Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ AI ÀÎÇÁ¶ó ½ÃÀåÀº 2025³â 402¾ï ´Þ·¯·Î Æò°¡µÇ¾ú°í, 2032³â¿¡´Â 2,633¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ¿¹Ãø ±â°£ µ¿¾È CAGRÀº 30.8%¸¦ ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù.
AI ÀÎÇÁ¶ó´Â ÀΰøÁö´É ¾ÖÇø®ÄÉÀ̼ÇÀ» °³¹ß, ¹èÆ÷ ¹× È®ÀåÇÏ´Â µ¥ ÇÊ¿äÇÑ Çϵå¿þ¾î ¹× ¼ÒÇÁÆ®¿þ¾î ½Ã½ºÅÛÀ» Æ÷ÇÔÇÕ´Ï´Ù. ¿©±â¿¡´Â ´ë±Ô¸ð µ¥ÀÌÅÍ ¼¼Æ® 󸮸¦ À§ÇÑ °·ÂÇÑ GPU, TPU, °í¼º´É ÄÄÇ»ÆÃ Ŭ·¯½ºÅÍ¿Í ÇÔ²² ¸ðµ¨ ÇнÀ ¹× ¹èÆ÷¸¦ À§ÇÑ Å¬¶ó¿ìµå Ç÷§Æû ¹× TensorFlow ¶Ç´Â PyTorch¿Í °°Àº ÇÁ·¹ÀÓ¿öÅ©°¡ Æ÷ÇԵ˴ϴÙ. µ¥ÀÌÅÍ ½ºÅ丮Áö, ³×Æ®¿öÅ·, °ü¸® µµ±¸¸¦ Áö¿øÇÏ¿© È¿À²ÀûÀÌ°í ¾ÈÀüÇϸç È®Àå °¡´ÉÇÑ AI ¿î¿µÀ» º¸ÀåÇÔÀ¸·Î½á ³ó¾÷, ÀÇ·á, ±ÝÀ¶ µîÀÇ »ê¾÷¿¡¼ Çõ½Å°ú ÀÇ»ç°áÁ¤À» À§ÇØ AI¸¦ Ȱ¿ëÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù.
CloudsceneÀÇ ÃÖ±Ù µ¥ÀÌÅÍ¿¡ µû¸£¸é ¹Ì±¹¿¡´Â 2,701°³, µ¶ÀÏ¿¡´Â 487°³, ¿µ±¹¿¡´Â 456°³, Áß±¹¿¡´Â 443°³ÀÇ µ¥ÀÌÅͼ¾ÅͰ¡ ÀÖ¾î AI ÀÎÇÁ¶ó È®ÀåÀ» À§ÇÑ ÅºÅºÇÑ ±â¹ÝÀ» ¸¶·ÃÇϰí ÀÖ½À´Ï´Ù.
AI ĨÀÇ ÁøÈ
GPU¿Í TPU¿Í °°Àº AI Àü¿ë ĨÀÇ ¹ßÀüÀ¸·Î ó¸® ´É·ÂÀÌ Å©°Ô Çâ»óµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ä¨Àº ´õ ºü¸¥ µ¥ÀÌÅÍ Ã³¸®¸¦ °¡´ÉÇÏ°Ô ÇÏ¿© »ê¾÷ Àü¹Ý¿¡ °ÉÃÄ ½Ç½Ã°£ AI ¾ÖÇø®ÄÉÀ̼ÇÀ» ÃËÁøÇÕ´Ï´Ù. Ĩ Á¦Á¶¾÷üµéÀº ¿¡³ÊÁö È¿À²ÀÌ ³ô°í ¼º´ÉÀÌ ¶Ù¾î³ ¼³°è¸¦ ÅëÇØ AI ¿öÅ©·Îµå¸¦ ÃÖÀûÈÇÏ´Â Çõ½ÅÀ» °ÅµìÇϰí ÀÖ½À´Ï´Ù. Çâ»óµÈ Ĩ ¾ÆÅ°ÅØÃ³´Â µö ·¯´× ¸ðµ¨À» °ÈÇÏ¿© Áö¿¬ ½Ã°£À» ÃÖ¼ÒÈÇÏ¸é¼ º¹ÀâÇÑ ¾Ë°í¸®ÁòÀ» ½ÇÇàÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÕ´Ï´Ù. AI Ĩ¼ÂÀÇ Áö¼ÓÀûÀÎ ¾÷±×·¹À̵å´Â AI ÀÎÇÁ¶óÀÇ È®À强À» À§ÇÑ ÁÖ¿ä ¿øµ¿·ÂÀÔ´Ï´Ù.
µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ¹× º¸¾È¿¡ ´ëÇÑ ¿ì·Á
AI ½Ã½ºÅÛ ³»¿¡¼ ¹æ´ëÇÑ ¾çÀÇ ¹Î°¨ÇÑ µ¥ÀÌÅ͸¦ ó¸®Çϸé Áß¿äÇÑ °³ÀÎÁ¤º¸ º¸È£ ¹®Á¦°¡ ¹ß»ýÇÕ´Ï´Ù. ºÎÀûÀýÇÑ º¸¾È ÇÁ·ÎÅäÄÝÀº ÀÎÇÁ¶ó¸¦ µ¥ÀÌÅÍ À¯Ãâ ¹× ¿À¿ë¿¡ ³ëÃâ½Ãų ¼ö ÀÖ½À´Ï´Ù. GDPR ¹× CCPA¿Í °°Àº ±Û·Î¹ú µ¥ÀÌÅÍ ±ÔÁ¤À» ÁؼöÇÏ´Â °ÍÀº ±â¾÷¿¡°Ô ¿©ÀüÈ÷ ¾î·Á¿î °úÁ¦ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ¿ì·Á´Â ƯÈ÷ ÀÇ·á ¹× ±ÝÀ¶°ú °°Àº ºÐ¾ß¿¡¼ AI ±â¼ú µµÀÔÀ» Á¦ÇÑÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¾÷Àº »ç¿ëÀÚ ½Å·Ú¿Í ±ÔÁ¦ Áؼö¸¦ º¸ÀåÇϱâ À§ÇØ º¸¾È ÇÁ·¹ÀÓ¿öÅ©¿¡ ¸¹Àº ÅõÀÚ¸¦ ÇØ¾ß ÇÕ´Ï´Ù.
ÀÏ¹Ý AI¿Í ´ë±Ô¸ð ¾ð¾î ¸ðµ¨ ±ÞÁõ
GPT ¹× DALL-E¿Í °°Àº »ý¼ºÇü AI ¸ðµ¨ÀÇ ÀαⰡ ³ô¾ÆÁö¸é¼ °·ÂÇÑ ¹é¿£µå ÀÎÇÁ¶ó¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ±â¾÷µéÀº ¸ðµ¨ °³¹ßÀ» Áö¿øÇϱâ À§ÇØ ´ë±Ô¸ð ÇнÀ ȯ°æ¿¡ Á¡Á¡ ´õ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. ¸ðµ¨ Ã߷аú Æ©´×À» ´ë±Ô¸ð·Î °ü¸®Çϱâ À§ÇØ Ã³¸®·®ÀÌ ³ôÀº ÄÄÇ»ÆÃ¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â AI¿¡ ÃÖÀûÈµÈ ¼¹ö, ½ºÅ丮Áö ¹× ³×Æ®¿öÅ· ±¸¼º ¿ä¼Ò¸¦ Á¦°øÇÏ´Â °ø±Þ¾÷ü¿¡°Ô ±âȸ¸¦ âÃâÇÕ´Ï´Ù. AI ÀÎÇÁ¶ó Á¦°ø¾÷ü´Â º¹ÀâÇÑ ÄÜÅÙÃ÷ »ý¼º ¹× ÀÚµ¿È¸¦ ÇÊ¿ä·Î ÇÏ´Â »õ·Î¿î ºÐ¾ß¿¡ ÁøÃâÇÒ ¼ö ÀÖ½À´Ï´Ù.
ºÐ»êÇü AI ½Ã½ºÅÛ¿¡¼ »çÀ̹ö º¸¾È Ãë¾àÁ¡
ºÐ»êÇü AI ÇÁ·¹ÀÓ¿öÅ©´Â ºÐ»êµÈ µ¥ÀÌÅÍ È帧°ú ¿£µåÆ÷ÀÎÆ®·Î ÀÎÇØ ¾ÇÀÇÀûÀÎ °ø°Ý¿¡ ´õ ¸¹ÀÌ ³ëÃâµË´Ï´Ù. ¿§Áö µð¹ÙÀ̽ºÀÇ ºÎÀûÀýÇÑ ¾ÏÈ£È ¹× ¾×¼¼½º Á¦¾î ¸ÞÄ¿´ÏÁòÀº »çÀ̹ö À§Çù¿¡ ´ëÇÑ Ãë¾à¼ºÀ» ³ôÀÔ´Ï´Ù. Àû´ëÀû °ø°ÝÀº AI ¸ðµ¨À» Á¶ÀÛÇÏ¿© Ãâ·Â°ú ÀÇ»ç °áÁ¤À» ¼Õ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. AI ³×Æ®¿öÅ©ÀÇ ±Ô¸ð°¡ Ä¿Áü¿¡ µû¶ó ½Ç½Ã°£ À§Çù ¸ð´ÏÅ͸µÀÌ Á¡Á¡ ´õ º¹ÀâÇØÁö°í ÀÖ½À´Ï´Ù. Áö¼ÓÀûÀÎ º¸¾È ÇãÁ¡Àº AI ¹èÆ÷ ¹× ½Ã½ºÅÛ ¹«°á¼º¿¡ ´ëÇÑ ½Å·Ú¸¦ ÀúÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.
ÆÒµ¥¹ÍÀ¸·Î ÀÎÇØ óÀ½¿¡´Â Çϵå¿þ¾î °ø±Þ¸ÁÀÌ Áß´ÜµÇ¾î ¿©·¯ ºÎ¹®¿¡¼ AI ÀÎÇÁ¶ó Ãâ½Ã°¡ Áö¿¬µÇ¾ú½À´Ï´Ù. ±×·¯³ª ÀÌ À§±â´Â µðÁöÅÐ Æ®·£½ºÆ÷¸ÞÀ̼ÇÀ» °¡¼ÓÈÇÏ¿© AI ±â¹Ý ¿î¿µ¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÃËÁøÇß½À´Ï´Ù. ¿ø°Ý ±Ù¹«¿Í °¡»ó ¼ºñ½º·Î ÀÎÇØ Ŭ¶ó¿ìµå ±â¹Ý AI ÀÎÇÁ¶ó¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çß½À´Ï´Ù. ¶ÇÇÑ Äڷγª19´Â ÀÇ·á Áø´Ü ¹× Á¢ÃËÀÚ ÃßÀûÀ» À§ÇÑ AI ¾ÖÇø®ÄÉÀ̼ÇÀÇ ¹ßÀüÀ» Ã˹ßÇÏ¿© ÀÎÇÁ¶ó¿¡ ´ëÇÑ Çʿ伺À» ºÎ°¢½ÃÄ×½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¸Ó½Å·¯´× ºÎ¹®ÀÌ °¡Àå Ŭ Àü¸Á
¸Ó½Å·¯´× ºÎ¹®Àº ±ÝÀ¶, ¼Ò¸Å, ÀÇ·á¿Í °°Àº »ê¾÷ Àü¹Ý¿¡ °ÉÃÄ ±¤¹üÀ§ÇÏ°Ô Àû¿ëµÇ±â ¶§¹®¿¡ ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Áöµµ ¹× ºñÁöµµ ÇнÀ ±â¼úÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ML »ç¿ë »ç·Ê°¡ È®´ëµÇ°í ÀÖ½À´Ï´Ù. ¼ºñ½ºÇü ¸Ó½Å·¯´×(MLaaS)À» Á¦°øÇϴ Ŭ¶ó¿ìµå Ç÷§ÆûÀº Á¶Á÷ÀÇ ¹èÆ÷¸¦ °£¼ÒÈÇϰí ÀÖ½À´Ï´Ù. ±â¾÷µéÀº ÆÐÅÏ ÀνÄ, Ãßõ ½Ã½ºÅÛ, ÀÚµ¿È¸¦ À§ÇØ MLÀ» Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. ML ¸ðµ¨ÀÇ È®À强°ú ºñ¿ë È¿À²¼ºÀ¸·Î ÀÎÇØ ÀÌ ºÎ¹®ÀÌ Áö¹èÀûÀÎ À§Ä¡¸¦ Â÷ÁöÇϰí ÀÖ½À´Ï´Ù.
Ãß·Ð ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ Àü¸Á
¿¹Ãø ±â°£ µ¿¾È Ãß·Ð ºÎ¹®Àº °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµÇ¸ç, Ãß·Ð ¿£ÁøÀº Áö¿¬ ½Ã°£ÀÌ ÂªÀº ½ÇÁ¦ ½Ã³ª¸®¿À¿¡¼ ÇнÀµÈ ¸ðµ¨À» ¹èÆ÷ÇÏ´Â µ¥ ÇʼöÀûÀÎ ¿ä¼Ò°¡ µÇ°í ÀÖ½À´Ï´Ù. ¿¡Áö ¹× ÀÓº£µðµå ½Ã½ºÅÛ¿¡¼ ºü¸£°í ¿¡³ÊÁö È¿À²ÀûÀÎ Ã߷п¡ ´ëÇÑ Çʿ伺ÀÌ ¼ºÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. Çϵå¿þ¾î °¡¼Ó±âÀÇ ±â¼ú ¹ßÀüÀ¸·Î ÀÌ ºÎ¹®ÀÇ ¿ª·®ÀÌ °ÈµÇ°í ÀÖ½À´Ï´Ù. °¡ÀüÁ¦Ç°°ú ÀÚÀ² ÁÖÇà Â÷·®¿¡¼ AI ±â¹Ý ¾ÖÇø®ÄÉÀ̼ÇÀÇ È®»êÀÌ ÀÌ·¯ÇÑ Ãß¼¼¸¦ µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. ´Ù¾çÇÑ È¯°æ¿¡¼ ÃÖÀûÈµÈ Ã߷п¡ ´ëÇÑ ¼ö¿ä°¡ ³ôÀº ¼ºÀåÀ» °ßÀÎÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾ç Áö¿ªÀº ½º¸¶Æ® ½ÃƼ ³ë·Â°ú µðÁöÅÐ Àüȯ¿¡ ´ëÇÑ ¸·´ëÇÑ ÅõÀÚ·Î ÀÎÇØ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Áß±¹, ÀϺ», Çѱ¹°ú °°Àº ±¹°¡¿¡¼´Â °ø°ø ¹× ¹Î°£ ºÎ¹® Àü¹Ý¿¡ °ÉÃÄ AI ±â¼úÀ» Àû±ØÀûÀ¸·Î µµÀÔÇϰí ÀÖ½À´Ï´Ù. Á¤ºÎ ÁÖµµÀÇ Çõ½Å ÇÁ·Î±×·¥°ú ÀÚ±Ý Áö¿øÀº AI ÀÎÇÁ¶ó °³¹ßÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÁÖ¿ä ¹ÝµµÃ¼ Á¦Á¶ ÇãºêÀÇ Á¸Àç´Â ÀÌ Áö¿ªÀÇ ¼ºÀåÀ» ´õ¿í µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¿£ÅÍÇÁ¶óÀÌÁî Ŭ¶ó¿ìµåÀÇ ºü¸¥ µµÀÔÀÌ ½ÃÀå ȯ°æÀ» °³¼±Çϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì Áö¿ªÀº ÷´Ü AI ±â¼úÀÇ Á¶±â äÅÃÀ¸·Î ÀÎÇØ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÁÖ¿ä ±â¼ú ´ë±â¾÷°ú AI ¿¬±¸ ±â°üÀÇ Á¸Àç´Â Çõ½ÅÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. AI ÀÎÇÁ¶ó ±¸¼º ¿ä¼Ò¿¡ ´ëÇÑ ³ôÀº R&D ÅõÀÚ°¡ ½ÃÀå ħÅõ¸¦ °¡¼ÓÈÇϰí ÀÖ½À´Ï´Ù. ÇÙ½É »ê¾÷¿¡¼ AI ÅëÇÕÀ» Áö¿øÇÏ´Â ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©µµ ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ±â¾÷ Àü¹Ý¿¡¼ AI ±â¹Ý ÀÚµ¿È¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼ ½ÃÀå È®´ë°¡ ´õ¿í °¡¼Óȵǰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global AI Infrastructure Market is accounted for $40.2 billion in 2025 and is expected to reach $263.3 billion by 2032 growing at a CAGR of 30.8% during the forecast period. AI Infrastructure encompasses the hardware and software systems required to develop, deploy, and scale artificial intelligence applications. This includes powerful GPUs, TPUs, and high-performance computing clusters for processing large datasets, alongside cloud platforms and frameworks like TensorFlow or PyTorch for model training and deployment. It supports data storage, networking, and management tools to ensure efficient, secure, and scalable AI operations, enabling industries like agriculture, healthcare, and finance to leverage AI for innovation and decision-making.
According to Cloudscene's recent data, there are 2,701 data centers in the United States, 487 in Germany, 456 in the United Kingdom, and 443 in China, creating a robust foundation for AI infrastructure expansion.
Advancements in AI chips
The evolution of AI-specific chips, such as GPUs and TPUs, is significantly enhancing processing capabilities. These chips allow for faster data processing, facilitating real-time AI applications across industries. Chipmakers are increasingly innovating with energy-efficient and high-performance designs, optimizing AI workloads. Enhanced chip architectures are empowering deep learning models, enabling complex algorithm executions with minimal latency. The continuous upgrade in AI chipsets is a major enabler for the scalability of AI infrastructure.
Data privacy & security concerns
The handling of vast volumes of sensitive data within AI systems raises critical privacy issues. Inadequate security protocols can expose infrastructure to data breaches and misuse. Compliance with global data regulations, such as GDPR and CCPA, remains a challenge for enterprises. These concerns can limit the adoption of AI technologies, particularly in sectors like healthcare and finance. Companies must invest heavily in secure frameworks to ensure user trust and regulatory compliance.
Surge in generative AI and large language models
The growing popularity of generative AI models like GPT and DALL*E is driving demand for powerful backend infrastructure. Enterprises are increasingly investing in large-scale training environments to support model development. There is a rising need for high-throughput computing to manage model inference and tuning at scale. This trend creates opportunities for vendors offering AI-optimized servers, storage, and networking components. AI infrastructure providers can tap into new verticals requiring complex content generation and automation.
Cybersecurity vulnerabilities in distributed AI systems
Decentralized AI frameworks are more exposed to malicious attacks due to dispersed data flows and endpoints. Inadequate encryption and access control mechanisms in edge devices increase susceptibility to cyber threats. Adversarial attacks can manipulate AI models, compromising their outputs and decision-making. The growing scale of AI networks makes real-time threat monitoring increasingly complex. Persistent security loopholes can hinder trust in AI deployment and system integrity.
The pandemic initially disrupted hardware supply chains, delaying AI infrastructure rollouts across sectors. However, the crisis accelerated digital transformation, spurring investments in AI-enabled operations. Remote work and virtual services led to increased demand for cloud-based AI infrastructure. COVID-19 also triggered advancements in AI applications for healthcare diagnostics and contact tracing, highlighting infrastructure needs.
The machine learning segment is expected to be the largest during the forecast period
The machine learning segment is expected to account for the largest market share during the forecast period due to its widespread applicability across industries like finance, retail, and healthcare. Increasing adoption of supervised and unsupervised learning techniques is expanding ML use cases. Cloud platforms offering ML-as-a-Service (MLaaS) are simplifying deployment for organizations. Enterprises are leveraging ML for pattern recognition, recommendation systems, and automation. The scalability and cost-effectiveness of ML models make this segment dominant.
The inference segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the inference segment is predicted to witness the highest growth rate, inference engines are becoming vital for deploying trained models in real-world scenarios with low latency. The need for fast and energy-efficient inference in edge and embedded systems is driving growth. Technological advancements in hardware accelerators are boosting the segment's capabilities. The proliferation of AI-powered applications in consumer electronics and autonomous vehicles supports this trend. The demand for optimized inference across diverse environments is expected to fuel high growth.
During the forecast period, the Asia Pacific region is expected to hold the largest market share due to massive investments in smart city initiatives and digital transformation. Countries like China, Japan, and South Korea are actively deploying AI technologies across public and private sectors. Government-led innovation programs and funding are boosting AI infrastructure development. The presence of major semiconductor manufacturing hubs further supports the region's growth. Additionally, rapid enterprise cloud adoption is enhancing the market landscape.
Over the forecast period, the North America region is anticipated to exhibit the highest CAGR owing to its early adoption of advanced AI technologies. The presence of major tech giants and AI research institutions is fostering innovation. High R&D investments in AI infrastructure components are accelerating market penetration. Regulatory frameworks supporting AI integration in critical industries are also contributing to growth. The increasing focus on AI-driven automation across enterprises further amplifies market expansion.
Key players in the market
Some of the key players in AI Infrastructure Market include Advanced Micro Devices, Inc, Amazon Web Services, Cadence Design Systems, Cisco, Dell, Google, Graphcore, Gyrfalcon Technology, Hewlett Packard Enterprise Development LP, IBM, Imagination Technologies, Intel, Micron Technology, Microsoft and NVIDIA.
In March 2025, NVIDIA unveiled the DGX H200 AI Supercomputer, a high-performance infrastructure solution optimized for large-scale generative AI model training with enhanced energy efficiency.
In March 2025, Intel launched the Xeon 7 Series AI Accelerator, a next-generation processor with integrated AI cores for edge and data center applications, improving performance for real-time AI analytics.
In February 2025, Amazon Web Services announced the AWS Graviton4 Processor, a new AI-optimized chip designed for cost-effective, high-throughput inference workloads in cloud-based AI infrastructure.