global Analysis By Component (Solution and Services), Deployment Mode (Cloud, On-Premises and Hybrid), Organization Size, Technology, Application, End User and By Geography
»óǰÄÚµå : 1798085
¸®¼­Ä¡»ç : Stratistics Market Research Consulting
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 200+ Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 4,150 £Ü 5,828,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 5,250 £Ü 7,373,000
PDF (2-5 User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷Àå¿¡¼­ 5¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,350 £Ü 8,917,000
PDF & Excel (Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷ÀåÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇÕ´Ï´Ù. Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ¹× Excel ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 7,500 £Ü 10,533,000
PDF & Excel (Global Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 10ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Stratistics MRC¿¡ µû¸£¸é 2025³â ¼¼°èÀÇ »ç±â °¨Áö ¹× ¿¹¹æ AI ½ÃÀåÀº 149¾ï 1,000¸¸ ´Þ·¯¸¦ Â÷ÁöÇϰí, ¿¹Ãø ±â°£ µ¿¾È CAGR 20.06%·Î ¼ºÀåÇÏ¿© 2032³â¿¡´Â 536¾ï 2,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

»ç±â °¨Áö ¹× ¿¹¹æ¿ë AI´Â µ¥ÀÌÅÍ ºÐ¼®°ú ÷´Ü ¸Ó½Å·¯´× ¾Ë°í¸®ÁòÀ» »ç¿ëÇÏ¿© Àǽɽº·¯¿î Ȱµ¿, µ¿Çâ, ÀÌ»óÀ» Áï½Ã ¹ß°ßÇÕ´Ï´Ù. ´ë·®ÀÇ °Å·¡ µ¥ÀÌÅÍ, Çൿ µ¥ÀÌÅÍ, È÷½ºÅ丮 µ¥ÀÌÅ͸¦ AI ½Ã½ºÅÛÀ¸·Î ºÐ¼®ÇÔÀ¸·Î½á ±âÁ¸ÀÇ ¹æ¹ýº¸´Ù ºü¸£°í Á¤È®ÇÏ°Ô ºÎÁ¤ÀÇ °¡´É¼ºÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù. ºñÁ¤»ó °¨Áö, ¿¹Ãø ¸ðµ¨¸µ, ÀÚ¿¬¾ð¾î ó¸® µîÀÇ ±â¼úÀ» »ç¿ëÇÔÀ¸·Î½á »çÀ̹ö º¸¾È ÆÀ, ÀüÀÚ»ó°Å·¡ Ç÷§Æû, ±ÝÀ¶ ±â°üÀº ÀÇ»ç°áÁ¤À» °³¼±Çϰí, ¿À°¨Áö¸¦ ÁÙÀ̰í, »ç±â ÇàÀ§¸¦ ¿¹ÃøÇÒ ¼ö ÀÖ½À´Ï´Ù. AI´Â Ç×»ó »õ·Î¿î µ¥ÀÌÅͷκÎÅÍ ÇнÀÇϹǷΠ»ç±â ¼ö¹ýÀÌ º¹ÀâÇØÁü¿¡ µû¶ó »ç±â ¿¹¹æÀÌ ´õ¿í ´Éµ¿ÀûÀ̰í À¯¿¬Çϸç È¿°úÀûÀÔ´Ï´Ù.

BioCatch Behavioral Biometrics Association¿¡ µû¸£¸é ±ÝÀ¶ ±â°üÀÇ 74%°¡ ±ÝÀ¶ ¹üÁ˸¦ °¨ÁöÇϰí, 73%°¡ »ç±â ÇàÀ§ °¨Áö¿¡ ÀÌ¹Ì AI¸¦ »ç¿ëÇϰí ÀÖÀ¸¸ç, AI ÁÖµµÀÇ º¸¾È ÇÁ·¹ÀÓ¿öÅ©°¡ ³Î¸® ä¿ëµÇ¾î Á¶Á÷ÀûÀ¸·Î ½Å·ÚµÇ°í ÀÖÀ½À» º¸¿©ÁÖ°í ÀÖ½À´Ï´Ù.

È®´ëµÇ´Â »çÀ̹ö À§Çù°ú ÷´Ü »ç±â ±â¹ý

µöÆäÀÌÅ©, ÇǽÌ, ½ºÇªÇÎ, ÇÕ¼º »ç±â µî »çÀ̹ö À§ÇùÀÇ º¹ÀâÈ­·Î ÀÎÅÚ¸®ÀüÆ® º¸¾È ¼Ö·ç¼ÇÀÇ Çʿ伺ÀÌ Ä¿Áö°í ÀÖ½À´Ï´Ù. ÀüÅëÀûÀÎ ±ÔÄ¢ ±â¹Ý ½Ã½ºÅÛÀº ¹Ì¹¦ÇÏ°Ô º¯ÇÏ´Â »ç±â ÆÐÅÏÀ» ½Äº°ÇÒ ¼ö ¾ø±â ¶§¹®¿¡ ±ÝÀüÀ̳ª ¸í¼º Ãø¸é¿¡¼­ Å« ¼Õ½ÇÀÌ ¹ß»ýÇÏ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. Çൿ ºÐ¼®, ÀÌ»ó °¨Áö, ¸Ó½Å·¯´×Àº AI ÁÖµµ Ç÷§ÆûÀÌ ´ë±Ô¸ð µ¥ÀÌÅÍ ¼¼Æ®¸¦ Áö¼ÓÀûÀ¸·Î ºÐ¼®ÇÏ°í »õ·Î¿î À§Çù¿¡ ÀûÀÀÇÏ´Â µ¥ »ç¿ëµË´Ï´Ù. AI´Â ºñÁ¤»óÀûÀÎ ÇൿÀ» ½Ç½Ã°£À¸·Î °¨ÁöÇÏ°í °ú°Å ÆÐÅÏ¿¡¼­ ÇнÀÇÔÀ¸·Î½á À§Çè ³ëÃâÀ» ÁÙÀÌ°í »çÀü Ȱµ¿ÀûÀÎ °³ÀÔÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. °Ô´Ù°¡ ÀΰøÁö´ÉÀÇ ¿¹Ãø ´É·ÂÀº »ç±â²ÛÀÌ º¹ÀâÇØÁö´Â µ¿¾È Åë½Å, ÀüÀÚ»ó°Å·¡, ±ÝÀ¶¼­ºñ½º¿¡¼­ µðÁöÅÐ »ýŰ踦 º¸È£ÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù.

µµÀÔ°ú À¯Áö¿¡ µå´Â ³ôÀº ºñ¿ë

AI¸¦ Ȱ¿ëÇÑ »ç±â °¨Áö ½Ã½ºÅÛÀ» µµÀÔÇÏ·Á¸é ¼ÒÇÁÆ®¿þ¾î, Çϵå¿þ¾î ¹× ÀÚ°ÝÀ» °®Ãá Á÷¿ø¿¡°Ô ¾öû³­ Ãʱâ ÅõÀÚ°¡ ÇÊ¿äÇÕ´Ï´Ù. AI Ç÷§ÆûÀº Á¶Á÷ÀÇ ÇöÀç IT ÀÎÇÁ¶ó¿Í ÀÚÁÖ ÅëÇյǾî¾ß Çϸç, ÀÌ´Â ¸¹Àº ºñ¿ëÀÌ µì´Ï´Ù. ¶ÇÇÑ ÀÌ·¯ÇÑ ½Ã½ºÅÛÀ» À¯ÁöÇϱâ À§Çؼ­´Â AI ¸ðµ¨À» Áö¼ÓÀûÀ¸·Î ¸ð´ÏÅ͸µ, ¾÷µ¥ÀÌÆ®ÇÏ°í »ç±â Àü·«ÀÇ º¯È­¿¡ ´ëÀÀÇÒ ¼ö ÀÖµµ·Ï Àç±³À°ÇØ¾ß ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ºñ¿ëÀ¸·Î µµÀÔÀÌ Á¦ÇÑµÉ ¼ö ÀÖÀ¸¸ç Áß¼Ò±â¾÷¿¡°Ô´Â ¾öû³­ ºñ¿ëÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ºÐ¸íÇÑ ÀåÁ¡ÀÌ ÀÖÀ½¿¡µµ ºÒ±¸ÇÏ°í ºñ¿ëÀÌ ºñ½Î±â ¶§¹®¿¡ µµÀÔÀÌ Áö¿¬µÇ°í ÅõÀÚ ¼öÀÍ·üÀÌ ÀúÇϵǰí AI¸¦ Ȱ¿ëÇÑ »ç±â ¹æÁöÀÇ ¿ÏÀü µµÀÔ¿¡ Âø¼öÇÒ ¼ö ¾ø´Â ±â¾÷µµ ÀÖ½À´Ï´Ù.

ÀüÀÚ»ó°Å·¡ ¹× µðÁöÅÐ °áÁ¦ ÀÌ¿ë È®´ë

¼¼°èÀûÀ¸·Î µðÁöÅÐ ¹ðÅ·, ¸ð¹ÙÀÏ ¿ù·¿, ¿Â¶óÀÎ ¼îÇÎÀÇ ±Þ¼ÓÇÑ ¹ßÀüÀ¸·Î µðÁöÅÐ °Å·¡·®ÀÌ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. ÀüÅëÀûÀÎ ¹æ¹ý¿¡¼­´Â ³ôÀº ºóµµ·Î ´Ùä³Î °Å·¡¿¡ ´ëÀÀÇÒ ¼ö ¾ø±â ¶§¹®¿¡ ÀÌ·¯ÇÑ È®´ë´Â AI¸¦ Ȱ¿ëÇÑ »ç±â °¨Áö ½Ã½ºÅÛ¿¡ À־ Å« ±âȸ°¡ µÇ°í ÀÖ½À´Ï´Ù. AI´Â ¹æ´ëÇÑ ¾çÀÇ µ¥ÀÌÅ͸¦ ½Ç½Ã°£À¸·Î ºÐ¼®ÇÏ¿© °í°´°ú ±â¾÷¿¡ ¿µÇâÀ» ¹ÌÄ¡±â Àü¿¡ »ç±â, ÀÌ»óÇÑ ÆÐÅÏ, »ç±âÀÇ °¡´É¼ºÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù. ¼ÒºñÀÚÀÇ ½Å·Ú¸¦ À¯ÁöÇÏ°í ±ÝÀüÀû ¼Õ½ÇÀ» ÃÖ¼ÒÈ­Çϱâ À§ÇØ ÀüÀÚ»ó°Å·¡ Ç÷§Æû, ÇÉÅ×Å© ½ºÅ¸Æ®¾÷ ¹× µðÁöÅÐ °áÁ¦ Á¦°ø¾÷ü´Â AI¿¡ ´ëÇÑ ÅõÀÚ¸¦ Á¡Á¡ ´Ã¸®°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ µðÁöÅÐ °Å·¡°¡ °è¼Ó Áõ°¡Çϰí ÀÖ´Â °¡¿îµ¥ °­·ÂÇÑ ÀΰøÁö´É »ç±â ¹æÁö ¼Ö·ç¼ÇÀÇ Çʿ伺Àº ºü¸£°Ô Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼Ö·ç¼Ç °ø±ÞÀÚ °£ÀÇ °­·ÂÇÑ ¶óÀ̹ú °ü°è

AI »ç±â °¨Áö ½ÃÀåÀº Á¡Á¡ ´õ ºÕºñ°í ÀÖÀ¸¸ç ¸¹Àº ±¹³»¿Ü º¥´õµéÀÌ Áߺ¹µÇ´Â ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. Ä¡¿­ÇÑ °æÀï¿¡¼­ °í°´À» È®º¸Çϰí À¯ÁöÇϱâ À§ÇØ ±â¾÷Àº Áö¼ÓÀûÀ¸·Î ±â¼ú Çõ½Å, Àú°¡°ÝÈ­ ¹× ¼­ºñ½º ǰÁú Çâ»óÀ» Ã˱¸Çϰí ÀÖ½À´Ï´Ù. ´õ Å« ÀÚ¿ø°ú Á¤±³ÇÑ ±â¼ú ½ºÅÃÀ» °¡Áø ÀüÅëÀûÀÎ °ø±Þ¾÷ü´Â Áß¼Ò±â¾÷¿¡ ´ëÇ×ÇϱⰡ ¾î·Æ°í ½Å±Ô ÁøÃâ±â¾÷Àº ½Å¿ë°ú ½Å·Ú¸¦ È®¸³Çϱ⠾î·Á¿ï ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ·¯ÇÑ °æÀï ȯ°æÀº ½ÃÀå ÀüüÀÇ ¼ºÀåÀ» µÐÈ­½ÃÄÑ ¸¶ÄÉÆÃ ºñ¿ë°ú R&D ºñ¿ëÀ» Áõ°¡½Ã۰í ÀÌÀÍ·üÀ» °¨¼Ò½Ãų ¼ö ÀÖ½À´Ï´Ù. ½ÃÀå Á¡À¯À²À» À¯ÁöÇϰí Àå±âÀûÀÎ ¼ºÀåÀ» À¯ÁöÇÏ·Á¸é ±â¾÷Àº ÃÖ÷´Ü ±â´É, ÀÏ·ù °í°´ ¼­ºñ½º, Àü·«Àû Á¦ÈÞ¸¦ ÅëÇØ Ÿ»ç¿ÍÀÇ Â÷º°È­¸¦ µµ¸ðÇØ¾ß ÇÕ´Ï´Ù.

COVID-19ÀÇ ¿µÇâ

COVID-19ÀÇ À¯ÇàÀº ¸¹Àº »ê¾÷¿¡¼­ µðÁöÅÐ º¯ÇõÀ» ±ØÀûÀ¸·Î °¡¼ÓÈ­ÇÏ°í ¿Â¶óÀÎ °Å·¡, ¿ø°Ý ¹ðÅ·, ÀüÀÚ»ó°Å·¡, µðÁöÅÐ °áÁ¦ÀÇ ±ÞÁõÀ» ÀÏÀ¸ÄÑ »ç±â ÇàÀ§ÀÇ °¡´É¼ºÀ» ³ô¿´½À´Ï´Ù. ±âÁ¸ ¹æ½Ä¿¡¼­´Â ¿Â¶óÀÎ °Å·¡ÀÇ ¾ç°ú º¹À⼺¿¡ ´ëÀÀÇÒ ¼ö ¾ø±â ¶§¹®¿¡ ÀÌ ±Þ°ÝÇÑ º¯È­¿¡ ÀÇÇØ AI¸¦ Ȱ¿ëÇÑ »ç±â °¨Áö ¹× ¹æÁö ¼Ö·ç¼Ç ¼ö¿ä°¡ ³ô¾ÆÁ³½À´Ï´Ù. ºñÁî´Ï½º ¿¬¼Ó¼º°ú °í°´ ½Å·Ú¸¦ º¸ÀåÇϱâ À§ÇØ ±â¾÷Àº ½Ç½Ã°£À¸·Î Àǽɽº·¯¿î Ȱµ¿À» ¸ð´ÏÅ͸µ, ºÐ¼® ¹× ´ëÀÀÇÏ´Â AI ±â¼úÀ» ½Å¼ÓÇÏ°Ô µµÀÔÇß½À´Ï´Ù. °Ô´Ù°¡ ÆÒµ¥¹ÍÀº »õ·Î¿î »ç±â µ¿Çâ°ú ºü¸£°Ô ÁøÈ­ÇÏ´Â µðÁöÅÐ Çൿ¿¡ ÀûÀÀÇÒ ¼ö Àִ Ŭ¶ó¿ìµå ±â¹ÝÀÇ È®Àå °¡´ÉÇÑ AI ½Ã½ºÅÛÀÇ Çʿ伺µµ ºÎ°¢½ÃÄ×½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È Ŭ¶ó¿ìµå ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ Àü¸Á

¿¹Ãø ±â°£ µ¿¾È Ŭ¶ó¿ìµå ºÎ¹®ÀÌ ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À̴ Ŭ¶ó¿ìµå ¼Ö·ç¼ÇÀÇ È®À强, ºñ¿ë È¿À²¼º ¹× À¯¿¬¼ºÀ¸·Î ÀÎÇØ ±â¾÷ÀÌ º¯È­ÇÏ´Â »ç±â Àü·«¿¡ ½Å¼ÓÇÏ°Ô ´ëÀÀÇÒ ¼ö Àֱ⠶§¹®ÀÔ´Ï´Ù. Ŭ¶ó¿ìµå ±â¹Ý Ç÷§ÆûÀº ½Ç½Ã°£ µ¥ÀÌÅÍ Ã³¸® ¹× ´ÙÁß Ã¤³Î ÅëÇÕÀ» °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á »ç±â ÇàÀ§ÀÇ °¨Áö ¹× ¹æÁö¸¦ Çâ»ó½Ãŵ´Ï´Ù. ¶ÇÇÑ °í±Þ AI ¸ðµ¨, ¸Ó½Å·¯´× ¾Ë°í¸®Áò ¹× Çൿ ºÐ¼®Àº Ŭ¶ó¿ìµåÀÇ Áß¾Ó ÁýÁᫎ ÀÎÇÁ¶ó¿¡¼­ Áö¿øµÇ¸ç º¹ÀâÇÑ »ç±â ÇàÀ§ÀÇ Ãß¼¼¸¦ ã´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ±â´ÉÀ» ÅëÇØ ¿î¿µ À¯¿¬¼ºÀ» Èñ»ýÇÏÁö ¾Ê°í ¾Ç¼º °¨Áö ½Ã½ºÅÛÀ» °³¼±ÇÏ·Á´Â ±â¾÷ÀÇ °æ¿ì Ŭ¶ó¿ìµå ¹èÆ÷°¡ ÃÖÀûÀÇ ¼±ÅÃÀÔ´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ¸Ó½Å·¯´× ºÎ¹®ÀÇ CAGRÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ¸Ó½Å·¯´× ºÎ¹®ÀÌ °¡Àå ³ôÀº ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ½Ç½Ã°£ »ç±â °¨Áö´Â ¾öû³­ µ¥ÀÌÅÍ ¼¼Æ®¿¡¼­ ÆÐÅϰú ºñÁ¤»óÀ» ã´Â µ¥ ³Î¸® »ç¿ëµÇ´Â ¸Ó½Å·¯´×À» ÅëÇØ °¡´ÉÇÕ´Ï´Ù. ¸Ó½Å·¯´×(ML) ½Ã½ºÅÛÀº °Å·¡ µ¥ÀÌÅÍ¿Í ÀÌ·Â µ¥ÀÌÅͷκÎÅÍ Áö¼ÓÀûÀ¸·Î ÇнÀÇÏ´Â ¾Ë°í¸®ÁòÀ» Ȱ¿ëÇÔÀ¸·Î½á ½Ã°£ÀÇ °æ°ú¿Í ÇÔ²² Á¡Á¡ Á¤È®µµ¸¦ ³ô¿© ºÎÁ¤À» ¿¹Ãø ¹× ¹æÁöÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀºÇà, ÀüÀÚ»ó°Å·¡, º¸Çè, Ä¿¹Â´ÏÄÉÀÌ¼Ç µîÀÇ ºÎ¹®±îÁö ¹ü¿ë¼ºÀÌ ³ô±â ¶§¹®¿¡ ÀÌ ºÎ¹®Àº ½ÃÀåÀ» ¼±µµÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¸Ó½Å·¯´×Àº ¿À°¨Áö¸¦ ÃÖ¼ÒÈ­ÇÏ°í »ç±â °¨Áö ÀýÂ÷¸¦ ÀÚµ¿È­Çϰí ÀÇ»ç°áÁ¤ÀÇ È¿À²¼ºÀ» Çâ»ó½Ãų ¼ö Àֱ⠶§¹®¿¡ Çö´ëÀÇ »ç±â ¹æÁö ¼Ö·ç¼ÇÀÇ ÇÙ½É ±¸¼º ¿ä¼Ò°¡ µÇ¾ú½À´Ï´Ù.

ÃÖ´ë Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª

¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ Áö¿ªÀÇ µðÁöÅÐ °áÁ¦ÀÇ º¸±Þ·üÀÇ ³ôÀÌ, Á¤±³ÇÑ ±â¼ú ÀÎÇÁ¶ó, IBM, Microsoft, Oracle µîÀÇ ´ë±â¾÷ÀÇ Á¸Àç µîÀÌ, »ç±â °¨Áö ¼Ö·ç¼ÇÀÇ °æÀï°ú ±â¼ú Çõ½ÅÀ» Ã˱¸Çϰí, ÀÌ ¿ìÀ§¼ºÀÇ ÁÖ¿ä ¿øÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù. µðÁöÅÐ °Å·¡ Áõ°¡¿Í »çÀ̹ö À§ÇùÀÇ °íµµÈ­·Î ÀÎÇØ ƯÈ÷ ¹Ì±¹ÀÌ ÃÖÀü¼±¿¡ ¼­ ÀÖ½À´Ï´Ù. °Ô´Ù°¡ ¸Ó½Å ·¯´×°ú µö·¯´×°ú °°Àº AI ±â¼úÀÇ ÅëÇÕÀ¸·Î »ç±â °¨Áö ½Ã½ºÅÛÀÇ ´É·ÂÀÌ Å©°Ô Çâ»óµÇ¾ú±â ¶§¹®¿¡ ºÏ¹Ì´Â ÇöÀç ÀÌ ºÎ¹®ÀÇ ¸®´õ°¡ µÇ°í ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª

¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Áß±¹, Àεµ, ÀϺ», È£ÁÖ, µ¿³²¾Æ½Ã¾Æ ±¹°¡ µî Áß¿äÇÑ °æÁ¦±Ç¿¡¼­ÀÇ ±Þ¼ÓÇÑ µðÁöÅÐ º¯ÇõÀÌ ÀÌ °­·ÂÇÑ ¼ºÀåÀÇ ÁÖ¿ä ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. µðÁöÅÐ Áö°©, ÀüÀÚ»ó°Å·¡, ¿Â¶óÀÎ ¹ðÅ·, ¸ð¹ÙÀÏ °áÁ¦ ½Ã½ºÅÛÀÌ ±Þ¼ÓÈ÷ º¸±ÞµÊ¿¡ µû¶ó µðÁöÅÐ °Å·¡ »ýŰ谡 ±Þ°ÝÈ÷ ¼ºÀåÇß½À´Ï´Ù. ¶ÇÇÑ »ç±â ÇàÀ§¿Í »çÀ̹ö °ø°ÝÀÇ À§Çèµµ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ºñÁî´Ï½º ¹× °í°´ Á¤º¸¸¦ º¸È£Çϱâ À§ÇØÀÌ ºÎ¹®ÀÇ ±â¾÷Àº AI ±â¹Ý »ç±â °¨Áö ½Ã½ºÅÛÀ» µµÀÔÇϰí ÀÖ½À´Ï´Ù.

¹«·á ¸ÂÃãÇü ¼­ºñ½º

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½ ¹«·á ¸ÂÃã¼³Á¤ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

Á¦4Àå Porter's Five Forces ºÐ¼®

Á¦5Àå ¼¼°èÀÇ »ç±â °¨Áö ¹× ¿¹¹æ¿ë AI ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

Á¦6Àå ¼¼°èÀÇ »ç±â °¨Áö ¹× ¿¹¹æ¿ë AI ½ÃÀå : Àü°³ Çüź°

Á¦7Àå »ç±â °¨Áö¡¤¹æÁö¸¦ À§ÇÑ AI ½ÃÀå : Á¶Á÷ ±Ô¸ðº°

Á¦8Àå »ç±â °¨Áö¡¤¹æÁö¸¦ À§ÇÑ AI ½ÃÀå : ±â¼úº°

Á¦9Àå ¼¼°èÀÇ »ç±â °¨Áö ¹× ¿¹¹æ¿ë AI ½ÃÀå : ¿ëµµº°

Á¦10Àå ¼¼°èÀÇ »ç±â °¨Áö ¹× ¿¹¹æ¿ë AI ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

Á¦11Àå ¼¼°èÀÇ »ç±â °¨Áö ¹× ¿¹¹æ¿ë AI ½ÃÀå : Áö¿ªº°

Á¦12Àå ÁÖ¿ä °³¹ß

Á¦13Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

JHS
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

According to Stratistics MRC, the Global AI for Fraud Detection & Prevention Market is accounted for $14.91 billion in 2025 and is expected to reach $53.62 billion by 2032 growing at a CAGR of 20.06% during the forecast period. AI for fraud detection and prevention uses data analytics and sophisticated machine learning algorithms to instantly spot suspicious activity, trends, and anomalies. Large volumes of transactional, behavioral, and historical data can be analyzed by AI systems to identify possible fraud more quickly and accurately than with conventional techniques. Using methods like anomaly detection, predictive modeling, and natural language processing, cyber security teams, e-commerce platforms, and financial institutions can improve decision-making, reduce false positives, and predict fraudulent activity. Because AI is constantly learning from new data, fraud prevention becomes more proactive, flexible, and effective as fraud schemes become more complex.

According to BioCatch Behavioral Biometrics Association, 74% of financial institutions are already using AI for financial-crime detection and 73% for fraud detection, indicating widespread adoption and institutional trust in AI-driven security frameworks.

Market Dynamics:

Driver:

Growing cyber threats and advanced fraud techniques

The need for more intelligent security solutions has increased due to the complexity of cyber threats, such as deep fakes, phishing, identity theft, and synthetic fraud. The inability of traditional rule-based systems to identify subtle or changing fraudulent patterns frequently results in large losses in terms of money and reputation. Behavioral analytics, anomaly detection, and machine learning are used by AI-driven platforms to continuously analyze large datasets and adjust to new threats. AI makes proactive intervention possible by detecting anomalous behaviors in real-time and learning from past patterns, lowering risk exposure. Moreover, artificial intelligence's predictive powers are essential for protecting digital ecosystems in telecommunications, e-commerce, and financial services as fraudsters get more complex.

Restraint:

High costs of implementation and upkeep

The implementation of AI-powered fraud detection systems necessitates a large initial investment in software, hardware, and qualified staff. AI platforms must frequently be integrated with an organization's current IT infrastructure, which can be difficult and expensive. Additionally, in order to maintain these systems, AI models must be continuously monitored, updated, and retrained to keep up with changing fraud strategies. Adoption may be restricted by such costs, which can be prohibitive for small and medium-sized businesses. Despite its obvious advantages, high costs can cause deployment delays, lower return on investment, and discourage some businesses from fully implementing AI-driven fraud prevention.

Opportunity:

Growing use of e-commerce and digital payments

Globally, the volume of digital transactions is soaring due to the quick development of digital banking, mobile wallets, and online shopping. Due to traditional methods' inability to handle high-frequency, multi-channel transactions, this expansion present a huge opportunity for AI-driven fraud detection systems. AI is capable of real-time analysis of enormous volumes of data, identifying irregularities, odd patterns, and possible fraud before it affects clients or companies. In order to preserve consumer confidence and minimize financial losses, e-commerce platforms, fintech startups, and digital payment providers are investing more and more in AI. Additionally, the need for strong AI fraud prevention solutions is expected to grow rapidly as digital transactions continue to increase.

Threat:

Strong rivalry between solution providers

The market for AI fraud detection is getting more and more crowded, with many local and international vendors providing overlapping solutions. Businesses are under constant pressure to innovate, lower prices, and improve service quality in order to draw in and keep customers in the face of fierce competition. Established vendors with greater resources and sophisticated technology stacks may be harder for smaller players to compete with, and newcomers may encounter difficulties establishing credibility and trust. Furthermore, this competitive environment can slow market growth overall, raise marketing and R&D expenses, and lower profit margins. To preserve market share and maintain long-term growth, businesses must set themselves apart through cutting-edge features, first-rate customer service, or strategic alliances.

Covid-19 Impact:

The COVID-19 pandemic dramatically sped up digital transformation in many industries, increasing the likelihood of fraudulent activity by causing a spike in online transactions, remote banking, e-commerce, and digital payments. Due to traditional methods' inability to handle the volume and complexity of online transactions, this abrupt shift increased demand for AI-powered fraud detection and prevention solutions. In order to ensure business continuity and customer trust, organizations swiftly embraced AI technologies to monitor, analyze, and react to suspicious activities in real time. Moreover, the pandemic also highlighted the need for cloud-based, scalable AI systems that can adjust to new fraud trends and quickly evolving digital behaviors.

The cloud segment is expected to be the largest during the forecast period

The cloud segment is expected to account for the largest market share during the forecast period. This preference stems from cloud solutions' scalability, cost-effectiveness, and flexibility, which allow businesses to swiftly adjust to changing fraud strategies. Cloud-based platforms improve the detection and prevention of fraudulent activities by enabling real-time data processing and integration across multiple channels. Furthermore, sophisticated AI models, machine learning algorithms, and behavioral analytics are supported by the cloud's centralized infrastructure and are essential for spotting intricate fraud trends. Because of these features, cloud deployment is the go-to option for companies looking to improve their fraud detection systems without sacrificing operational flexibility.

The machine learning segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the machine learning segment is predicted to witness the highest growth rate. Real-time fraud detection is made possible by machine learning, which is widely used to find patterns and anomalies in massive datasets. Over time, machine learning (ML) systems can predict and prevent fraud with ever-increasing accuracy by utilizing algorithms that continuously learn from transactional and historical data. Because of its versatility across sectors like banking, e-commerce, insurance, and telecommunications, this segment leads the market. Moreover, machine learning is a key component of contemporary fraud prevention solutions due to its capacity to minimize false positives, automate fraud detection procedures, and improve decision-making effectiveness.

Region with largest share:

During the forecast period, the North America region is expected to hold the largest market share. The region's high rates of digital payment method adoption, sophisticated technological infrastructure, and the presence of big players like IBM, Microsoft, and Oracle-all of which encourage competition and innovation in fraud detection solutions-are the main causes of this dominance. Due to an increase in digital transactions and the sophistication of cyber threats, the United States in particular has been at the forefront. Additionally, North America is now a leader in this field owing to the integration of AI technologies, such as machine learning and deep learning, which have greatly improved the capabilities of fraud detection systems.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR. Rapid digital transformation in important economies like China, India, Japan, Australia, and Southeast Asian nations is the main driver of this strong growth. The ecosystem of digital transactions has grown dramatically as a result of the quick uptake of digital wallets, e-commerce, online banking, and mobile payment systems. Furthermore, this has also increased the risk of fraud and cyberattacks. In order to protect their business operations and client information, companies in the area are progressively implementing AI-based fraud detection systems.

Key players in the market

Some of the key players in AI for Fraud Detection & Prevention Market include IBM Corporation, BAE Systems, ACI Worldwide Inc, Fiserv Inc, Mastercard Inc, Feedzai Inc, Oracle Inc, Experian Inc, Cisco, Lexis Nexis Risk Solutions Inc, NOOS Technologies Inc, Forter Inc, Onfido Inc, PayPal and Abrigo Inc.

Key Developments:

In June 2025, BAE Systems has signed a new contract with the Swedish Defence Materiel Administration to supply additional BONUS precision-guided munitions to the Swedish Armed Forces. This contract marks a continued partnership between BAE Systems Bofors and the Swedish Armed Forces, reinforcing their shared commitment to delivering cutting-edge defense solutions.

In April 2025, IBM and Tokyo Electron (TEL) announced an extension of their agreement for the joint research and development of advanced semiconductor technologies. The new 5-year agreement will focus on the continued advancement of technology for next-generation semiconductor nodes and architectures to power the age of generative AI.

In March 2025, ACI Worldwide has announced an extension of their strategic technology partnership. The agreement will see Co-op continue to use the full range of solutions offered by ACI's Payments Orchestration Platform, including in-store, online and mobile payment processing as well as end-to-end payments and fraud management.

Components Covered:

Deployment Modes Covered:

Organization Sizes Covered:

Technologies Covered:

Applications Covered:

End Users Covered:

Regions Covered:

What our report offers:

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

Table of Contents

1 Executive Summary

2 Preface

3 Market Trend Analysis

4 Porters Five Force Analysis

5 Global AI for Fraud Detection & Prevention Market, By Component

6 Global AI for Fraud Detection & Prevention Market, By Deployment Mode

7 Global AI for Fraud Detection & Prevention Market, By Organization Size

8 Global AI for Fraud Detection & Prevention Market, By Technology

9 Global AI for Fraud Detection & Prevention Market, By Application

10 Global AI for Fraud Detection & Prevention Market, By End User

11 Global AI for Fraud Detection & Prevention Market, By Geography

12 Key Developments

13 Company Profiling

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â