¼¼°èÀÇ ¿Â¶óÀÎ °áÁ¦ »ç±â ŽÁö ½ÃÀå
Online Payment Fraud Detection
»óǰÄÚµå : 1794556
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 273 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,218,000
PDF & Excel (Single User License) help
PDF & Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÆÄÀÏ ³» ÅØ½ºÆ®ÀÇ º¹»ç ¹× ºÙ¿©³Ö±â´Â °¡´ÉÇÏÁö¸¸, Ç¥/±×·¡ÇÁ µîÀº º¹»çÇÒ ¼ö ¾ø½À´Ï´Ù. Àμâ´Â 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,655,000
PDF & Excel (Global License to Company and its Fully-owned Subsidiaries) help
PDF & Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ¹× 100% ÀÚȸ»çÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÏ½Ç ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 1Àδç 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ¿Â¶óÀÎ °áÁ¦ »ç±â ŽÁö ½ÃÀåÀº 2030³â±îÁö 213¾ï ´Þ·¯¿¡ µµ´Þ

2024³â¿¡ 99¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ ¿Â¶óÀÎ °áÁ¦ »ç±â ŽÁö ½ÃÀåÀº 2024-2030³â¿¡ CAGR 13.7%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 213¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ ºÎÁ¤ ºÐ¼® ¼Ö·ç¼ÇÀº CAGR 13.0%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 118¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÎÁõ ¼Ö·ç¼Ç ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ Áß CAGR 14.4%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 27¾ï ´Þ·¯, Áß±¹Àº CAGR 18.2%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ¿Â¶óÀÎ °áÁ¦ »ç±â ŽÁö ½ÃÀåÀº 2024³â¿¡ 27¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 45¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³âÀÇ CAGRÀº 18.2%ÀÔ´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 10.1%¿Í 12.2%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 10.9%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ¿Â¶óÀÎ °áÁ¦ »ç±â ŽÁö ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

¿Â¶óÀÎ °áÁ¦ »ç±â °¨Áö°¡ µðÁöÅÐ »ó°Å·¡¿¡ ÇʼöÀûÀÎ ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

¼¼°è¿¡¼­ E-Commerce°¡ È®´ëµÊ¿¡ µû¶ó ¿Â¶óÀÎ °áÁ¦ »ç±â´Â ±â¾÷ ¹× ±ÝÀ¶±â°ü¿¡ ½Ã±ÞÇÑ °úÁ¦°¡ µÇ°í ÀÖ½À´Ï´Ù. Ä«µå ºñÈÞ´ë¿ë(CNP) »ç±âºÎÅÍ ÇÇ½Ì °ø°Ý°ú ½ºÇªÇαîÁö »çÀ̹ö ¹üÁËÀÚµéÀº °áÁ¦ »ýŰèÀÇ Ãë¾àÁ¡À» ¾Ç¿ëÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºÎÁ¤ÇàÀ§ÀÇ ±ÞÁõÀ¸·Î ÀÎÇØ ±â¾÷Àº ¿©·¯ °Å·¡ ä³ÎÀ» ½Ç½Ã°£À¸·Î Á¶ÀÛÇÒ ¼ö ÀÖ´Â °­·ÂÇÑ ºÎÁ¤ÇàÀ§ °¨Áö ¼Ö·ç¼ÇÀ» ¿ì¼±ÀûÀ¸·Î °í·ÁÇØ¾ß ÇÕ´Ï´Ù. ¿Â¶óÀÎ °áÁ¦ »ç±â °¨Áö ½Ã½ºÅÛÀº ´õ ÀÌ»ó ¼±ÅÃÀû ¾ÈÀüÀåÄ¡°¡ ¾Æ´Ï¶ó °í°´ÀÇ ½Å·Ú¿Í ±ÔÁ¦ Áؼö¸¦ À¯ÁöÇϱâ À§ÇÑ ÇʼöÀûÀÎ Åø·Î °£Áֵǰí ÀÖ½À´Ï´Ù.

¸ð¹ÙÀÏ Ä¿¸Ó½º¿Í ºñÁ¢ÃË½Ä °áÁ¦·Î ÀÎÇØ ±ÝÀ¶¼­ºñ½ºÀÇ ±Þ¼ÓÇÑ µðÁöÅÐÈ­°¡ °¡¼ÓÈ­µÇ¸é¼­ °Å·¡ ¸ð´ÏÅ͸µÀº ´õ¿í º¹ÀâÇØÁö°í ÀÖ½À´Ï´Ù. ±âÁ¸ÀÇ ±ÔÄ¢ ±â¹Ý ½Ã½ºÅÛÀ¸·Î´Â °íµµÈ­µÈ ºÎÁ¤ ÆÐÅÏÀ» °¨ÁöÇÏ´Â °ÍÀÌ ¾î·Á¿öÁö°í ÀÖ½À´Ï´Ù. ÇöÀç Á¶Á÷Àº ¸Ó½Å·¯´×, Çൿ ºÐ¼®, ÀûÀÀÇü ¸®½ºÅ© ½ºÄھÀ» °áÇÕÇÑ Áö´ÉÇü Ç÷§ÆûÀ» äÅÃÇÏ¿© Àǽɽº·¯¿î ÇൿÀ» »çÀü¿¡ ½Äº°Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ºÎÁ¤ ¹æÁö¿Í ¿øÈ°ÇÑ »ç¿ëÀÚ °æÇè(µðÁöÅÐ °áÁ¦ÀÇ Áß¿äÇÑ °æÀï ¿ä¼Ò)À» µ¿½Ã¿¡ ´Þ¼ºÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù.

»õ·Î¿î ±â¼úÀº ¾î¶»°Ô ºÎÁ¤ÇàÀ§ °¨Áö ´É·ÂÀ» Çâ»ó½Ã۰í Àִ°¡?

ÃֽŠ¾Ç¼ºÄÚµå °¨Áö ¼Ö·ç¼ÇÀº À§Çù °¨Áö¸¦ °­È­Çϱâ À§ÇØ ÀΰøÁö´É, µ¥ÀÌÅÍ »çÀ̾ð½º, ½Ç½Ã°£ ºÐ¼®¿¡ Å©°Ô ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ¸Ó½Å·¯´× ¾Ë°í¸®ÁòÀº ´ë·®ÀÇ °Å·¡ µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ¿© ÀÌ»ó ¡ÈÄ¿Í ÁøÈ­ÇÏ´Â ºÎÁ¤ÇàÀ§ÀÇ Â¡Èĸ¦ ½Äº°ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº »õ·Î¿î °ø°Ý º¤Å͸¦ ÇнÀÇÏ°í ±×¿¡ µû¶ó ºÎÁ¤ Á¡¼öÈ­ ¸ðµ¨À» Á¶Á¤ÇÏ¿© Á¤È®µµ¸¦ ³ôÀÌ°í ¿ÀŽÀ» ÁÙÀÓÀ¸·Î½á Á¤È®µµ¸¦ Çâ»ó½Ãŵ´Ï´Ù. ¶ÇÇÑ Å¸ÀÌÇÎ ¼Óµµ, ¸¶¿ì½º ¿òÁ÷ÀÓ, µð¹ÙÀ̽º »óÈ£ÀÛ¿ë µîÀÇ ÆÐÅÏÀ» ÀÌ¿ëÇÏ¿© Æ®·£Àè¼ÇÀ» Áß´ÜÇÏÁö ¾Ê°í »ç¿ëÀÚ¸¦ ÀÎÁõÇÏ´Â Çൿ ¹ÙÀÌ¿À¸ÞÆ®¸¯µµ Àα⸦ ²ø°í ÀÖ½À´Ï´Ù.

Ŭ¶ó¿ìµå ±â¹Ý Ç÷§ÆûÀº Àü ¼¼°è °áÁ¦ ÀÎÇÁ¶ó Àü¹Ý¿¡ ´ëÇÑ Áö¼ÓÀûÀÎ ¸ð´ÏÅ͸µ°ú ½Å¼ÓÇÑ ¾÷µ¥ÀÌÆ®¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. API ±â¹Ý ¾ÆÅ°ÅØÃ³¸¦ ÅëÇØ °áÁ¦ °ÔÀÌÆ®¿þÀÌ, ÀºÇà ¾Û, E-Commerce Ç÷§Æû°ú ½±°Ô ÅëÇÕÇÒ ¼ö ÀÖ½À´Ï´Ù. Áö¿ªÀû À§Ä¡ ÃßÀû, ±â±â Áö¹®, IP ÆòÆÇ ºÐ¼®À» ÅëÇØ ºÎÁ¤ÇàÀ§ °¨Áö ·¹À̾ ´õ¿í °­È­ÇÒ ¼ö ÀÖ½À´Ï´Ù. »ç±âÀÇ ¹æ¹ýÀÌ ´õ¿í Á¶Á÷ÀûÀ̰í Ç¥ÀûÈ­µÊ¿¡ µû¶ó ÀÌ·¯ÇÑ ´ÙÃþÀûÀÎ ±â¼ú ±â¹Ý ½Ã½ºÅÛÀº ±ÝÀ¶±â°üÀÌ À§Çù¿¡ ÇÑ¹ß ¾Õ¼­ ³ª°¡¸é¼­ ÀÏ¹Ý »ç¿ëÀÚÀÇ ¸¶ÂûÀ» ÃÖ¼ÒÈ­ÇÏ´Â µ¥ µµ¿òÀÌ µÇ°í ÀÖ½À´Ï´Ù.

ºÎÁ¤ÇàÀ§ °¨Áö Åø µµÀÔ¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â ¾÷°è µ¿ÇâÀº ¹«¾ùÀΰ¡?

»ê¾÷À» ¸··ÐÇÏ°í µðÁöÅÐ °áÁ¦ÀÇ È®´ë´Â ºÎÁ¤ÇàÀ§ °ü¸®ÀÇ ¿ì¼±¼øÀ§¸¦ ¹Ù²Ù°í ÀÖ½À´Ï´Ù. ¼Ò¸Å, ¿©Çà, ±ÝÀ¶ ¼­ºñ½º, µðÁöÅÐ ¿£ÅÍÅ×ÀÎ¸ÕÆ® µî¿¡¼­´Â ºÎÁ¤»ç¿ë °¨Áö Ç÷§ÆûÀÌ ¿£µåÅõ¿£µå °áÁ¦ ¿öÅ©Ç÷ο쿡 ÅëÇյǰí ÀÖ½À´Ï´Ù. ½Ç½Ã°£ °áÁ¦, P2P ¼Û±Ý, ¸ð¹ÙÀÏ Áö°© Áõ°¡·Î °ø°Ý ´ë»óÀÌ È®´ëµÇ°í, ¹ÎøÇÑ °¨Áö ¸ÞÄ¿´ÏÁò¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ À¯·´ÀÇ PSD2³ª ÀεµÀÇ RBI °¡À̵å¶óÀΰú °°Àº ¹ý±ÔÀÇ ¾Ð·Âµµ Áõ°¡Çϰí ÀÖÀ¸¸ç, ±â¾÷Àº º¸´Ù °­·ÂÇÑ ÀÎÁõ ¹× ºÎÁ¤ °ü¸® ÇÁ·¹ÀÓ¿öÅ©¸¦ µµÀÔÇØ¾ß ÇÒ Çʿ伺ÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù.

±â¾÷Àº °í°´ °æÇèÀ» À¯ÁöÇϸ鼭 ¸¶ÂûÀ» ÃÖ¼ÒÈ­ÇÏ´Â µ¥ ÃÊÁ¡À» ¸ÂÃß¾ú½À´Ï´Ù. ÀûÀÀÇü ÀÎÁõ°ú À§Çè ±â¹Ý °ËÁõÀº À§Çè ÁöÇ¥°¡ °¨ÁöµÈ °æ¿ì¿¡¸¸ ´õ °­·ÂÇÑ °Ë»ç¸¦ Àû¿ëÇÏ´Â µ¥ »ç¿ëµË´Ï´Ù. ÇÉÅ×Å©, ÀºÇà, »çÀ̹ö º¸¾È ±â¾÷ °£ÀÇ Çù¾÷À¸·Î ºÎÁ¤ Á¤º¸ ³×Æ®¿öÅ©ÀÇ °øÀ¯¿Í ÇнÀ ¸ðµ¨ ÅëÇÕÀÌ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. ¹Ý¸é, Áß¼Ò±â¾÷ÀÇ °æ¿ì °áÁ¦ ¼­ºñ½º ÇÁ·Î¹ÙÀÌ´õ¿¡ ¹øµé·Î Á¦°øµÇ´Â »ç±â °¨Áö Åø¿¡ ÀÇÁ¸ÇÏ´Â °æÇâÀÌ °­ÇØÁö¸é¼­ ±â¾÷ ¿ÜÀÇ »ç¿ëÀÚµµ ³ôÀº ¼öÁØÀÇ º¸È£ ±â´ÉÀ» ÀÌ¿ëÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.

¿Â¶óÀÎ °áÁ¦ »ç±â °¨Áö ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

¿Â¶óÀÎ °áÁ¦ »ç±â °¨Áö ½ÃÀåÀÇ ¼ºÀåÀº ¸î °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. E-Commerce, ¸ð¹ÙÀÏ ¾Û, ºñÁ¢ÃË½Ä Ã¤³Î¿¡¼­ÀÇ µðÁöÅÐ °áÁ¦ÀÇ È®´ë·Î ÀÎÇØ ¸ð´ÏÅ͸µÀÌ ÇÊ¿äÇÑ Æ®·£Àè¼ÇÀÇ ¾ç°ú º¹À⼺ÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. AI°¡ »ý¼ºÇÑ °¡Â¥ ID, °èÁ¤ Å»Ãë µî »ç±âÀÇ ¹æ¹ýÀÌ ±³¹¦ÇØÁö¸é¼­ ½Ç½Ã°£ ÀûÀÀÇü °¨Áö ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¸Ó½Å·¯´×, Çൿ »ýüÀνÄ, Ŭ¶ó¿ìµå ³×ÀÌÆ¼ºê Ç÷§ÆûÀÇ ±â¼ú ¹ßÀüÀº »ç¿ëÀÚÀÇ ¸¶ÂûÀ» ÁÙÀ̸鼭 ºÎÁ¤ÇàÀ§ °¨Áö Á¤È®µµ¸¦ ³ôÀ̰í ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ º¸¾È ¹× ¼ÒºñÀÚ º¸È£¿¡ °üÇÑ ±ÔÁ¤ÀÇ ¹ß´Þ·Î ÀÎÇØ ÄÄÇöóÀ̾𽺸¦ ÁؼöÇÏ´Â »ç±â ¹æÁö Åø¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÓº£µðµå ±ÝÀ¶, µðÁöÅÐ Áö°©, ±¹°æ °£ E-CommerceÀÇ µµÀÔÀÌ Áõ°¡ÇÔ¿¡ µû¶ó È®Àå °¡´ÉÇÏ°í »óÈ£ ¿î¿ë °¡´ÉÇÑ »ç±â °ü¸® ½Ã½ºÅÛÀÌ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀ¸·Î ÀÎÇØ, »ç±â °¨Áö´Â µðÁöÅÐ °áÁ¦ ÀÎÇÁ¶óÀÇ ±âº» ·¹À̾ µÇ°í ÀÖ½À´Ï´Ù.

ºÎ¹®

¼Ö·ç¼Ç(ºÎÁ¤ ºÐ¼® ¼Ö·ç¼Ç, ÀÎÁõ ¼Ö·ç¼Ç, ¸®Æ÷ÆÃ & °¡½ÃÈ­ ¼Ö·ç¼Ç), ¸ðµå(ÀüÀÚ°áÁ¦ ¸ðµå, ¸ð¹ÙÀÏ °áÁ¦ ¸ðµå, Ä«µå °áÁ¦ ¸ðµå)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹

AI ÅëÇÕ

¿ì¸®´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI Åø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾ç ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÔ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Online Payment Fraud Detection Market to Reach US$21.3 Billion by 2030

The global market for Online Payment Fraud Detection estimated at US$9.9 Billion in the year 2024, is expected to reach US$21.3 Billion by 2030, growing at a CAGR of 13.7% over the analysis period 2024-2030. Fraud Analytics Solution, one of the segments analyzed in the report, is expected to record a 13.0% CAGR and reach US$11.8 Billion by the end of the analysis period. Growth in the Authentication Solution segment is estimated at 14.4% CAGR over the analysis period.

The U.S. Market is Estimated at US$2.7 Billion While China is Forecast to Grow at 18.2% CAGR

The Online Payment Fraud Detection market in the U.S. is estimated at US$2.7 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$4.5 Billion by the year 2030 trailing a CAGR of 18.2% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 10.1% and 12.2% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 10.9% CAGR.

Global Online Payment Fraud Detection Market - Key Trends & Drivers Summarized

Why Is Online Payment Fraud Detection Becoming Mission-Critical for Digital Commerce?

As global e-commerce continues to expand, online payment fraud has become a pressing concern for businesses and financial institutions. From card-not-present (CNP) fraud to phishing attacks and synthetic identity theft, cybercriminals are exploiting vulnerabilities in payment ecosystems. This surge in fraudulent activity has compelled organizations to prioritize robust fraud detection solutions capable of operating in real time across multiple transaction channels. Online payment fraud detection systems are no longer viewed as optional safeguards but as essential tools to maintain customer trust and regulatory compliance.

The rapid digitization of financial services, accelerated by mobile commerce and contactless payments, has introduced greater complexity in monitoring transactions. Traditional rule-based systems are increasingly insufficient to detect sophisticated fraud patterns. Organizations are now adopting intelligent platforms that combine machine learning, behavioral analytics, and adaptive risk scoring to proactively identify suspicious activities. These systems are critical in balancing fraud prevention with seamless user experience, a key competitive factor in digital payments.

How Are Emerging Technologies Enhancing Fraud Detection Capabilities?

Modern fraud detection solutions rely heavily on artificial intelligence, data science, and real-time analytics to strengthen threat detection. Machine learning algorithms analyze large volumes of transactional data to identify anomalies and evolving fraud signatures. These systems learn from new attack vectors and adjust fraud scoring models accordingly, improving accuracy and reducing false positives. Behavioral biometrics are also gaining traction, using patterns such as typing speed, mouse movement, and device interaction to authenticate users without interrupting transactions.

Cloud-based platforms enable continuous monitoring and faster updates across global payment infrastructures. API-driven architectures allow easy integration with payment gateways, banking apps, and e-commerce platforms. Geolocation tracking, device fingerprinting, and IP reputation analysis further enrich fraud detection layers. As fraud tactics grow more coordinated and targeted, these multi-layered, technology-enabled systems are helping institutions stay ahead of threats while minimizing friction for legitimate users.

What Industry Trends Are Shaping Adoption of Fraud Detection Tools?

Across industries, digital payment expansion is reshaping fraud management priorities. In retail, travel, financial services, and digital entertainment, fraud detection platforms are being integrated into end-to-end payment workflows. The growth of real-time payments, peer-to-peer transfers, and mobile wallets has expanded the attack surface, creating demand for agile detection mechanisms. Regulatory pressure is also mounting, with mandates like PSD2 in Europe and RBI guidelines in India pushing companies to adopt stronger authentication and fraud control frameworks.

Businesses are focusing on minimizing friction while preserving customer experience. Adaptive authentication and risk-based verification are being used to apply stronger checks only when risk indicators are detected. Collaboration between fintechs, banks, and cybersecurity firms is resulting in shared fraud intelligence networks and federated learning models. Meanwhile, small and medium businesses are increasingly relying on fraud detection tools bundled with payment service providers, making sophisticated protection accessible to non-enterprise users.

What Factors Are Driving Growth in the Online Payment Fraud Detection Market?

Growth in the online payment fraud detection market is driven by several factors. Expansion of digital payments across e-commerce, mobile apps, and contactless channels is increasing the volume and complexity of transactions requiring monitoring. Rising sophistication of fraud tactics, including AI-generated synthetic identities and account takeovers, is pushing demand for real-time, adaptive detection systems. Technological advancements in machine learning, behavioral biometrics, and cloud-native platforms are improving fraud detection precision while reducing user friction. Regulatory developments in data security and consumer protection are encouraging investment in compliant fraud prevention tools. Additionally, increasing adoption of embedded finance, digital wallets, and cross-border e-commerce is necessitating scalable and interoperable fraud management systems. These developments are ensuring that fraud detection becomes a fundamental layer within the digital payment infrastructure.

SCOPE OF STUDY:

The report analyzes the Online Payment Fraud Detection market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Solution (Fraud Analytics Solution, Authentication Solution, Reporting & Visualization Solution); Mode (E-Payment Mode, Mobile Payment Mode, Card Payment Mode)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 36 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â