¼¼°èÀÇ Á¦Á¶¾÷¿ë ¿¡Áö ¹× Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ ½ÃÀå ¿¹Ãø(-2032³â) : Àü°³ ¸ðµ¨, Á¶Á÷ ±Ô¸ð, ±â¼ú, ¿ëµµ, ÃÖÁ¾ »ç¿ëÀÚ, Áö¿ªº° ºÐ¼®
Edge & Cloud Computing in Manufacturing Market Forecasts to 2032 - Global Analysis By Deployment Model (Edge Computing, Cloud Computing and Hybrid Architecture), Organization Size, Technology, Application, End User and By Geography
»óǰÄÚµå : 1818007
¸®¼­Ä¡»ç : Stratistics Market Research Consulting
¹ßÇàÀÏ : 2025³â 09¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 200+ Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 4,150 £Ü 5,880,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 5,250 £Ü 7,439,000
PDF (2-5 User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷Àå¿¡¼­ 5¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,350 £Ü 8,998,000
PDF & Excel (Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷ÀåÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇÕ´Ï´Ù. Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ¹× Excel ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 7,500 £Ü 10,628,000
PDF & Excel (Global Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 10ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Stratistics MRC¿¡ µû¸£¸é 2025³â 496¾ï ´Þ·¯¸¦ Â÷ÁöÇϸç, Á¦Á¶ ±â°£ Áß ¿¡Áö ¹× Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ ¼¼°è ½ÃÀåÀº ¿¹Ãø ±â°£ µ¿¾È CAGRÀÌ 24.0%·Î ¼ºÀåÇÏ¿© 2032³â±îÁö 2,235¾ï 8,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

Á¦Á¶¾÷¿¡¼­´Â ¿¡Áö ÄÄÇ»ÆÃ°ú Ŭ¶ó¿ìµå ÄÄÇ»ÆÃÀÌ µ¥ÀÌÅÍ °ü¸® ¹× ¾÷¹« È¿À²¼º Çâ»óÀ» ÅëÇÑ µðÁöÅÐ º¯È¯À» ÃßÁøÇϰí ÀÖ½À´Ï´Ù. ¿¡Áö ÄÄÇ»ÆÃÀº »ý»ê ¼³ºñ ±Ùó¿¡¼­ Á¤º¸¸¦ ó¸®ÇÏ¿© Áß¿äÇÑ ¾÷¹«¿¡ ´ëÇÑ ½Å¼ÓÇÑ ´ëÀÀ°ú ÃÖ¼Ò ´ë±â ½Ã°£À» º¸ÀåÇÕ´Ï´Ù. ´ëÁ¶ÀûÀ¸·Î Ŭ¶ó¿ìµå ÄÄÇ»ÆÃÀº ¼³ºñ ¹× °ø±Þ¸Á ÀüüÀÇ °¡½Ã¼ºÀ» Çâ»ó½ÃŰ´Â ±¤´ëÇÑ ½ºÅ丮Áö, Áß¾Ó ÁýÁᫎ ºÐ¼® ¹× AI ¿ëµµ¸¦ Á¦°øÇÕ´Ï´Ù. À̵éÀ» °áÇÕÇÏ¸é ¿¹Ãø À¯Áö º¸¼ö, ÀÚµ¿È­µÈ ǰÁú °Ë»ç ¹× ÃÖÀûÈ­µÈ ¿öÅ©Ç÷ο츦 Áö¿øÇÏ´Â ÇÏÀ̺긮µå ¸ðµ¨ÀÌ ±¸ÃàµË´Ï´Ù. ÀÌ ½Ã³ÊÁö È¿°ú·Î ÀÎÇØ ´Ù¿îŸÀÓÀÌ ´ÜÃàµÉ »Ó¸¸ ¾Æ´Ï¶ó Á¦Á¶¾÷ü´Â ½ÃÀå ¼ö¿ä¿¡ ½Å¼ÓÇÏ°Ô ´ëÀÀÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¡Áö Ŭ¶ó¿ìµå ¼Ö·ç¼ÇÀ» äÅÃÇÔÀ¸·Î½á ¾÷°è´Â È®À强, ź·Â¼º, Çõ½Å¼ºÀ» È®º¸ÇÏ°í ½º¸¶Æ® Á¦Á¶ °æÀï·ÂÀ» °­È­ÇÒ ¼ö ÀÖ½À´Ï´Ù.

IJFMR¿¡ °ÔÀçµÈ °ËÅä ¿¬±¸¿¡ µû¸£¸é, ¿¡Áö ÄÄÇ»ÆÃÀº Á¦Á¶ ȯ°æ¿¡¼­ÀÇ µ¥ÀÌÅÍ Ã³¸® ´ë±â ½Ã°£À» 150-200¹Ð¸®ÃÊ¿¡¼­ ºÒ°ú 15¹Ð¸®ÃÊ·Î ´ÜÃàÇÏ¿© ½Ç½Ã°£ ǰÁú °ü¸®¿Í ¿¹Áö º¸ÀüÀ» °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù.

¿¹Áöº¸Àü¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡

¿¹Áöº¸ÀüÀº Á¦Á¶¾÷¿¡¼­ ¿¡Áö ¹× Ŭ¶ó¿ìµå ÄÄÇ»ÆÃÀÇ ÁÖ¿ä ÃËÁø¿äÀÎÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ±âÁ¸ÀÇ »çÈĺ¸ÀüÀ̳ª Á¤±âº¸Àü¿¡¼­´Â ºñ¿ë°ú ´Ù¿îŸÀÓÀÌ ºÎ°úµÇ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ¿¡Áö ÄÄÇ»ÆÃÀº Àåºñ ±Ùó¿¡¼­ µ¥ÀÌÅ͸¦ ó¸®ÇÏ¿© ½Ç½Ã°£ ºñÁ¤»ó °¨Áö¸¦ °¡´ÉÇÏ°Ô Çϸç, Ŭ¶ó¿ìµå Ç÷§ÆûÀº ´ë±Ô¸ð µ¥ÀÌÅÍ ¼¼Æ®¸¦ ºÐ¼®ÇÏ¿© ¿¹Ãø ¸ðµ¨À» ±¸ÃàÇÏ°í °íÀåÀ» ¿¹ÃøÇÕ´Ï´Ù. ÀÌ µÎ ½Ã½ºÅÛÀº ¿¹±âÄ¡ ¾ÊÀº °íÀåÀ» ¹æÁöÇÏ°í ±â°è ¼ö¸íÀ» ¿¬ÀåÇϸç À¯Áö º¸¼ö ºñ¿ëÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·Î ÀÎÇØ ÀÚ»êÀÇ ½Å·Ú¼ºÀÌ Çâ»óµÇ°í ÀÛ¾÷ÀÚÀÇ ¾ÈÀü¼ºÀÌ Çâ»óµÇ°í »ý»ê È帧ÀÌ ÁߴܵÇÁö ¾Ê½À´Ï´Ù. À§ÇèÀ» ÃÖ¼ÒÈ­ÇÏ°í ¼º´ÉÀ» ÃÖÀûÈ­ÇÔÀ¸·Î½á ¿¡Áö¿Í Ŭ¶ó¿ìµåÀÇ ÅëÇÕÀ» ÅëÇØ Áö¿øµÇ´Â ¿¹Ãø º¸ÀüÀº È¿À²¼º Çâ»óÀ» ¿ä±¸ÇÏ´Â Çö´ë °øÀå¿¡ ÇʼöÀûÀÔ´Ï´Ù.

³ôÀº µµÀÔ ºñ¿ë

Á¦Á¶¾÷¿¡¼­ ¿¡Áö ¹× Ŭ¶ó¿ìµå ÄÄÇ»ÆÃÀ» µµÀÔÇÏ´Â °¡Àå Å« °úÁ¦ Áß Çϳª´Â ¹èÆ÷¿¡ µå´Â ºñ¿ëÀÌ ¸¹ÀÌ µì´Ï´Ù. ¿¡Áö Çϵå¿þ¾î, ¼¾¼­, ¿¬°á ÀåÄ¡¸¦ ¼³Ä¡Çϰí Ŭ¶ó¿ìµå ¼­ºñ½º¸¦ ÅëÇÕÇÏ·Á¸é ¸¹Àº ¼³ºñ ÅõÀÚ°¡ ÇÊ¿äÇÕ´Ï´Ù. Áß¼Ò±Ô¸ðÀÇ Á¦Á¶¾÷Àڵ鿡°Ô ÀÌ ºñ¿ëÀº ¾öû³ª°Ô ¸¹°í äÅÃÀº ´ë±â¾÷À¸·Î Á¦Çѵ˴ϴÙ. ¶ÇÇÑ Á÷¿ø ±³À°, ½Ã½ºÅÛ ¾÷±×·¹À̵å, µ¥ÀÌÅÍ º¸È£ ´ëÃ¥, Àå±â À¯Áö º¸¼ö ºñ¿ëÀ¸·Î À繫Àû ¾Ð·ÂÀÌ ¹ß»ýÇÕ´Ï´Ù. ROI°¡ ºÒÅõ¸íÇϱ⠶§¹®¿¡ ±â¾÷Àº ÀÌ·¯ÇÑ ´ë±Ô¸ð º¯ÇõÀÇ µµÀÔ¿¡ ÁÖÀǸ¦ ±â¿ïÀ̰í ÀÖ½À´Ï´Ù. ±× °á°ú, °í°¡ÀÇ Ãʱ⠺ñ¿ë°ú ±×¿¡ µû¸¥ ÁöÃâÀº Á¦Á¶ Àü¹Ý¿¡¼­ ¿¡Áö Ŭ¶ó¿ìµå ¼Ö·ç¼ÇÀÇ È®ÀåÀ» °è¼Ó Á¦ÇÑÇϰí ÀÖ½À´Ï´Ù.

¿¹Ãø ºÐ¼® ¹× AI È®´ë

Á¦Á¶¾÷¿¡¼­ÀÇ ¿¹Ãø ºÐ¼®°ú AIÀÇ Ã¤¿ëÀº ¿¡Áö¿Í Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ ¼Ö·ç¼ÇÀÇ Å« ±âȸ¸¦ À̲ø¾î³»°í ÀÖ½À´Ï´Ù. ¿¡Áö ½Ã½ºÅÛÀº ±â°è °¡±îÀÌ¿¡¼­ ¶óÀÌºê µ¥ÀÌÅ͸¦ ó¸®ÇÏ°í ºñÁ¤»óÀûÀÎ »óȲÀ» ½Å¼ÓÇÏ°Ô °¨ÁöÇÏ´Â ¹Ý¸é Ŭ¶ó¿ìµå ±â¹Ý AI Ç÷§ÆûÀº ÆÐÅÏÀ» ºÐ¼®ÇÏ¿© Á¤È®ÇÑ ¿¹ÃøÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ Á¢±Ù¹ýÀº ¿¹Ãø À¯Áö º¸¼ö¸¦ °­È­Çϰí Á¦Ç° ǰÁúÀ» Çâ»ó½ÃŰ°í °ø±Þ¸Á ¼º´ÉÀ» °£¼ÒÈ­ÇÕ´Ï´Ù. Á¦Á¶¾÷ü´Â °¡µ¿ ÁßÁö ½Ã°£À» ÁÙÀÌ°í ±â°è ¼ö¸íÀ» ¿¬ÀåÇϰí Àü¹ÝÀûÀÎ È¿À²¼ºÀ» Çâ»ó½ÃŰ´Â µîÀÇ ÀÌÁ¡À» ´©¸± ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ AI¿Í ¿¡Áö Ŭ¶ó¿ìµå ³×Æ®¿öÅ©¸¦ °áÇÕÇÏ¸é º¯È­ÇÏ´Â »óȲ¿¡ Áï°¢ÀûÀ¸·Î ´ëÀÀÇÏ´Â ÀûÀÀÇü »ý»ê ½Ã½ºÅÛÀÌ °¡´ÉÇÕ´Ï´Ù. °øÀåÀÇ Áö´ÉÇü ÀÚµ¿È­¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁö´Â °¡¿îµ¥, AI, ¿¹Ãø ºÐ¼®, ¿¡Áö Ŭ¶ó¿ìµå ÄÄÇ»ÆÃÀÇ À¶ÇÕÀ¸·Î ½ÃÀåÀÌ Å©°Ô È®´ëµÉ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼÷·Ã ³ëµ¿ÀÚ ºÎÁ·

Á¦Á¶¾÷ÀÇ ¿¡Áö ÄÄÇ»ÆÃ°ú Ŭ¶ó¿ìµå ÄÄÇ»ÆÃÀÇ µµÀÔ¿¡ ´ëÇÑ ½É°¢ÇÑ À§ÇùÀº ¼÷·ÃµÈ ÀηÂÀÇ ºÎÁ·ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀ» µµÀÔÇϰí Áö¼ÓÇÏ·Á¸é µ¥ÀÌÅÍ ºÐ¼®, »çÀ̹ö º¸¾È, IoT ÀåÄ¡ ¹× Ŭ¶ó¿ìµå ÅëÇÕ¿¡ ´ëÇÑ °í±Þ Áö½ÄÀÌ ÇÊ¿äÇÕ´Ï´Ù. ±×·¯³ª Á¦Á¶¾÷Àº Á¾Á¾ ±×·¯ÇÑ Àü¹® Áö½ÄÀ» °¡Áø Àü¹®°¡¸¦ ã´Â ¾î·Á¿ò¿¡ Á÷¸éÇÕ´Ï´Ù. ¼÷·ÃµÈ Á÷¿øÀÌ ¾øÀ¸¸é ½Ã½ºÅÛÀÌ ¿ÏÀüÈ÷ ÃÖÀûÈ­µÇÁö ¾Ê¾Æ Àå¾Ö ¹× º¸¾È ¹®Á¦°¡ ¹ß»ýÇϱ⠽±½À´Ï´Ù. ÀÌ °ÝÂ÷´Â ºñ¿ëÀÌ ¸¹ÀÌ µå´Â ¿ÜºÎ °ø±Þ¾÷ü¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³ôÀ̰í Áß¼Ò±â¾÷¿¡°Ô´Â ¿©À¯°¡ ¾øÀ» ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Àη ºÎÁ·Àº ½º¸¶Æ® ¸Å´ºÆÑó¸µ ÀÌ´Ï¼ÅÆ¼ºê¸¦ È®´ëÇÏ´Â À庮ÀÌ µÇ¾î, ¿¡Áö Ŭ¶ó¿ìµå ±â¼úÀÇ º¸±ÞÀ» ¹æÇØÇØ, ¼¼°èÀûÀÎ ½ÃÀå °³Ã´À» ´ÊÃß°í ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ:

COVID-19ÀÇ ¹ß»ýÀº Á¦Á¶¾÷ÀÇ ¿¡Áö ¹× Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌÃÆÀ¸¸ç, Àü ¼¼°èÀûÀ¸·Î ¿î¿µ ¿ì¼±¼øÀ§°¡ À籸¼ºµÇ¾ú½À´Ï´Ù. °øÀå Æó¼â, ³ëµ¿ ºÎÁ·, °ø±Þ¸Á È¥¶õÀ¸·Î ÀÎÇØ µðÁöÅÐ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁ³½À´Ï´Ù. ¿¡Áö ÄÄÇ»ÆÃÀº Á¦ÇÑµÈ Àοø¿¡¼­ ½Ç½Ã°£ ¸Ó½Å ¸ð´ÏÅ͸µ ¹× ÇÁ·Î¼¼½º ÀÚµ¿È­¿¡ ÇʼöÀûÀ̾úÀ¸¸ç, Ŭ¶ó¿ìµå Ç÷§ÆûÀº ¿ø°Ý Çù¾÷, ÁýÁß ºÐ¼® ¹× ¿î¿µ °¡»ó °ü¸®¸¦ ÅëÇØ ºñÁî´Ï½º ¿¬¼Ó¼ºÀ» È®º¸Çß½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀ» ÅëÇØ Á¦Á¶¾÷Àº Á¦¾à ¼Ó¿¡¼­µµ »ý»êÀ» À¯ÁöÇÏ°í º¯È­ÇÏ´Â ¼ö¿ä¿¡ ½Å¼ÓÇÏ°Ô ´ëÀÀÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. À¯Ç༺ ÀÌÈÄÀÇ ½Ã´ë¿¡µµ ź·Â¼º, À¯¿¬¼º, ½º¸¶Æ® Á¦Á¶ÀÇ Á߽ð¡ °è¼ÓµÇ°í ÀÖÀ¸¸ç, »ê¾÷ ±Ù´ëÈ­ÀÇ Áß¿äÇÑ ÃßÁø·ÂÀ¸·Î¼­ ¿¡Áö¿Í Ŭ¶ó¿ìµåÀÇ ÅëÇÕÀÌ °­È­µÇ°í ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ Àü¸Á

Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ ºÎ¹®Àº Á¦Á¶¾÷ü¿¡°Ô È®Àå °¡´ÉÇÑ ¸®¼Ò½º, °ß°íÇÑ µ¥ÀÌÅÍ °ü¸® ¹× °­·ÂÇÑ ºÐ¼® µµ±¸¸¦ Á¦°øÇϹǷΠ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Ŭ¶ó¿ìµå Ç÷§ÆûÀ» Ȱ¿ëÇÔÀ¸·Î½á ±â¾÷Àº »ý»ê µ¥ÀÌÅ͸¦ Áß¾Ó ÁýÁßÈ­ÇÏ°í °ø±Þ¸ÁÀÇ °¡½Ã¼ºÀ» ³ôÀ̰í Áö¸®ÀûÀ¸·Î ºÐ»êµÈ °øÀå °£ÀÇ Çù¾÷À» ÃËÁøÇÒ ¼ö ÀÖ½À´Ï´Ù. Ŭ¶ó¿ìµå ½Ã½ºÅÛÀº ´ë±Ô¸ð, È¿À²ÀûÀ¸·Î Á¤º¸¸¦ ó¸®ÇÔÀ¸·Î½á ¿¹Áö º¸Àü, µðÁöÅÐ Æ®À©, AI¸¦ Ȱ¿ëÇÑ ÀÚµ¿È­¸¦ Áö¿øÇÕ´Ï´Ù. ºñ¿ëÀÌ ¸¹ÀÌ µå´Â ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÃÖ¼ÒÈ­Çϰí À¯¿¬¼º°ú ºñ¿ë Àý°¨À» ½ÇÇöÇÕ´Ï´Ù. IoT ¿¡ÄڽýºÅÛ°úÀÇ ¿Ïº®ÇÑ ÅëÇÕ°ú ½º¸¶Æ® Á¦Á¶ ÀÌ´Ï¼ÅÆ¼ºê¿¡ ´ëÇÑ °­·ÂÇÑ Áö¿øÀ¸·Î Ŭ¶ó¿ìµå ÄÄÇ»ÆÃÀº ¼¼°è »ê¾÷ µðÁöÅÐ º¯È¯À» ÃßÁøÇÏ´Â ÁÖ¿ä ºÎ¹®À¸·Î µÎµå·¯Áö°í ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È AI ¹× ¸Ó½Å·¯´× ºÐ¾ßÀÇ CAGRÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¿¹Ãø±â°£ µ¿¾È AI¡¤¸Ó½Å·¯´× ºÐ¾ß°¡ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀº ¿¹Ãø ºÐ¼®, Áö´ÉÇü ÀÚµ¿È­ ¹× µ¿Àû ÇÁ·Î¼¼½º Á¶Á¤À» °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á Á¦Á¶¾÷À» °­È­ÇÕ´Ï´Ù. ¿¡Áö¿¡¼­ AI´Â ½Ç½Ã°£ ±â°è µ¥ÀÌÅ͸¦ Áï½Ã ºÐ¼®ÇÏ¿© ÀÇ»ç °áÁ¤À» °¡¼ÓÈ­Çϰí Ŭ¶ó¿ìµå ½Ã½ºÅÛÀº ¸Ó½Å·¯´× ¸ðµ¨À» Àû¿ëÇÏ¿© ÆÐÅÏÀ» ÆÄ¾ÇÇÏ°í °á°ú¸¦ ¿¹ÃøÇÕ´Ï´Ù. ÀÌ Á¶ÇÕÀº »ý»ê È¿À²¼ºÀ» ³ôÀÌ°í ¿À·ù¸¦ ÃÖ¼ÒÈ­ÇÏ¸ç »çÀü Ȱ¼º À¯Áöº¸¼ö¸¦ º¸ÀåÇÕ´Ï´Ù. ÀÌ ÀûÀÀ¼ºÀ» ÅëÇØ °øÀåÀº Áö¼ÓÀûÀ¸·Î ¿î¿µÀ» ÃÖÀûÈ­ÇÏ°í ºñ¿ëÀ» Àý°¨Çϸç Á¦Ç° ǰÁúÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ½º¸¶Æ® ¸Å´ºÆÑó¸µÀÌ ¼¼°èÀûÀ¸·Î °¡¼ÓÈ­µÇ°í ÀÖ´Â °¡¿îµ¥, AI¿Í ¸Ó½Å·¯´×Àº ÀÌ ½ÃÀå¿¡¼­ ¸Å¿ì Áß¿äÇÑ ¼ºÀå ¿£ÁøÀÌ µÇ°í ÀÖ½À´Ï´Ù.

ÃÖ´ë Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª

¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì´Â ±â¼úÀÇ Á¶±â µµÀÔ, ¾öû³­ ÅõÀÚ, °ß°íÇÑ »ê¾÷ ±â¹Ý¿¡ ÈûÀÔ¾î ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¹Ì±¹Àº ½º¸¶Æ® ¸Å´ºÆÑó¸µ, IoT ÅëÇÕ, µðÁöÅÐ Àüȯ ³ë·Â¿¡ ´ëÇÑ ¾öû³­ ÅõÀÚ·Î ´«¿¡ ¶ë´Ï´Ù. ÀÚµ¿Â÷, Ç×°ø¿ìÁÖ, ÀÏ·ºÆ®·Î´Ð½º µîÀÇ ¾÷°è¿¡¼­´Â ¿¡Áö ¼Ö·ç¼Ç°ú Ŭ¶ó¿ìµå ¼Ö·ç¼ÇÀ» Ȱ¿ëÇÏ¿© ¾÷¹« È¿À² °³¼±, ¿¹Áöº¸Àü, ½Ç½Ã°£ ºÐ¼®À» ½Ç½ÃÇß½À´Ï´Ù. ÁÖ¿ä ±â¼ú ±â¾÷ÀÇ Á¸Àç¿Í ÁÁÀº ±ÔÁ¦ ȯ°æÀº ÀÌ Áö¿ªÀÇ ¸®´õ½ÊÀ» ´õ¿í °­È­Çϰí ÀÖ½À´Ï´Ù. ÇöÀç´Â ºÏ¹Ì°¡ ¼±µµÇϰí ÀÖÁö¸¸, ÇâÈÄ ¼ö³â°£ ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª:

¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¼ºÀåÀº »ê¾÷ÀÇ ±Þ¼ÓÇÑ ¹ßÀü, Àδõ½ºÆ®¸® 4.0 Ç¥ÁØÀÇ µµÀÔ, 5G ³×Æ®¿öÅ©ÀÇ ¼³¸³¿¡ ÀÇÇØ ÃËÁøµË´Ï´Ù. Áß±¹, ÀϺ», Çѱ¹ µîÀÇ ±¹°¡µéÀº »ç¹°ÀÎÅͳÝ(IoT) µð¹ÙÀ̽º, ÀΰøÁö´É(AI), ½Ç½Ã°£ µ¥ÀÌÅÍ Ã³¸®¸¦ Á¦Á¶ ºÎ¹®¿¡ ÅëÇÕÇÏ´Â ¼±±¸ÀÚ°¡ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ µðÁöÅÐ Çõ½Å¿¡ ´ëÇÑ ÀÌ´Ï¼ÅÆ¼ºê´Â À¯¸®ÇÑ Á¤ºÎ Á¤Ã¥°ú ±â¼ú ÀÎÇÁ¶ó¿¡ ´ëÇÑ ¾öû³­ ÅõÀÚ¿Í ÇÔ²² Á¦Á¶ ºÐ¾ß¿¡¼­ ¿¡Áö ÄÄÇ»ÆÃ°ú Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ ±â¼úÀÇ È®´ë¸¦ Áö¿øÇÏ´Â »ýŰ踦 Çü¼ºÇϰí ÀÖ½À´Ï´Ù.

¹«·á »ç¿ëÀÚ Á¤ÀÇ ¼­ºñ½º:

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½ ¹«·á ¸ÂÃã¼³Á¤ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

Á¦4Àå Porter's Five Forces ºÐ¼®

Á¦5Àå ¼¼°èÀÇ Á¦Á¶¾÷¿ë ¿¡Áö ¹× Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ ½ÃÀå : Àü°³ ¸ðµ¨º°

Á¦6Àå ¼¼°èÀÇ Á¦Á¶¾÷¿ë ¿¡Áö ¹× Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ ½ÃÀå : Á¶Á÷ ±Ô¸ðº°

Á¦7Àå ¼¼°èÀÇ Á¦Á¶¾÷¿ë ¿¡Áö ¹× Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ ½ÃÀå : ±â¼úº°

Á¦8Àå ¼¼°èÀÇ Á¦Á¶¾÷¿ë ¿¡Áö ¹× Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ ½ÃÀå : ¿ëµµº°

Á¦9Àå ¼¼°èÀÇ Á¦Á¶¾÷¿ë ¿¡Áö ¹× Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

Á¦10Àå ¼¼°èÀÇ Á¦Á¶¾÷¿ë ¿¡Áö ¹× Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ ½ÃÀå : Áö¿ªº°

Á¦11Àå ÁÖ¿ä ¹ßÀü

Á¦12Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

JHS
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

According to Stratistics MRC, the Global Edge & Cloud Computing in Manufacturing Market is accounted for $49.60 billion in 2025 and is expected to reach $223.58 billion by 2032 growing at a CAGR of 24.0% during the forecast period. In manufacturing, edge and cloud computing are driving digital transformation by improving data management and operational efficiency. Edge computing processes information near production equipment, ensuring rapid responses and minimal latency for critical operations. In contrast, cloud computing offers expansive storage, centralized analytics, and AI applications that enhance visibility across facilities and supply chains. Together, they create a hybrid model that supports predictive maintenance, automated quality checks, and optimized workflows. This synergy not only reduces downtime but also enables manufacturers to adapt quickly to market demands. By adopting edge-cloud solutions, industries gain scalability, resilience, and innovation, solidifying competitiveness in the smart manufacturing landscape.

According to a peer-reviewed study published in IJFMR, edge computing has reduced data processing latency in manufacturing environments from 150-200 milliseconds to just 15 milliseconds, enabling real-time quality control and predictive maintenance.

Market Dynamics:

Driver:

Rising demand for predictive maintenance

Predictive maintenance has emerged as a key growth driver for edge and cloud computing in manufacturing. Traditional reactive or scheduled maintenance often leads to high costs and downtime. Edge computing enables real-time anomaly detection by processing data near the equipment, while cloud platforms analyze large datasets to build predictive models and forecast failures. This dual system helps prevent unexpected breakdowns, extend machine life, and cut maintenance expenses. It ensures higher asset reliability, enhanced worker safety, and uninterrupted production flow. By minimizing risks and optimizing performance, predictive maintenance supported by edge-cloud integration is becoming indispensable for modern factories seeking efficiency gains.

Restraint:

High implementation costs

One of the biggest challenges to edge and cloud computing adoption in manufacturing is the significant cost of implementation. Setting up edge hardware, sensors, and connected devices, along with integrating cloud services, demands heavy capital spending. For small and mid-sized manufacturers, this expense often becomes prohibitive, restricting adoption to larger players. Further financial pressure arises from staff training, system upgrades, data protection measures, and long-term maintenance expenses. The uncertainty surrounding ROI makes companies cautious about embracing such large-scale transformation. As a result, high upfront costs and associated expenditures continue to limit the expansion of edge-cloud solutions across the manufacturing sector.

Opportunity:

Expansion of predictive analytics & AI

Predictive analytics and AI adoption in manufacturing are unlocking major opportunities for edge and cloud computing solutions. Edge systems process live data close to machinery, quickly detecting irregularities, while cloud-based AI platforms analyze patterns to deliver accurate forecasts. This approach enhances predictive maintenance, improves product quality, and streamlines supply chain performance. Manufacturers benefit from reduced downtime, extended machine life, and higher overall efficiency. Moreover, combining AI with edge-cloud networks allows adaptive production systems that respond instantly to changing conditions. As factories increasingly rely on intelligent automation, the convergence of AI, predictive analytics, and edge-cloud computing is set to fuel significant market expansion.

Threat:

Shortage of skilled workforce

A critical threat to the adoption of edge and cloud computing in manufacturing is the lack of skilled talent. Deploying and sustaining these technologies requires advanced knowledge of data analytics, cyber security, IoT devices, and cloud integration. Yet, manufacturers often face difficulties in finding professionals with such expertise. Without skilled staff, systems may not be fully optimized, leaving them prone to failures or security issues. This gap increases reliance on costly external vendors, which smaller firms may not afford. The workforce shortage creates barriers to scaling smart manufacturing initiatives, hindering the widespread use of edge-cloud technologies and slowing market development worldwide.

Covid-19 Impact:

The outbreak of COVID-19 significantly influenced the Edge and Cloud Computing in Manufacturing Market, reshaping operational priorities worldwide. Factory closures, workforce shortages, and supply chain disruptions increased reliance on digital solutions. Edge computing became vital for real-time machine monitoring and process automation with limited staff presence, while cloud platforms ensured business continuity through remote collaboration, centralized analytics, and virtual management of operations. These technologies allowed manufacturers to sustain production during restrictions and adapt quickly to changing demands. In the post-pandemic era, the emphasis on resilient, flexible, and smart manufacturing has persisted, reinforcing edge-cloud integration as a key driver of industrial modernization.

The cloud computing segment is expected to be the largest during the forecast period

The cloud computing segment is expected to account for the largest market share during the forecast period as it offers manufacturer's scalable resources, robust data management, and powerful analytical tools. By leveraging cloud platforms, companies can centralize production data, enhance supply chain visibility, and foster collaboration across geographically dispersed plants. Cloud systems support predictive maintenance, digital twins, and AI-powered automation by processing information efficiently at scale. They minimize dependence on costly infrastructure, delivering flexibility and cost savings. With seamless integration into IoT ecosystems and strong support for smart manufacturing initiatives, cloud computing stands out as the leading segment, driving industrial digital transformation globally.

The AI and machine learning segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the AI and machine learning segment is predicted to witness the highest growth rate. These technologies enhance manufacturing by enabling predictive analytics, intelligent automation, and dynamic process adjustments. At the edge, AI accelerates decision-making by analyzing real-time machine data instantly, while cloud systems apply machine learning models to identify patterns and forecast outcomes. This combination boosts production efficiency, minimizes errors, and ensures proactive maintenance. Their adaptability allows factories to continuously optimize operations, reduce costs, and improve product quality. As smart manufacturing accelerates globally, AI and machine learning are becoming pivotal growth engines for this market.

Region with largest share:

During the forecast period, the North America region is expected to hold the largest market share, fueled by its early adoption of technologies, substantial investments, and a strong industrial foundation. The United States stands out with its significant investments in smart manufacturing, IoT integration, and digital transformation initiatives. Industries such as automotive, aerospace, and electronics utilize edge and cloud solutions to improve operational efficiency, predictive maintenance, and real-time analytics. The presence of major technology companies and a favorable regulatory environment further strengthen the region's leadership. While North America currently leads, the Asia-Pacific region is projected to experience the highest growth rates in the coming years.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR. This growth is fueled by swift industrial advancement, the implementation of Industry 4.0 standards, and the establishment of 5G networks. Nations such as China, Japan, and South Korea are pioneering the integration of Internet of Things (IoT) devices, artificial intelligence (AI), and real-time data processing into their manufacturing sectors. The region's commitment to digital innovation, along with favorable government policies and substantial investments in technological infrastructure, is creating a supportive ecosystem for the expansion of edge and cloud computing technologies in manufacturing.

Key players in the market

Some of the key players in Edge & Cloud Computing in Manufacturing Market include Cisco, Dell Technologies, Microsoft, Amazon Web Services (AWS), Google Cloud Platform, IBM, Hewlett Packard Enterprise (HPE), Intel, Oracle, Plex Systems, Inc., Salesforce, VMware, Alibaba Cloud, Tencent Cloud and PTC Inc.

Key Developments:

In September 2025, Google Cloud has won a new contract worth £400m ($543m) to provide a sovereign cloud capability for the UK Ministry of Defence (MoD). This project will involve delivering a secure cloud platform that will facilitate innovation while offering the MoD with enhanced data control capabilities.

In August 2025, Intel Corporation announced an agreement with the Trump Administration to support the continued expansion of American technology and manufacturing leadership. Under terms of the agreement, the United States government will make an $8.9 billion investment in Intel common stock, reflecting the confidence the Administration has in Intel to advance key national priorities and the critically important role the company plays in expanding the domestic semiconductor industry.

In January 2025, Dell Technologies announced an expanded partnership with CoreWeave, a cloud infrastructure provider specialized in compute-intensive workloads like AI. CoreWeave will start using Dell's PowerEdge XE9712 server racks sporting NVIDIA's GB200 Grace Blackwell Superchip. CoreWeave is also using Dell IR7000 racks with fully-integrated liquid cooling technology.

Deployment Models Covered:

Organization Sizes Covered:

Technologies Covered:

Applications Covered:

End Users Covered:

Regions Covered:

What our report offers:

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

Table of Contents

1 Executive Summary

2 Preface

3 Market Trend Analysis

4 Porters Five Force Analysis

5 Global Edge & Cloud Computing in Manufacturing Market, By Deployment Model

6 Global Edge & Cloud Computing in Manufacturing Market, By Organization Size

7 Global Edge & Cloud Computing in Manufacturing Market, By Technology

8 Global Edge & Cloud Computing in Manufacturing Market, By Application

9 Global Edge & Cloud Computing in Manufacturing Market, By End User

10 Global Edge & Cloud Computing in Manufacturing Market, By Geography

11 Key Developments

12 Company Profiling

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â