¼¼°èÀÇ ¿§Áö ÄÄÇ»ÆÃ ½ÃÀå : ¿¹Ãø - ÄÄÆ÷³ÍÆ®º°, Á¶Á÷ ±Ô¸ðº°, Àü°³ Çüź°, ±â¼úº°, ÃÖÁ¾ »ç¿ëÀÚº°, Áö¿ªº° ºÐ¼®(-2032³â)
Edge Computing Market Forecasts to 2032 - Global Analysis By Component (Hardware, Software and Services), Organization Size (Large Enterprises and Small and Medium-sized Enterprises (SMEs)), Deployment Mode, Technology, End User and By Geography
»óǰÄÚµå : 1776706
¸®¼­Ä¡»ç : Stratistics Market Research Consulting
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 200+ Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 4,150 £Ü 5,870,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 5,250 £Ü 7,426,000
PDF (2-5 User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷Àå¿¡¼­ 5¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,350 £Ü 8,982,000
PDF & Excel (Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷ÀåÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇÕ´Ï´Ù. Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ¹× Excel ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 7,500 £Ü 10,608,000
PDF & Excel (Global Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 10ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ¿§Áö ÄÄÇ»ÆÃ ½ÃÀåÀº 2025³â¿¡ 319¾ï ´Þ·¯·Î ÃßÁ¤µÇ°í, ¿¹Ãø ±â°£ µ¿¾È CAGR 35%·Î ¼ºÀåÇÒ Àü¸ÁÀ̸ç, 2032³â¿¡´Â 2,609¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù.

'¿§Áö ÄÄÇ»ÆÃ'À¸·Î ¾Ë·ÁÁø ºÐ»ê ÄÄÇ»ÆÃÀÇ ÆÐ·¯´ÙÀÓÀº µ¥ÀÌÅÍ Ã³¸®¸¦ Áß¾Ó ÁýÁß½Ä Å¬¶ó¿ìµå ¼­¹ö¿¡ ÀüÀûÀ¸·Î ÀÇÁ¸ÇÏ´Â °ÍÀÌ ¾Æ´Ï¶ó »ý¼º ÁöÁ¡ ±Ùó·Î À̵¿½Ãŵ´Ï´Ù. ·ÎÄà ¿§Áö ¼­¹ö, ¼¾¼­, »ç¹° ÀÎÅÍ³Ý ÀåÄ¡ µî ³×Æ®¿öÅ© ¿§Áö ¶Ç´Â ¿§Áö¿¡ °¡±î¿î °÷¿¡¼­ µ¥ÀÌÅ͸¦ ó¸®ÇÔÀ¸·Î½á ÀÀ´ä ½Ã°£À» ´Ã¸®°í ´ë±â ½Ã°£À» ´ÜÃàÇÏ¸ç ½Ç½Ã°£ ÀÇ»ç °áÁ¤À» ¿ëÀÌÇÏ°Ô ÇÕ´Ï´Ù. ÀÌ ¹æ¹ýÀº ½º¸¶Æ® ½ÃƼ, »ê¾÷ ÀÚµ¿È­, ¹«ÀÎ ÀÚµ¿Â÷ µî Áï½Ã ó¸®ÇØ¾ß ÇÏ´Â ¾ÖÇø®ÄÉÀ̼ǿ¡ ƯÈ÷ À¯¿ëÇÕ´Ï´Ù. ¹Î°¨ÇÑ µ¥ÀÌÅ͸¦ ¿ø°Ý µ¥ÀÌÅÍ ¼¾Åͳª Ŭ¶ó¿ìµå Ç÷§Æû¿¡ Àü¼ÛÇÒ Çʿ䰡 ¾ø±â ¶§¹®¿¡ ¿§Áö ÄÄÇ»ÆÃÀº ´ë¿ªÆø ¼Òºñ¸¦ ´ëÆø ÁÙÀÌ°í µ¥ÀÌÅÍ º¸¾È°ú ÇÁ¶óÀ̹ö½Ã¸¦ °­È­ÇÕ´Ï´Ù.

IoT µð¹ÙÀ̽º ¹× µ¥ÀÌÅÍ »ý¼º ±ÞÁõ

º¸´Ù ¿øÃµ¿¡ °¡±î¿î µ¥ÀÌÅ͸¦ ó¸®ÇÏ°í ´ë±â ½Ã°£À» ÁÙÀÌ´Â ¿§Áö ÄÄÇ»ÆÃÀÇ Çʿ伺ÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. »ê¾÷ ÀÚµ¿È­, ½º¸¶Æ® ½ÃƼ, ¹«ÀÎ ÀÚµ¿Â÷ µîÀÇ ¾ÖÇø®ÄÉÀ̼ǿ¡¼­´Â ½Ç½Ã°£ µ¥ÀÌÅÍ ºÐ¼®ÀÌ ÇÊ¿äÇÕ´Ï´Ù. ¿§Áö ÄÄÇ»ÆÃÀº Áß¾Ó ÁýÁß½Ä Å¬¶ó¿ìµå ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÀÇÁ¸À» ÁÙÀÌ°í ½Å¼ÓÇÑ ÀÇ»ç°áÁ¤À» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. µ¥ÀÌÅÍ Àü¼ÛÀ» Á¦ÇÑÇÔÀ¸·Î½á µ¥ÀÌÅÍÀÇ º¸¾È ¹× ÇÁ¶óÀ̹ö½Ãµµ Çâ»óµË´Ï´Ù. ±× °á°ú IoTÀÇ ÀÌ¿ë È®´ë·Î ¿§Áö ÄÄÇ»ÆÃÀÇ ½ÃÀåÀº ±Þ¼ÓÈ÷ È®´ëµÇ°í ÀÖ½À´Ï´Ù.

º¸¾È ¹× ÇÁ¶óÀ̹ö½Ã ¿ì·Á

¿§Áö¿¡¼­ÀÇ µ¥ÀÌÅÍ Ã³¸®´Â ¿£µåÆ÷ÀÎÆ®°¡ ºÐ»êµÇ¾î ¾ÈÀüÇÏÁö ¾ÊÀº °æ¿ì°¡ ¸¹±â ¶§¹®¿¡ »çÀ̹ö °ø°ÝÀÇ °¡´É¼ºÀÌ ³ô¾ÆÁý´Ï´Ù. ÀÏ¿øÈ­µÈ Ŭ¶ó¿ìµå ¼³Á¤°ú´Â ´ëÁ¶ÀûÀ¸·Î ¿§Áö µð¹ÙÀ̽º¿¡´Â °­·ÂÇÑ º¸¾È ´ëÃ¥ÀÌ ÀÌ·ç¾îÁöÁö ¾Ê¾ÒÀ» °¡´É¼ºÀÌ ÀÖ¾î °ø°ÝÀÇ ´ë»óÀÌ µÇ±â ½±½À´Ï´Ù. µ¥ÀÌÅÍÀÇ ¹«°á¼ºÀ» À¯ÁöÇϰí GDPR°ú °°Àº ¹ý·üÀ» ÁؼöÇÏ´Â °ÍÀÌ ¾î·Á¿öÁý´Ï´Ù. µ¥ÀÌÅÍ À¯Ãâ ¹× ÇÁ¶óÀ̹ö½Ã Ä§ÇØ °¡´É¼ºÀÌ Àֱ⠶§¹®¿¡ Á¶Á÷Àº ¿§Áö Å×Å©³î·ÎÁöÀÇ µµÀÔÀ» ÁÖÀúÇϰí ÀÖ½À´Ï´Ù. ´ë±Ô¸ð µµÀÔÀº ÀÌ·¯ÇÑ ¹®Á¦·Î ÀÎÇØ Áö¿¬µÇ°í µµÀÔ ºñ¿ëÀÌ Áõ´ëµË´Ï´Ù.

5G µµÀÔ ¹× AI ÅëÇÕ

¿§Áö¿¡¼­ ½Ç½Ã°£ µ¥ÀÌÅÍ Ã³¸®°¡ °³¼±µÇ¸é¼­ Áß¾Ó ÁýÁßÈ­µÈ Ŭ¶ó¿ìµå ½Ã½ºÅÛ¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³·¾ÆÁý´Ï´Ù. ÀÌ´Â AI ÅëÇÕÀ» ÅëÇØ °­È­µÇ¾î µ¥ÀÌÅÍ ¼Ò½º¿¡ °¡±î¿î °÷¿¡¼­ Çö¸íÇÑ ÀÇ»ç°áÁ¤°ú ºÐ¼®À» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. À̵éÀ» Á¶ÇÕÇÏ¸é ¿ø°Ý ÇコÄɾî, ½º¸¶Æ® Á¦Á¶, ¹«ÀÎ ¿îÀüÂ÷ µî ½Ã°£¿¡ ¹Î°¨ÇÑ ¾ÖÇø®ÄÉÀ̼ÇÀÌ ½¬¿öÁý´Ï´Ù. ¾÷Á¾À» ºÒ¹®Çϰí, ÀÌ »ó½ÂÈ¿°ú¿¡ ÀÇÇØ¼­ È®À强, ÀÀ´ä¼º, È¿À²ÀÌ Çâ»óµË´Ï´Ù. 5G¿Í AI¸¦ ÃæºÐÈ÷ Ȱ¿ëÇϱâ À§ÇØ Á¶Á÷Àº ¿§Áö ¼Ö·ç¼Ç äÅ÷üÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù.

Ç¥ÁØÈ­ ¹× »óÈ£ ¿î¿ë¼º ºÎÁ·

Ç¥ÁØ ÇÁ·ÎÅäÄÝÀÌ ¾ø´Â °æ¿ì, ¸¹Àº º¥´õÀÇ µð¹ÙÀ̽º°¡ È¿°úÀûÀ¸·Î Åë½ÅÇÏ´Â °ÍÀº °ï¶õÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ´ÜÆíÈ­ÀÇ °á°ú·Î ±â¾÷Àº ³ôÀº ºñ¿ëÀ» ºÎ´ãÇÏ°Ô µÇ°í ±¸Çöµµ ¾î·Á¿öÁý´Ï´Ù. °³¹ßÀڴ ȣȯµÇÁö ¾Ê´Â ¿©·¯ Ç÷§ÆûÀ» °í·ÁÇØ¾ß Çϱ⠶§¹®¿¡ ±â¼ú Çõ½Åµµ ÀúÇØµË´Ï´Ù. °Ô´Ù°¡ »óÈ£ ¿î¿ë¼ºÀÇ °á¿©´Â Æø³ÐÀº º¸±ÞÀ» ¹æÇØÇØ, È®À强À» ÀúÇϽÃŵ´Ï´Ù. ÀÌ ¶§¹®¿¡ ±â¾÷Àº ÃÖ÷´Ü ¼Ö·ç¼Ç¿¡ µ·À» µéÀÌ°í ½Í¾îÇÏÁö ¾Ê¾Æ ½ÃÀå È®´ë°¡ ´Ê¾îÁý´Ï´Ù.

COVID-19ÀÇ ¿µÇâ

COVID-19ÀÇ ´ëÀ¯ÇàÀº Á¶Á÷ÀÌ ¿ø°Ý ±Ù¹« Áö¿ø, Áö¿¬ ÃÖ¼ÒÈ­, ½Ç½Ã°£ µ¥ÀÌÅÍ Ã³¸® È®º¸¸¦ ¿ä±¸Ç߱⠶§¹®¿¡ ¿§Áö ÄÄÇ»ÆÃÀÇ Ã¤¿ëÀ» ´ëÆø °¡¼ÓÈ­Çß½À´Ï´Ù. ÇコÄɾî, Á¦Á¶, ¹°·ùÀÇ ÀúÁö¿¬ ¾ÖÇø®ÄÉÀ̼ǿ¡ ´ëÇÑ ¼ö¿ä ±ÞÁõÀº ¿¡Áö µµÀÔÀ» ÃËÁøÇß½À´Ï´Ù. ±×·¯³ª óÀ½¿¡´Â °ø±Þ¸Á È¥¶õ°ú ÇÁ·ÎÁ§Æ® Áö¿¬ÀÌ Çϵå¿þ¾î µµÀÔ¿¡ ¹æÇذ¡ µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ °úÁ¦¿¡µµ ºÒ±¸Çϰí À§±â´Â ºÐ»êÇü ÄÄÇ»ÆÃÀÇ Á߿伺À» ºÎ°¢½ÃÄ×°í, ´ëÀ¯Çà ÀÌÈÄ ¼¼°è¿¡¼­ ȸº¹·Â, È¿À²¼º, µ¥ÀÌÅÍ º¸¾ÈÀ» °­È­Çϱâ À§ÇØ ¿¡Áö Å×Å©³î·ÎÁö¿¡ ´ëÇÑ ÅõÀÚ¸¦ ´Ã¸®µµ·Ï ±â¾÷¿¡ ÈûÀ» ½Ç¾îÁÖ¾ú½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ½º¸¶Æ® ½ÃƼ ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ Àü¸Á

½º¸¶Æ®½ÃƼ ºÎ¹®Àº ±³Åë°ü¸®, °¨½Ã, °ø°ø¾ÈÀü ½Ã½ºÅÛÀ» À§ÇÑ ½Ç½Ã°£ µ¥ÀÌÅÍ Ã³¸®¸¦ ÅëÇØ ¿¹Ãø ±â°£ Áß ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º¸´Ù ¹ß»ý¿ø¿¡ °¡±î¿î Àå¼Ò¿¡¼­ µ¥ÀÌÅ͸¦ ó¸®ÇÔÀ¸·Î½á ´ë±â½Ã°£°ú ´ë¿ªÆøÀÇ »ç¿ë·®À» »è°¨ÇØ, µµ½Ã ¿î¿µÀÇ È¿À²À» ³ôÀÔ´Ï´Ù. ¿¡Áö ÄÄÇ»ÆÃÀº ½º¸¶Æ® ±×¸®µå, ½º¸¶Æ® Á¶¸í, Æó±â¹° °ü¸® ½Ã½ºÅÛ µîÀÇ Áö´ÉÇü ÀÎÇÁ¶ó¸¦ Áö¿øÇÕ´Ï´Ù. ½º¸¶Æ®½ÃƼ Àüü¿¡¼­ IoT µð¹ÙÀ̽º äÅÃÀÌ Áõ°¡Çϰí ÀÖÀ¸¸ç ÇöÁöÈ­µÈ ÄÄÇ»ÆÃ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÅëÇÕÀÇ ÁøÀüÀÌ ¿§ÁöÀÇ µµÀÔÀ» °¡¼ÓÈ­ÇÏ¿© ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ´ë±â¾÷ ºÎ¹®ÀÇ CAGRÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹»ó

¿¹Ãø ±â°£ µ¿¾È ½Ç½Ã°£ ¿ëµµ¸¦ Áö¿øÇϱâ À§ÇÑ ÀúÁö¿¬ µ¥ÀÌÅÍ Ã³¸®¿¡ ´ëÇÑ ³ôÀº ¼ö¿ä°¡ ÃËÁøµÇ¾î ´ë±â¾÷ ºÎ¹®ÀÇ ¼ºÀå·üÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ·¯ÇÑ ±â¾÷Àº ´ë·®ÀÇ µ¥ÀÌÅ͸¦ »ý¼ºÇϱ⠶§¹®¿¡ ³×Æ®¿öÅ© È¥ÀâÀ» ¿ÏÈ­ÇÏ°í º¸´Ù ºü¸¥ ÅëÂû·ÂÀ» Á¦°øÇÏ´Â È¿À²ÀûÀÎ ¿§Áö ÀÎÇÁ¶ó°¡ ÇÊ¿äÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±â¾÷µéÀº AI, IoT, 5G µîÀÇ ¼±Áø ±â¼ú¿¡ ¸¹Àº ÅõÀÚ¸¦ ÇÏ°í ¿§Áö µµÀÔÀ» ´õ¿í °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ´ë±â¾÷Àº µ¥ÀÌÅÍ º¸¾È ¹× ±ÔÁ¦ Áؼö¸¦ ¼±È£Çϱ⠶§¹®¿¡ ÇöÁöÈ­µÈ ¿§Áö ¼Ö·ç¼ÇÀº ¸Å¿ì ¸Å·ÂÀûÀÔ´Ï´Ù. ´ë±â¾÷ÀÇ ¾öû³­ IT ¿¹»ê°ú µðÁöÅÐ Àüȯ¿¡ ´ëÇÑ ÁÖ·ÂÀº ½ÃÀåÀÇ Áö¼ÓÀûÀÎ ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.

ÃÖ´ë °øÀ¯ Áö¿ª :

¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº IoT µð¹ÙÀ̽º äÅà Áõ°¡, 5G ³×Æ®¿öÅ© È®´ë, ½º¸¶Æ® ½ÃƼ ¹× »ê¾÷ ÀÚµ¿È­ ºÐ¾ß¿¡¼­ ½Ç½Ã°£ µ¥ÀÌÅÍ Ã³¸® ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Áß±¹, ÀϺ», Çѱ¹, Àεµ µî ±¹°¡µéÀº µðÁöÅÐ ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ¸¦ Àû±ØÀûÀ¸·Î ¼öÇàÇϰí, µ¥ÀÌÅÍ ÇöÁöÈ­¸¦ ÃßÁøÇϸç, Ŭ¶ó¿ìµå¿¡¼­ ¿§Áö·ÎÀÇ ÀüȯÀ» Àå·ÁÇϰí ÀÖ½À´Ï´Ù. ÁÖ¿ä Åë½Å »ç¾÷ÀÚÀÇ Á¸Àç¿Í Á¤ºÎ Áö¿øÀÇ µðÁöÅÐ ±¸»óÀÌ ½ÃÀå °³¹ßÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ AI¸¦ ÅëÇÕÇÑ ¿§Áö ¼Ö·ç¼ÇÀº ¼Ò¸Å, ÀÚµ¿Â÷, ÇコÄɾ¼­ ³Î¸® º¸±ÞµÇ¾î Çõ½Å°ú ÇöÁöÈ­µÈ µ¥ÀÌÅÍ Ã³¸® ´É·ÂÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª :

¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ´Â Ãʱ⠱â¼ú µµÀÔ, ¼º¼÷ÇÑ Å¬¶ó¿ìµå ¿¡ÄڽýºÅÛ, ÇÏÀÌÆÛ½ºÄÉÀÏ µ¥ÀÌÅͼ¾ÅÍÀÇ ÁýÁß ¶§¹®ÀÔ´Ï´Ù. ¹Ì±¹°ú ij³ª´Ù¿¡¼­´Â ƯÈ÷ ÀÚÀ²ÁÖÇàÂ÷, ½º¸¶Æ® Á¦Á¶, Áõ°­ Çö½Ç µîÀÇ ºÐ¾ß¿¡¼­ ÀúÁö¿¬ ¼­ºñ½º¿¡ ´ëÇÑ ±â¾÷ ¼ö¿ä°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. Microsoft, AWS, Google°ú °°Àº ÁÖ¿ä ÇÏÀÌÅ×Å© ±â¾÷Àº Â÷¼¼´ë ¿ëµµ¸¦ Áö¿øÇϱâ À§ÇØ ¿§Áö ÀÎÇÁ¶ó¸¦ µµÀÔÇϰí ÀÖ½À´Ï´Ù. »çÀ̹ö º¸¾È¿¡ ´ëÇÑ ¿ì·Á¿Í ½Ç½Ã°£ ºÐ¼®ÀÇ Çʿ伺Àº ¿§Áö¿¡ ´ëÇÑ ÅõÀÚ¸¦ ´õ¿í °­È­Çϰí ÀÖ½À´Ï´Ù. ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©¿Í ±â¾÷ÀÇ µðÁöÅÐ º¯È¯ Àü·«Àº ¿§Áö ÄÄÇ»ÆÃÀÇ Çõ½Å¿¡¼­ ÀÌ Áö¿ªÀÇ ÀÌÁ¡À» °è¼Ó °­È­Çϰí ÀÖ½À´Ï´Ù.

¹«·á ÁÖ¹®À» ¹Þ¾Æ¼­ ¸¸µå´Â ¼­ºñ½º :

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½ ¹«·á ¸ÂÃã¼³Á¤ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

Á¦4Àå Porter's Five Forces ºÐ¼®

Á¦5Àå ¼¼°èÀÇ ¿§Áö ÄÄÇ»ÆÃ ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

Á¦6Àå ¼¼°èÀÇ ¿§Áö ÄÄÇ»ÆÃ ½ÃÀå : Á¶Á÷ ±Ô¸ðº°

Á¦7Àå ¼¼°èÀÇ ¿§Áö ÄÄÇ»ÆÃ ½ÃÀå : Àü°³ Çüź°

Á¦8Àå ¼¼°èÀÇ ¿§Áö ÄÄÇ»ÆÃ ½ÃÀå : ±â¼úº°

Á¦9Àå ¼¼°èÀÇ ¿§Áö ÄÄÇ»ÆÃ ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

Á¦10Àå ¼¼°èÀÇ ¿§Áö ÄÄÇ»ÆÃ ½ÃÀå : Áö¿ªº°

Á¦11Àå ÁÖ¿ä ¹ßÀü

Á¦12Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

AJY
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

According to Stratistics MRC, the Global Edge Computing Market is accounted for $31.9 billion in 2025 and is expected to reach $260.9 billion by 2032 growing at a CAGR of 35% during the forecast period. A distributed computing paradigm known as "edge computing" moves data processing closer to the point of generation rather than depending entirely on centralised cloud servers. It increases response times, lowers latency, and facilitates real-time decision-making by processing data at or close to the network's edge, such as local edge servers, sensors, or Internet of Things devices. This method works particularly well for applications that need to be processed instantly, such smart cities, industrial automation, and driverless cars. By eliminating the need to send sensitive data to remote data centres or cloud platforms, edge computing significantly lowers bandwidth consumption and enhances data security and privacy.

Market Dynamics:

Driver:

Surge in IoT devices and data generation

The need for edge computing to process data closer to the source and lower latency is heightened by this. Applications such as industrial automation, smart cities, and driverless cars require real-time data analysis. Edge computing reduces dependency on centralised cloud infrastructure, allowing for quicker decision-making. By restricting data transfer, it also improves data security and privacy. Consequently, the market for edge computing is expanding quickly due to the growing usage of IoT.

Restraint:

Security and privacy concerns

Data processing at the edge raises the possibility of cyberattacks because of dispersed and frequently insecure endpoints. In contrast to centralised cloud settings, edge devices might not have strong security measures in place, which leaves them open to attack. It gets harder to maintain data integrity and comply with laws like GDPR. Because of the possibility of data breaches and privacy violations, organisations are hesitant to implement edge technologies. Large-scale deployments are delayed by these issues, which increase implementation costs.

Opportunity:

5G deployment and AI integration

Reliance on centralised cloud systems is decreased as a result of improved real-time data processing at the edge. This is enhanced by AI integration, which makes it possible to make wise decisions and conduct analytics nearer to the data sources. When combined, they facilitate time-sensitive applications such as remote healthcare, smart manufacturing, and driverless cars. Across industries, this synergy increases scalability, responsiveness, and efficiency. In order to fully utilise 5G and AI, organisations are consequently adopting edge solutions at an increasing rate.

Threat:

Lack of standardization and interoperability

Devices from many vendors have trouble communicating effectively if there are no standard protocols. Businesses incur higher expenses as a result of this fragmentation, which also makes implementation more challenging. Because developers have to take into consideration several incompatible platforms, it also stifles innovation. Furthermore, a lack of interoperability hinders broad adoption and decreases scalability. As of this, businesses are reluctant to spend money on cutting-edge solutions, which slows market expansion.

Covid-19 Impact

The Covid-19 pandemic significantly accelerated the adoption of edge computing as organizations sought to support remote work, minimize latency, and ensure real-time data processing. The surge in demand for low-latency applications in healthcare, manufacturing, and logistics fuelled edge deployment. However, supply chain disruptions and project delays initially hindered hardware rollouts. Despite these challenges, the crisis highlighted the importance of decentralized computing, pushing businesses to invest more in edge technologies to enhance resilience, efficiency, and data security in a post-pandemic world.

The smart cities segment is expected to be the largest during the forecast period

The smart cities segment is expected to account for the largest market share during the forecast period, due to real-time data processing for traffic management, surveillance, and public safety systems. It reduces latency and bandwidth usage by processing data closer to the source, enhancing efficiency in urban operations. Edge computing supports intelligent infrastructure such as smart grids, smart lighting, and waste management systems. The rising adoption of IoT devices across smart cities boosts demand for localized computing solutions. This growing integration accelerates edge deployments, driving market growth.

The large enterprises segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the large enterprises segment is predicted to witness the highest growth rate by driving high demand for low-latency data processing to support real-time applications. These organizations generate massive volumes of data, requiring efficient edge infrastructure to reduce network congestion and ensure faster insights. They invest heavily in advanced technologies like AI, IoT, and 5G, which further accelerate edge adoption. Large enterprises prioritize data security and regulatory compliance, making localized edge solutions highly attractive. Their significant IT budgets and focus on digital transformation contribute to sustained market growth.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share due to increasing adoption of IoT devices, expansion of 5G networks, and rising demand for real-time data processing across smart cities and industrial automation sectors. Countries like China, Japan, South Korea, and India are heavily investing in digital infrastructure, promoting data localization, and encouraging cloud-to-edge transitions. The presence of major telecom players and government-backed digital initiatives accelerates market development. Additionally, AI-integrated edge solutions are gaining traction across retail, automotive, and healthcare, fostering innovation and localized data processing capabilities.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, owing to by early technology adoption, mature cloud ecosystem, and high concentration of hyperscale data centers. The U.S. and Canada are experiencing growing enterprise demand for low-latency services, particularly in autonomous vehicles, smart manufacturing, and augmented reality. Leading tech giants such as Microsoft, AWS, and Google are deploying edge infrastructure to support next-gen applications. Cybersecurity concerns and the need for real-time analytics further push edge investments. Regulatory frameworks and corporate digital transformation strategies continue to strengthen the region's dominance in edge computing innovations.

Key players in the market

Some of the key players profiled in the Edge Computing Market include Amazon Web Services (AWS), Microsoft, Google, Cisco Systems, Dell Technologies, Hewlett Packard Enterprise (HPE), Intel, NVIDIA, Advanced Micro Devices (AMD), EdgeConneX, Akamai Technologies, Juniper Networks, Cloudflare, ADLINK Technology, Advantech, Schneider Electric, Siemens and FogHorn Systems.

Key Developments:

In April 2025, Google announced the acquisition of Wiz, a cybersecurity firm. This acquisition strengthens Google's edge and cloud security offerings, particularly in protecting AI models and data at the edge-critical for enterprise adoption of edge computing.

In May 2024, AWS entered a strategic collaboration with Mavenir to jointly develop cloud-native telecom solutions, including 5G, IMS, and RAN technologies. This partnership aims to accelerate innovation, reduce deployment complexity, and enhance scalability for global telecom operators.

In August 2023, AWS acquired Hercules Labs (also known as Fig), an infrastructure-testing startup. This acquisition reinforces AWS's developer toolchain, enhancing end-to-end CI/CD pipelines and offering robust support for edge-focused DevOps workflows.

Components Covered:

Organization Sizes Covered:

Deployment Modes Covered:

Technologies Covered:

End Users Covered:

Regions Covered:

What our report offers:

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

Table of Contents

1 Executive Summary

2 Preface

3 Market Trend Analysis

4 Porters Five Force Analysis

5 Global Edge Computing Market, By Component

6 Global Edge Computing Market, By Organization Size

7 Global Edge Computing Market, By Deployment Mode

8 Global Edge Computing Market, By Technology

9 Global Edge Computing Market, By End User

10 Global Edge Computing Market, By Geography

11 Key Developments

12 Company Profiling

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â