°Ë»ö Áõ°­ »ý¼º ½ÃÀå ¿¹Ãø(-2032³â) : ±â´Éº°, ¹èÆ÷º°, Á¶Á÷ ±Ô¸ðº°, ±â¼úº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ¼¼°è ºÐ¼®
Retrieval Augmented Generation Market Forecasts to 2032 - Global Analysis By Function, Deployment, Organisation Size, Technology, Application, End User, and By Geography
»óǰÄÚµå : 1755862
¸®¼­Ä¡»ç : Stratistics Market Research Consulting
¹ßÇàÀÏ : 2025³â 06¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 200+ Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 4,150 £Ü 5,713,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 5,250 £Ü 7,227,000
PDF (2-5 User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷Àå¿¡¼­ 5¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,350 £Ü 8,742,000
PDF & Excel (Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷ÀåÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇÕ´Ï´Ù. Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ¹× Excel ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 7,500 £Ü 10,325,000
PDF & Excel (Global Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 10ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ °Ë»ö Áõ°­ »ý¼º(RAG) ½ÃÀåÀº 2025³â¿¡ 18¾ï 1,000¸¸ ´Þ·¯¸¦ Â÷ÁöÇÏ¸ç ¿¹Ãø ±â°£ Áß CAGRÀº 51.1%·Î ¼ºÀåÇϸç, 2032³â¿¡´Â 326¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

°Ë»ö È®Àå »ý¼ºÀº »ý¼ºÇü AI¿Í ¿ÜºÎ Á¤º¸ °Ë»öÀ» °áÇÕÇÑ °í±Þ ÀÚ¿¬ ¾ð¾î ó¸® ±â¼úÀÔ´Ï´Ù. »çÀü ÈÆ·ÃµÈ Áö½Ä¿¡¸¸ ÀÇÁ¸ÇÏ´Â ±âÁ¸ ¸ðµ¨°ú ´Þ¸®, RAG´Â Ãß·ÐÇÏ´Â µ¿¾È ¿ÜºÎ ¼Ò½º¿¡¼­ °ü·Ã µ¥ÀÌÅ͸¦ µ¿ÀûÀ¸·Î °¡Á®¿Í º¸´Ù Á¤È®ÇÏ°í ¹®¸ÆÀ» °í·ÁÇÑ ÀÀ´äÀ» »ý¼ºÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Á¢±Ù ¹æ½ÄÀº º¹ÀâÇÑ Äõ¸®¸¦ ó¸®Çϰí, »ç½ÇÀÇ Á¤È®¼ºÀ» Çâ»ó½Ã۸ç, °í°´ Áö¿ø, ¹ý·ü Á¶»ç, ÀÇ·á, ÄÁÅÙÃ÷ »ý¼º µîÀÇ µµ¸ÞÀο¡ ÀûÀÀÇÒ ¼ö ÀÖ´Â ¸ðµ¨ÀÇ ´É·ÂÀ» Çâ»ó½Ãŵ´Ï´Ù.

ÀÚ¿¬ ¾ð¾î ó¸®(NLP)ÀÇ ¹ßÀü

ÀÚ¿¬ ¾ð¾î ó¸®(NLP)ÀÇ ±Þ¼ÓÇÑ ¹ßÀüÀº °Ë»ö È®Àå ¼¼´ë(RAG) ½Ã½ºÅÛÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¾ð¾î ¸ðµ¨ÀÇ °³¼±À¸·Î Á¤º¸ °Ë»ö ¹× ÀÀ´ä Á¤È®µµ°¡ Çâ»óµÇ°í, AI ±â¹Ý ¿ëµµÀÌ º¸´Ù ¹®¸ÆÀ» ÀνÄÇϰí, NLP¿Í RAGÀÇ ÅëÇÕÀ¸·Î º¸´Ù Á¤È®Çϰí Àΰ£°ú °°Àº ´ëÈ­°¡ °¡´ÉÇØÁ® ÀÇ»ç°áÁ¤ÀÇ È¿À²¼ºÀÌ Çâ»óµË´Ï´Ù. ¶ÇÇÑ °í°´ Áö¿ø ¹× ÄÁÅÙÃ÷ Á¦ÀÛ¿¡ AIÀÇ È°¿ëÀÌ Áõ°¡Çϰí ÀÖÀ¸¸ç, °Ë»ö È®Àå ±â¼úÀÇ ¹üÀ§°¡ È®´ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿ä¼ÒµéÀÌ Á¾ÇÕÀûÀ¸·Î ´Ù¾çÇÑ »ê¾÷¿¡¼­ RAG ¼ö¿ä Áõ°¡¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.

½Ã½ºÅÛ ÅëÇÕÀÇ º¹À⼺

°Ë»ö ¸ÞÄ¿´ÏÁò°ú »ý¼º ¸ðµ¨À» ¿øÈ°ÇÏ°Ô °áÇÕÇÏ·Á¸é °­·ÂÇÑ ¿ÀÄɽºÆ®·¹À̼Ç, ³ôÀº ÄÄÇ»ÆÃ ¸®¼Ò½º, ½ÅÁßÇÑ ´ë±â ½Ã°£ °ü¸®°¡ ÇÊ¿äÇÑ °æ¿ì°¡ ¸¹½À´Ï´Ù. ¶ÇÇÑ ·¹°Å½Ã ½Ã½ºÅÛ°ú ÃֽŠAPI °£ÀÇ È£È¯¼ºÀ» º¸ÀåÇÏ´Â °ÍÀº ÅëÇÕ¿¡ Ãß°¡ÀûÀÎ ¸¶ÂûÀ» ¾ß±âÇÒ ¼ö ÀÖ½À´Ï´Ù. º¸¾È, µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ±ÔÁ¦, È®À强 ¶ÇÇÑ ¹®Á¦¸¦ º¹ÀâÇÏ°Ô ¸¸µì´Ï´Ù. Á¶Á÷ÀÌ RAG ¼Ö·ç¼ÇÀ» µµ¸ÞÀκ° ¿ä±¸»çÇ׿¡ ¸ÂÃß·Á°í Çϸé Ä¿½ºÅ͸¶ÀÌ¡ÀÌ º¹ÀâÇØÁö°í, ¼÷·ÃµÈ ÀηÂÀÌ ÇÊ¿äÇϸç, µµÀÔ ºñ¿ëÀÌ Áõ°¡ÇÏ°Ô µË´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀº ÀüüÀûÀ¸·Î äÅÃÀ» Áö¿¬½Ã۰í, ½ÇÁ¦ ȯ°æ¿¡¼­ RAG ½Ã½ºÅÛÀÇ ¿£µåÅõ¿£µå ±¸ÇöÀ» º¹ÀâÇÏ°Ô ¸¸µì´Ï´Ù.

ÄÁÅØ½ºÆ®¸¦ ÀνÄÇÏ´Â AI¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡

±â¾÷Àº º¹ÀâÇÑ »ç¿ëÀÚ Äõ¸®¸¦ ÀÌÇØÇϰí ÀûÀýÇÑ ÀÀ´äÀ» »ý¼ºÇÏ´Â AI ¸ðµ¨À» ¿ì¼±½ÃÇϰí ÀÖÀ¸¸ç, RAG´Â ½Ç½Ã°£ °Ë»ö ¸ÞÄ¿´ÏÁòÀ» »ý¼º ¸ðµ¨°ú ÅëÇÕÇÏ¿© ¹®¸Æ ÀÌÇØ¸¦ °­È­ÇÏ°í ´ëÈ­Çü AIÀÇ Á¤È®µµ¸¦ Çâ»ó½Ãŵ´Ï´Ù. ÇコÄɾî, ±ÝÀ¶, °í°´ ¼­ºñ½º µîÀÇ ¾÷°è¿¡¼­´Â »ç¿ëÀÚ °æÇèÀ» °³ÀÎÈ­Çϱâ À§ÇØ RAG°¡ žÀçµÈ ¿ëµµ¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¸ÖƼ¸ð´Þ AIÀÇ ¹ßÀüÀº ÅØ½ºÆ® ±â¹Ý ÀÎÅÍÆäÀ̽º¸¦ ³Ñ¾î °Ë»öÀ» Ȱ¿ëÇÑ ¼Ö·ç¼ÇÀÇ ¹üÀ§¸¦ È®ÀåÇϰí ÀÖÀ¸¸ç, AI ±â¹Ý Ä¿¹Â´ÏÄÉÀÌ¼Ç ÅøÀÇ Áö¼ÓÀûÀÎ ¹ßÀüÀº RAG µµÀÔ¿¡ Å« ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù.

Ç¥ÁØÈ­ ºÎÁ·

AI ¸ðµ¨ÀÇ ¾ÆÅ°ÅØÃ³¿Í °Ë»ö ±â¼úÀÌ ´Ù¾çÇϹǷΠ¼­·Î ´Ù¸¥ ¿ëµµ °£ÀÇ ¼º´É¿¡ Àϰü¼ºÀÌ ¾ø½À´Ï´Ù. ¾÷°è Àü¹ÝÀÇ º¥Ä¡¸¶Å©°¡ Á¸ÀçÇÏÁö ¾Ê±â ¶§¹®¿¡ ±â¾÷ÀÌ ¼Ö·ç¼ÇÀ» È¿°úÀûÀ¸·Î Æò°¡ÇÏ°í ºñ±³ÇÏ´Â °ÍÀÌ ¾î·Æ½À´Ï´Ù. ¶ÇÇÑ °íÀ¯ÇÑ °Ë»ö ÇÁ·¹ÀÓ¿öÅ©´Â »óÈ£¿î¿ë¼ºÀ» Á¦ÇÑÇϰí, Å©·Î½º Ç÷§Æû ¹èÆ÷¸¦ ¹æÇØÇÕ´Ï´Ù. µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ±ÔÁ¦´Â Áö¿ªº°·Î »óÀÌÇÑ ÄÄÇöóÀ̾𽺠¿ä±¸»çÇ×À¸·Î ÀÎÇØ Ç¥ÁØÈ­ ³ë·ÂÀ» ´õ¿í º¹ÀâÇÏ°Ô ¸¸µé°í ÀÖ½À´Ï´Ù. ÅëÀÏµÈ °¡À̵å¶óÀÎÀÌ ¾ø´Ù¸é ±â¾÷Àº RAG ½Ã½ºÅÛÀ» ÃÖÀûÈ­ÇÏ°í º¸±ÞÇÏ´Â µ¥ ¾î·Á¿òÀ» °ÞÀ» ¼ö ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ

COVID-19 ÆÒµ¥¹ÍÀ¸·Î ÀÎÇØ RAG(°Ë»ö È®Àå »ý¼º)¸¦ Æ÷ÇÔÇÑ AI ±â¹Ý °Ë»ö ½Ã½ºÅÛ µµÀÔÀÌ °¡¼ÓÈ­µÇ¾ú½À´Ï´Ù. ºÀ¼â ¹× ¿ø°Ý ±Ù¹« ½Ã³ª¸®¿À·Î ÀÎÇØ ÄÁÅÙÃ÷ ÀÚµ¿ »ý¼º ¹× Áö´ÉÇü Á¤º¸ °Ë»ö¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çß½À´Ï´Ù. ±â¾÷Àº ¾÷¹« ¿¬¼Ó¼ºÀ» À¯ÁöÇÏ°í µðÁöÅÐ »óÈ£ ÀÛ¿ëÀ» °­È­Çϱâ À§ÇØ AI¸¦ Ȱ¿ëÇÑ ¼Ö·ç¼Ç¿¡ ´«À» µ¹·È½À´Ï´Ù. ÆÒµ¥¹Í ÀÌÈÄ ÀÚµ¿È­¿Í µðÁöÅÐ Àüȯ¿¡ ´ëÇÑ °­Á¶´Â °Ë»ö È®Àå ¸ðµ¨¿¡ ´ëÇÑ ÅõÀÚ¸¦ Áö¼ÓÀûÀ¸·Î ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ Áß ¹®¼­ °Ë»ö ºÎ¹®ÀÌ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

È¿À²ÀûÀÎ ¹®¼­ ó¸® ¹× Áö½Ä °ü¸®ÀÇ Çʿ伺À¸·Î ÀÎÇØ ¹®¼­ °Ë»ö ºÐ¾ß´Â ¿¹Ãø ±â°£ Áß °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, RAG ½Ã½ºÅÛÀº ¹®¸ÆÀ» °í·ÁÇÑ °Ë»ö°ú »ý¼ºµÈ ÀÀ´äÀ» ÅëÇÕÇÏ¿© °Ë»ö Á¤È®µµ¸¦ Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ¹ý·ü, ÀÇ·á, ±ÝÀ¶ ºÐ¾ßÀÇ Á¶Á÷µéÀº ÀÇ»ç°áÁ¤À» °³¼±Çϱâ À§ÇØ °Ë»ö ÀÚµ¿È­¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ÄÁÅÙÃ÷¿¡ ´ëÇÑ Á¢±ÙÀ» È¿À²È­ÇÏ´Â AIÀÇ Á߿伺ÀÌ ³ô¾ÆÁö¸é¼­ ¹®¼­ °Ë»öÀº ½ÃÀåÀÇ ÁÖ¿ä ºÎ¹®À¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ Áß ÇコÄÉ¾î ºÎ¹®ÀÌ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¿¹Ãø ±â°£ Áß ÇコÄÉ¾î ºÎ¹®ÀÌ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ´Â AI ±â¹Ý °Ë»ö ¼Ö·ç¼ÇÀÌ È¯ÀÚ µ¥ÀÌÅÍ °ü¸®, ÀÓ»ó ¿¬±¸, Áø´Ü Áö¿ø¿¡ Çõ¸íÀ» ÀÏÀ¸Å°°í Àֱ⠶§¹®ÀÔ´Ï´Ù. ÀÇ·á±â°üÀº RAG ½Ã½ºÅÛÀ» Ȱ¿ëÇÏ¿© Á¤º¸ Á¢±Ù¼ºÀ» °³¼±Çϰí ÀÇ·á ÀÇ»ç°áÁ¤À» °­È­Çϱâ À§ÇØ RAG ½Ã½ºÅÛÀ» Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. ÇコÄÉ¾î µ¥ÀÌÅÍÀÇ º¹À⼺ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó È¿À²ÀûÀÎ °Ë»ö ¸ÞÄ¿´ÏÁòÀÌ ÇÊ¿äÇØÁ³°í, ÀÌ´Â RAGÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ±ÔÁ¦ Áؼö¿Í ÀÇ·á ÄÁÅÙÃ÷ °Ë»öÀÇ Á¤È®¼º¿¡ ´ëÇÑ Çʿ伺ÀÌ ½ÃÀå ¼ºÀåÀ» ´õ¿í °¡¼ÓÈ­½Ã۰í ÀÖ½À´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª

¿¹Ãø ±â°£ Áß ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ´Â ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼­ AI µµÀÔÀÌ ºü¸£°Ô È®´ëµÇ¸é¼­ ÀÌ Áö¿ªÀÇ ¼ºÀåÀ» ÃËÁøÇϰí Àֱ⠶§¹®ÀÔ´Ï´Ù. Áß±¹, Àεµ, ÀϺ» µîÀÇ ±¹°¡µéÀº AI ±â¹Ý Á¤º¸ °Ë»ö ½Ã½ºÅÛ¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖÀ¸¸ç, AI ¿¬±¸¿Í µðÁöÅÐ ÀüȯÀ» Áö¿øÇϱâ À§ÇÑ Á¤ºÎÀÇ ±¸»óÀÌ ½ÃÀå È®´ë¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ±â¾÷ÀÇ ºñÁ¤Çü µ¥ÀÌÅÍ Áõ°¡·Î ÀÎÇØ °í±Þ °Ë»ö ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª

¿¹Ãø ±â°£ Áß ºÏ¹Ì°¡ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ´Â ÀÌ Áö¿ªÀÇ °­·ÂÇÑ AI ¿¬±¸ ȯ°æ°ú ÷´Ü ±â¼ú ÀÎÇÁ¶ó°¡ ºü¸¥ µµÀÔÀ» Áö¿øÇϰí Àֱ⠶§¹®ÀÔ´Ï´Ù. ÁÖ¿ä ±â¾÷Àº µ¥ÀÌÅÍ Ã³¸® ÃÖÀûÈ­ ¹× Á¤º¸ °Ë»ö ÀÚµ¿È­¸¦ À§ÇØ AI ±â¹Ý °Ë»ö ¼Ö·ç¼ÇÀ» µµÀÔÇϰí ÀÖ½À´Ï´Ù. ±ÝÀ¶, ÇコÄÉ¾î µî »ê¾÷ Àü¹Ý¿¡ °ÉÃÄ AI ±â¹Ý °Ë»ö ¿ëµµ¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, ÀÌ´Â ½ÃÀå È®´ë¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.

¹«·á Ä¿½ºÅ͸¶ÀÌ¡ ¼­ºñ½º

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´¿¡°Ô´Â ´ÙÀ½°ú °°Àº ¹«·á Ä¿½ºÅ͸¶ÀÌ¡ ¿É¼Ç Áß Çϳª¸¦ Á¦°ø

¸ñÂ÷

Á¦1Àå °³¿ä

Á¦2Àå ¼­¹®

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

Á¦4Àå Porter's Five Forces ºÐ¼®

Á¦5Àå ¼¼°èÀÇ °Ë»ö Áõ°­ »ý¼º ½ÃÀå : ±â´Éº°

Á¦6Àå ¼¼°èÀÇ °Ë»ö Áõ°­ »ý¼º ½ÃÀå : ¹èÆ÷º°

Á¦7Àå ¼¼°èÀÇ °Ë»ö Áõ°­ »ý¼º ½ÃÀå : Á¶Á÷ ±Ô¸ðº°

Á¦8Àå ¼¼°èÀÇ °Ë»ö Áõ°­ »ý¼º ½ÃÀå : ±â¼úº°

Á¦9Àå ¼¼°èÀÇ °Ë»ö Áõ°­ »ý¼º ½ÃÀå : ¿ëµµº°

Á¦10Àå ¼¼°èÀÇ °Ë»ö Áõ°­ »ý¼º ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

Á¦11Àå ¼¼°èÀÇ °Ë»ö Áõ°­ »ý¼º ½ÃÀå : Áö¿ªº°

Á¦12Àå ÁÖ¿ä ¹ßÀü

Á¦13Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

According to Stratistics MRC, the Global Retrieval Augmented Generation Market is accounted for $1.81 billion in 2025 and is expected to reach $32.60 billion by 2032 growing at a CAGR of 51.1% during the forecast period. Retrieval Augmented Generation (RAG) is an advanced natural language processing technique that combines generative AI with external information retrieval. Unlike traditional models that rely solely on pre-trained knowledge, RAG dynamically retrieves relevant data from external sources during inference to generate more accurate, context-aware responses. This approach enhances the model's ability to handle complex queries, improve factual accuracy, and adapt across domains like customer support, legal research, healthcare, and content generation.

Market Dynamics:

Driver:

Advances in natural language processing (NLP)

The rapid advancements in natural language processing (NLP) are driving the adoption of Retrieval Augmented Generation (RAG) systems. Improved language models enhance information retrieval and response accuracy, making AI-driven applications more context-aware. The integration of NLP with RAG enables more precise and human-like interactions, improving decision-making efficiency. Additionally, the rising use of AI in customer support and content creation is expanding the scope of retrieval-augmented technologies. These factors collectively contribute to the growing demand for RAG in various industries.

Restraint:

Complexity in system integration

Seamlessly combining retrieval mechanisms with generative models often requires robust orchestration, high computational resources, and careful latency management. Moreover, ensuring compatibility across legacy systems and modern APIs introduces further integration friction. Security, data privacy regulations, and scalability also compound the challenges. As organizations attempt to tailor RAG solutions to domain-specific needs, customization increases complexity, demanding skilled labour and increasing deployment costs. These factors collectively slow adoption and complicate end-to-end implementation of RAG systems in real-world settings.

Opportunity:

Growing demand for context-aware AI

Businesses are prioritizing AI models that understand complex user queries and generate relevant responses. RAG enhances contextual comprehension by integrating real-time retrieval mechanisms with generative models, improving conversational AI accuracy. Industries such as healthcare, finance, and customer service are investing in RAG-powered applications to personalize user experiences. Additionally, advancements in multimodal AI are expanding the scope of retrieval-augmented solutions beyond text-based interfaces. The continued evolution of AI-driven communication tools presents a significant opportunity for RAG adoption.

Threat:

Lack of standardization

Varying AI model architectures and retrieval techniques create inconsistencies in performance across different applications. The absence of industry-wide benchmarks makes it difficult for businesses to evaluate and compare solutions effectively. Additionally, proprietary retrieval frameworks limit interoperability, hindering cross-platform deployment. Data privacy regulations further complicate standardization efforts, as compliance requirements differ across regions. Without unified guidelines, organizations may face difficulties in optimizing RAG systems for widespread adoption.

Covid-19 Impact

The COVID-19 pandemic accelerated the adoption of AI-powered retrieval systems, including Retrieval Augmented Generation (RAG). Lockdowns and remote work scenarios increased demand for automated content generation and intelligent information retrieval. Businesses turned to AI-driven solutions to maintain operational continuity and enhance digital interactions. The post-pandemic emphasis on automation and digital transformation continues to drive investments in retrieval-augmented models.

The document retrieval segment is expected to be the largest during the forecast period

The document retrieval segment is expected to account for the largest market share during the forecast period, due to the need for efficient document processing and knowledge management is driving adoption across industries. RAG systems enhance search accuracy by integrating context-aware retrieval with generative responses. Organizations in legal, healthcare, and finance sectors are investing in retrieval automation to improve decision-making. The rising importance of AI in streamlining content access positions document retrieval as a leading segment in the market.

The healthcare segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the healthcare segment is predicted to witness the highest growth rate, due to AI-powered retrieval solutions are revolutionizing patient data management, clinical research, and diagnostic assistance. Healthcare institutions are leveraging RAG systems to improve information accessibility and enhance medical decision-making. The increasing complexity of healthcare data necessitates efficient retrieval mechanisms, boosting RAG adoption. Regulatory compliance and the need for precision in medical content retrieval further accelerate market growth.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share due to the rapid expansion of AI adoption across various industries is fuelling regional growth. Countries like China, India, and Japan are heavily investing in AI-driven information retrieval systems. Government initiatives supporting AI research and digital transformation contribute to market expansion. The growing volume of unstructured data in enterprises is increasing demand for advanced retrieval technologies.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, owing to the region's strong AI research landscape and advanced technological infrastructure support rapid adoption. Major enterprises are implementing AI-powered retrieval solutions to optimize data processing and automate information retrieval. Increasing investments in AI-driven search applications across industries such as finance and healthcare contribute to market expansion.

Key players in the market

Some of the key players profiled in the Retrieval Augmented Generation Market include Amazon Web Services, Microsoft, Google, IBM, OpenAI, Hugging Face, Meta AI, Anthropic, Cohere, Databricks, Clarifai, Informatica, NVIDIA, Vectara, Contextual AI, Nuclia, Skim AI, and Geniusee.

Key Developments:

In June 2025, NVIDIA announced a collaboration with Novo Nordisk to accelerate drug discovery efforts through innovative AI use cases. The work supports Novo Nordisk's agreement with DCAI to use the Gefion sovereign AI supercomputer.

In February 2025, Amazon Web Services (AWS) announced Ocelot, a new quantum computing chip that can reduce the costs of implementing quantum error correction by up to 90%, compared to current approaches. Developed by the team at the AWS Center for Quantum Computing at the California Institute of Technology, Ocelot represents a breakthrough in the pursuit to build fault-tolerant quantum computers.

Functions Covered:

Deployments Covered:

Organization Sizes Covered:

Technologies Covered:

Applications Covered:

End Users Covered:

Regions Covered:

What our report offers:

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

Table of Contents

1 Executive Summary

2 Preface

3 Market Trend Analysis

4 Porters Five Force Analysis

5 Global Retrieval Augmented Generation Market, By Function

6 Global Retrieval Augmented Generation Market, By Deployment

7 Global Retrieval Augmented Generation Market, By Organisation Size

8 Global Retrieval Augmented Generation Market, By Technology

9 Global Retrieval Augmented Generation Market, By Application

10 Global Retrieval Augmented Generation Market, By End User

11 Global Retrieval Augmented Generation Market, By Geography

12 Key Developments

13 Company Profiling

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â