AI ÀÎÇÁ¶ó ½ÃÀå : ½ÃÀå Á¡À¯À² ºÐ¼®, »ê¾÷ µ¿Çâ ¹× Åë°è, ¼ºÀå ¿¹Ãø(2025-2030³â)
AI Infrastructure - Market Share Analysis, Industry Trends & Statistics, Growth Forecasts (2025 - 2030)
»óǰÄÚµå
:
1689962
¸®¼Ä¡»ç
:
Mordor Intelligence Pvt Ltd
¹ßÇàÀÏ
:
2025³â 03¿ù
ÆäÀÌÁö Á¤º¸
:
¿µ¹®
¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
¤± Add-on °¡´É: °í°´ÀÇ ¿äû¿¡ µû¶ó ÀÏÁ¤ÇÑ ¹üÀ§ ³»¿¡¼ CustomizationÀÌ °¡´ÉÇÕ´Ï´Ù. ÀÚ¼¼ÇÑ »çÇ×Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.
¤± º¸°í¼¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼Û±âÀÏÀº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.
AI ÀÎÇÁ¶ó ½ÃÀå ±Ô¸ð´Â 2025³â¿¡ 822¾ï 3,000¸¸ ´Þ·¯·Î ÃßÁ¤µÇ°í, ¿¹Ãø ±â°£ 2025³âºÎÅÍ 2030³â±îÁö CAGR 20.12%·Î ¼ºÀåÇÒ Àü¸ÁÀ̸ç, 2030³â¿¡´Â 2,056¾ï 5,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
AI ÀÎÇÁ¶ó ½ÃÀå Çõ½Å ¹× È¿À²È ÃËÁø
ÁÖ¿ä ÇÏÀ̶óÀÌÆ®
- °í¼º´É ÄÄÇ»ÆÃ µ¥ÀÌÅͼ¾ÅÍ ¼ö¿ä ±ÞÁõ : AI ÀÎÇÁ¶ó ½ÃÀåÀº °í¼º´É ÄÄÇ»ÆÃ(HPC) µ¥ÀÌÅͼ¾ÅÍÀÇ AI Çϵå¿þ¾î ¼ö¿ä Áõ°¡¿¡ °ßÀεǾî ȹ±âÀûÀÎ ¼ºÀåÀ» ÀÌ·ç°í ÀÖ½À´Ï´Ù. ±â¾÷Àº ÀΰøÁö´ÉÀÇ º¯È °¡´É¼ºÀ» ÀνÄÇÏ°í ´Ù¾çÇÑ »ê¾÷¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
- NvidiaÀÇ BlueField-3 DPU : ¼¼°è ÃÖÃÊÀÇ 400GbE µ¥ÀÌÅÍ ÇÁ·Î¼¼½Ì À¯´Ö(DPU)ÀÎ ÀÌ ±â¼úÀº ±âÁ¸ DPUº¸´Ù 10¹è ºü¸£¸ç AI Çϵå¿þ¾îÀÇ »ó´çÇÑ Áøº¸¸¦ µÞ¹ÞħÇÕ´Ï´Ù.
- ±¸±Û Ŭ¶ó¿ìµå¿Í ÀÎÅÚ Çù¾÷ : ÀÌ·¯ÇÑ ±â¼ú ¼±µµÀÚµéÀº µ¥ÀÌÅͼ¾ÅÍ¿¡¼ AI ±â´É, º¸¾È ¹× »ý»ê¼ºÀ» °ÈÇϱâ À§ÇØ ¼³°èµÈ ĨÀ» °øµ¿ °³¹ßÇÏ¿© Àü·«Àû ÆÄÆ®³Ê½Ê °æÇâÀ» º¸¿´½À´Ï´Ù.
- AMDÀÇ MI300X ½Ã¸®Áî : ¾îµå¹ê½ºµå ¸¶ÀÌÅ©·Î µð¹ÙÀ̽º´Â MI300X Ĩ ½Ã¸®Á ¹ßÇ¥ÇÏ¿© ÃÖ´ë 800¾ï °³ÀÇ ÆÄ¶ó¹ÌÅ͸¦ °¡Áø »ý¼ºÇü AI ¸ðµ¨À» ½ÇÇàÇÒ ¼ö ÀÖ°Ô µÇ¾î AI ¸ðµ¨ÀÇ º¹ÀâȰ¡ ÁøÇàµÇ°í ÀÖÀ½À» ÀÔÁõÇß½À´Ï´Ù.
- ¼ºÀåÀ» °¡¼ÓÇÏ´Â IIoT¿Í ÀÚµ¿È ±â¼ú : »ê¾÷¿ë »ç¹° ÀÎÅͳÝ(IIoT)°ú ÀÚµ¿È ±â¼úÀÇ ÅëÇÕÀº AI ÀÎÇÁ¶ó ½ÃÀåÀ» Å©°Ô ¹Ð¾î ¿Ã¸®°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Çõ½ÅÀº È¿À²¼ºÀ» ³ôÀ̰í ÇÁ·Î¼¼½º¸¦ ÃÖÀûÈÇÏ¸ç °¡Ä¡ ÀÖ´Â µ¥ÀÌÅ͸¦ »ý¼ºÇÕ´Ï´Ù.
- AFCOM 2021ÀÇ Á¶»ç °á°ú : Âü°¡ ±â¾÷ÀÇ 40% ÀÌ»óÀÌ 2024³â±îÁö µ¥ÀÌÅͼ¾ÅÍ ¸ð´ÏÅ͸µ ¹× À¯Áöº¸¼ö¿¡ ·Îº¸Æ½½º¿Í ÀÚµ¿È¸¦ µµÀÔÇÒ ¿¹Á¤À̸ç, ÀÚµ¿ÈÀÇ ±Þ°ÝÇÑ Áõ°¡¸¦ ½Ã»çÇϰí ÀÖ½À´Ï´Ù.
- ¾îµå¹êÅØ ¹× ¾×Ƽ¸®Æ¼ ÅëÇÕ : ÀÌ È¸»çµéÀº ±â°èÀÇ ¿¹ÈÄ Áø´Ü ¹× ÇコÄɾ À§ÇÑ AI ±â¹Ý ¼Ö·ç¼ÇÀ» ¹ßÇ¥ÇÏ¿© ½Ç½Ã°£À¸·Î ±â°èÀÇ »óÅ ¸ð´ÏÅ͸µÀ» °¡´ÉÇÏ°Ô Çß½À´Ï´Ù.
- TD SYNNEXÀÇ Data-IoTSolv : ÀÌ ¼Ö·ç¼Ç Á¦Ç°±ºÀº µ¥ÀÌÅÍ ºÐ¼® ¹× IoT¸¦ Ȱ¿ëÇÏ´Â µµ±¸¸¦ ÆÄÆ®³Ê¿¡°Ô Á¦°øÇϸç, AI¸¦ Ȱ¿ëÇÑ IoT ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¸¦ º¸¿©ÁÝ´Ï´Ù.
- Çõ½ÅÀ» ÃßÁøÇÏ´Â ¸Ó½Å·¯´× ¹× µö·¯´× : ¸Ó½Å ·¯´× ¹× µö·¯´× ±â¼úÀº AI ÀÎÇÁ¶ó ¼ºÀåÀÇ Áß¿äÇÑ ¿øµ¿·ÂÀ¸·Î ±â¾÷ÀÌ ¾öû³ µ¥ÀÌÅͼ¼Æ®¿¡¼ °¡Ä¡ ÀÖ´Â ÀλçÀÌÆ®¸¦ ²ø¾î³¾ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù.
- TAZI.AIÀÇ ¼º°øÀûÀÎ ÀÚ±Ý Á¶´Þ : TAZI.AI´Â ÀÇ·á, º¸Çè ¹× Á¦¾à ºÐ¾ß¿¡¼ ¸Ó½Å·¯´× ¼Ö·ç¼ÇÀ» ¹èÆ÷Çϱâ À§ÇØ 460¸¸ ´Þ·¯¸¦ ¹Þ¾ÒÀ¸¸ç, ºÐ¾ßº° AI äÅÃÀ» °Á¶Çϰí ÀÖ½À´Ï´Ù.
- Á¤ºÎ ºÎ¹® Ȱ¿ë : ¸Ó½Å·¯´×Àº ¾÷¹« ÀÚµ¿È ¹× µ¥ÀÌÅÍ ºÐ¼®¿¡ Ȱ¿ëµÇ¸ç ÀÎÀû ÀÚ¿øÀ» ÇÙ½É ±â´ÉÀ¸·Î µ¹¸± ¼ö ÀÖ½À´Ï´Ù.
- ÆÒµ¥¹Í ½Ã´ëÀÇ °¡¼ÓÈ : ÆÒµ¥¹ÍÀº ³×Æ®¿öÅ© ÀÚµ¿È¸¦ À§ÇÑ AI ¹× MLÀÇ Ã¤ÅÃÀ» °¡¼ÓÈÇßÀ¸¸ç, ³×Æ®¿öÅ© Á¦°ø¾÷ü´Â ¿î¿µ °£¼ÒÈ¿¡¼ AIÀÇ Áß¿äÇÑ ¿ªÇÒÀ» ÀνÄÇß½À´Ï´Ù.
- ÀÚµ¿Â÷ ¹× ÇコÄÉ¾î ºÐ¾ß¿¡¼ÀÇ µ¥ÀÌÅÍ Æø¹ß : ÀÚµ¿Â÷³ª ÇコÄÉ¾î µîÀÇ ¾÷°è¿¡¼´Â µ¥ÀÌÅÍ·®ÀÌ Áõ°¡Çϰí ÀÖ¾î µ¥ÀÌÅ͸¦ È¿À²ÀûÀ¸·Î °ü¸® ¹× ºÐ¼®Çϴ ÷´Ü AI ±â¼úÀÇ Çʿ伺ÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù.
- Alpine Health SystemsÀÇ AI ±â¹Ý Ç÷§Æû : ÀÌ Ç÷§ÆûÀº º¹ÀâÇÑ º´¸®ÇРȯÀÚÀÇ Åð¿ø °úÁ¤À» ´Ü¼øÈÇϰí ÀÇ·á °ü¸®¿¡¼ AIÀÇ ÀáÀç·ÂÀ» º¸¿©ÁÝ´Ï´Ù.
- Intangles LabÀÇ EV¿ë ¾Úºñ¾ðÆ® ÀÎÁö AI : ÀÌ Çõ½ÅÀº Àü±âÀÚµ¿Â÷, ƯÈ÷ »ó¿ë EV ºÐ¾ß¿¡¼ÀÇ Ç×¼Ó °Å¸® ºÒ¾È¿¡ ´ëÀÀÇÕ´Ï´Ù.
- ÇコÄÉ¾î ¿ëµµÀÇ AI : AI´Â ÀÓ»ó ÀÇ»ç°áÁ¤, Áúº´ Áø´Ü, ȯÀÚ µ¥ÀÌÅÍ °ü¸®¿¡ ´ëÇÑ ÀÌ¿ëÀÌ Áõ°¡Çϰí ÀÖ¾î ÇコÄɾ¼ ±× ¹ü¿ë¼ºÀ» ³ªÅ¸³»°í ÀÖ½À´Ï´Ù.
- ½ÃÀå »óȲ ¹× ¹Ì·¡ Àü¸Á : AI ÀÎÇÁ¶ó ½ÃÀåÀº ÃÖ÷´Ü ¼Ö·ç¼ÇÀ» Á¦°øÇÏ´Â ÇÏÀÌÅ×Å© ¼±µµ ±â¾÷, ½ÅÈï ±â¾÷, Ŭ¶ó¿ìµå Á¦°ø¾÷ü°¡ È¥ÇյǾî Áö¼ÓÀûÀÎ ¼ºÀåÀÌ ¿¹»óµË´Ï´Ù.
- Ŭ¶ó¿ìµå ºÎ¹® ¼ºÀå : AI ÀÎÇÁ¶óÀÇ Å¬¶ó¿ìµå ½ÃÀåÀº 2022³â¿¡ 161¾ï 2,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú°í, 2028³â¿¡´Â CAGR 20.22%¸¦ ¹Ý¿µÇÏ¿© 492¾ï 9,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
- ºÏ¹Ì ½ÃÀåÀÇ ¸®´õ½Ê : ºÏ¹Ì´Â 2022³â¿¡ 195¾ï 7,000¸¸ ´Þ·¯·Î AI ÀÎÇÁ¶ó ½ÃÀåÀ» ¼±µµÇÏ¿´°í, 2028³â¿¡´Â 565¾ï 9,000¸¸ ´Þ·¯¿¡ À̸¦ Àü¸ÁÀ̸ç, CAGR 19.10%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
- »õ·Î¿î ±â¼ú : ¾çÀÚ ÄÄÇ»ÆÃ, 6G Ä¿³ØÆ¼ºñƼ, °í±Þ ·Îº¿ °øÇÐ µîÀÇ Çõ½ÅÀÌ AI ÀÎÇÁ¶ó ±â´ÉÀÇ ÇѰ踦 ³ÐÇô »õ·Î¿î ¿ëµµ ¹× ÀÌ¿ë »ç·Ê¸¦ °¡´ÉÇÏ°Ô ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
AI ÀÎÇÁ¶ó ½ÃÀå µ¿Çâ
AI ÀÎÇÁ¶óÀÇ ÇÙ½É Çϵå¿þ¾î ºÎ¹®
- ½ÃÀå ±Ô¸ð ¹× ¼ºÀå : Çϵå¿þ¾î ºÎ¹®Àº AI ÀÎÇÁ¶ó ½ÃÀåÀÇ ÇÙ½ÉÀÔ´Ï´Ù. 2022³â¿¡´Â ½ÃÀå Á¡À¯À²ÀÇ 73.70%¸¦ Â÷ÁöÇØ 345¾ï 2,000¸¸ ´Þ·¯¿¡ ´ÞÇß½À´Ï´Ù. CAGR 19.19%·Î ¼ºÀåÇÏ¿© 2028³â¿¡´Â 1,002¾ï 9,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
- ÇÁ·Î¼¼¼ ÇÏÀ§ ºÎ¹® ¸®µå : ÇÁ·Î¼¼¼´Â 2022³â¿¡ 207¾ï 3,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú°í, º¸´Ù °·ÂÇÑ Ã³¸®¸¦ ÇÊ¿ä·Î ÇÏ´Â AI ¾Ë°í¸®ÁòÀÇ º¹ÀâÈ·Î ÀÎÇØ 2028³â¿¡´Â 575¾ï 6,000¸¸ ´Þ·¯¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
- ¸ÂÃãÇü Ãß¼¼ : TensorFlow¸¦ »ç¿ëÇÏ¿© ÀÏ¹Ý Ä«µå µÎ ¹èÀÇ ÇнÀ ¼Óµµ¸¦ ÀÔÁõÇÑ È¿þÀÌÀÇ Ascend 910 AI ÇÁ·Î¼¼¼Ã³·³ ±â¾÷Àº ¸ÂÃãÇü AI ĨÀ¸·Î À̵¿ÇÕ´Ï´Ù.
- ¿¡Áö ÄÄÇ»ÆÃÀÇ ¿µÇâ·Â : ¿¡Áö ÄÄÇ»ÆÃÀÇ »ó½ÂÀÌ AI ÇÁ·Î¼¼¼ °³¹ßÀ» Çü¼ºÇϰí ÀÖ½À´Ï´Ù. °¢ Á¦Á¶¾÷ü´Â ƯÈ÷ IoT ¾ÖÇø®ÄÉÀ̼ÇÀ¸·ÎºÎÅÍ »ç¿ë ÁöÁ¡¿¡¼ ½Ç½Ã°£ µ¥ÀÌÅÍ Ã³¸®¸¦ °¡´ÉÇÏ°Ô ÇÏ´Â ÇÁ·Î¼¼¼¿¡ ÁÖ·ÂÇϰí ÀÖ½À´Ï´Ù.
- ÇÏÀ̺긮µå ÇÁ·Î¼¼¼ : °¢ ȸ»ç´Â CPU¿Í GPU ¶Ç´Â NPU(Neural Processing Unit)¸¦ °áÇÕÇÑ ÇÏÀ̺긮µå AI ÇÁ·Î¼¼¼¸¦ °³¹ßÇÏ¿© ´Ù¾çÇÑ AI ¾ÖÇø®ÄÉÀ̼ÇÀÇ ¹ü¿ë¼º ¹× È¿À²¼ºÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù.
ºÏ¹Ì°¡ ÁÖ¿ä ½ÃÀå Á¡À¯À²À» Â÷Áö
Ŭ¶ó¿ìµå ºÎ¹® : AI ¹ÎÁÖÈ ±âÆøÁ¦
- ±Þ¼ÓÇÑ ¼ºÀå ±Ëµµ : 2022³â¿¡ 161¾ï 2,000¸¸ ´Þ·¯¿´´ø Ŭ¶ó¿ìµå ºÐ¾ß´Â CAGR 20.22%·Î ¼ºÀåÇÒ Àü¸ÁÀ̸ç, 2028³â¿¡´Â 492¾ï 9,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¼ºÀåÀº Àüü ½ÃÀåÀÇ CAGRÀ» ´É°¡Çϸç AI ÀÎÇÁ¶ó¿¡¼ Ŭ¶ó¿ìµå ¼Ö·ç¼ÇÀÇ Áß¿äÇÑ ¿ªÇÒÀ» º¸¿©ÁÝ´Ï´Ù.
- AI ¹ÎÁÖÈ : Ŭ¶ó¿ìµå ±â¹Ý AI ÀÎÇÁ¶ó´Â Àü°³ À庮À» ³·Ãß¾î ¸ðµç ±Ô¸ðÀÇ ±â¾÷ÀÌ AI ±â¼ú¿¡ ¾×¼¼½ºÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ÀÌ ¹ÎÁÖÈ´Â µðÁöÅÐ º¯È¯À» °¡¼ÓÈÇϰí Çõ½ÅÀ» ÃËÁøÇÕ´Ï´Ù.
- È®À强 ¹× À¯¿¬¼º : Ŭ¶ó¿ìµå Ç÷§ÆûÀº ºñ±³ÇÒ ¼ö ¾ø´Â È®À强À» Á¦°øÇϹǷΠ±â¾÷Àº µ¥ÀÌÅÍ Áý¾àÀûÀÎ ¸ðµ¨ ±³À° ¹× Ã߷аú °°Àº AI ¿öÅ©·Îµå¸¦ ½±°Ô °ü¸®ÇÒ ¼ö ÀÖ½À´Ï´Ù.
- AI-as-a-ServiceÀÇ º¸±Þ : AI-as-a-Service(AIaaS)ÀÇ »ó½ÂÀ¸·Î ±â¾÷Àº »çÀü ÈÆ·ÃµÈ ¸ðµ¨°ú µµ±¸ ¼¼Æ®¿¡ ¾×¼¼½ºÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î NvidiaÀÇ DGX Cloud´Â AI ¸ðµ¨ ±³À°À» À§ÇÑ ½´ÆÛÄÄÇ»ÆÃ ¼ºñ½º¸¦ Á¦°øÇϰí SalesforceÀÇ AI Cloud´Â ¿£ÅÍÇÁ¶óÀÌÁî Áö¿ø AI µµ±¸¸¦ Á¦°øÇÕ´Ï´Ù.
- Àü·«Àû Çù¾÷ : Google Cloud¿Í ½Ì°¡Æ÷¸£ÀÇ Smart Nation ÀÌ´Ï¼ÅÆ¼ºê¿ÍÀÇ Á¦ÈÞ¸¦ Æ÷ÇÔÇÏ¿© AI Çϵå¿þ¾î Á¦°ø¾÷ü¿Í Ŭ¶ó¿ìµå Ç÷§Æû °£ÀÇ Çù¾÷À» ÅëÇØ ºÐ¾ßº° AI Ŭ¶ó¿ìµå ¼Ö·ç¼ÇÀ» ±¸ÃàÇϰí ÀÖ½À´Ï´Ù.
- ½ÃÀå Àü¸Á : AI ÀÎÇÁ¶ó ½ÃÀåÀº Çϵå¿þ¾î¿Í Ŭ¶ó¿ìµåÀÇ µÎ ºÐ¾ß°¡ »ó½ÂÀûÀ¸·Î ¹ßÀüÇÔ¿¡ µû¶ó ¾ÕÀ¸·Îµµ ÁøÈ¸¦ °è¼ÓÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. AI ¿ëµµÀÇ º¸±Þ¿¡ µû¶ó È®Àå °¡´ÉÇÏ°í °ß°íÇÑ ÀÎÇÁ¶ó¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí AI Çϵå¿þ¾î¿Í Ŭ¶ó¿ìµå ³×ÀÌÆ¼ºê ¼Ö·ç¼Ç Àü¹®È¿¡ ¹ÚÂ÷¸¦ °¡ÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.
AI ÀÎÇÁ¶ó ¾÷°è °³¿ä
ÇÏÀÌÅ×Å© ´ë±â¾÷ÀÌ ½ÃÀåÀ» ¼±µµÇÏ´Â AI ÀÎÇÁ¶ó ½ÃÀåÀº Intel, Nvidia, IBM, Microsoft, Samsung µî ÇÏÀÌÅ×Å© ´ë±â¾÷ÀÌ µ¶Á¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¾÷µéÀº dzºÎÇÑ ÀÚ¿ø, Á¾ÇÕÀûÀÎ AI ¼Ö·ç¼Ç, ¼¼°èÀÇ µµ´Þ¹üÀ§¸¦ ÅëÇØ ½ÃÀå Á¡À¯À²ÀÌ ³ô½À´Ï´Ù.
¿£ºñµð¾ÆÀÇ DGX Ŭ¶ó¿ìµå ¼ºñ½º : ÀÌ AI ½´ÆÛÄÄÇ»ÆÃ ¼ºñ½º´Â ±â¾÷ÀÌ Ã·´Ü »ý¼ºÇü AI ¸ðµ¨À» ±³À°ÇÒ ¼ö ÀÖ°Ô ÇØÁÖ¸ç ¿£µå Åõ ¿£µå AI ÀÎÇÁ¶ó ¼Ö·ç¼ÇÀ» Á¦°øÇϴ ȸ»çÀÇ ¸®´õ½ÊÀ» º¸¿©ÁÝ´Ï´Ù.
IBM°ú MicrosoftÀÇ ÇÏÀ̺긮µå ¼Ö·ç¼Ç : ¾ç»ç´Â AI ±â´ÉÀ» ÅëÇÕÇÑ ÇÏÀ̺긮µå Ŭ¶ó¿ìµå ¼Ö·ç¼ÇÀ» °³¹ßÇÏ¿© ±â¾÷ÀÌ ´Ù¾çÇÑ È¯°æ¿¡ AI¸¦ È¿À²ÀûÀ¸·Î ¹èÆ÷ÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù.
´ë±Ô¸ð ¿¬±¸°³¹ß ÅõÀÚ : ´ë±â¾÷Àº °æÀï·ÂÀ» À¯ÁöÇϱâ À§ÇØ ¿¬±¸°³¹ß¿¡ ¸¹Àº ÅõÀÚ¸¦ ½Ç½ÃÇÏ¿© AI ±â¼úÀÇ Áøº¸ÀÇ ÃÖÀü¼±¿¡ ÀÖÀ½À» º¸ÀåÇÕ´Ï´Ù.
Çõ½Å ¹× Àü¹®È°¡ ½ÃÀå ¼º°øÀ» ÃËÁø AI ÀÎÇÁ¶ó ½ÃÀå¿¡¼ÀÇ ¼º°øÀº Áö¼ÓÀûÀÎ Çõ½Å°ú ¾÷°è °íÀ¯ÀÇ Àü¹®¼º¿¡ ´Þ·Á ÀÖ½À´Ï´Ù.
½Ã½ºÄÚÀÇ »ý¼ºÇü AI ¼Ö·ç¼Ç ½Ã½ºÄÚ´Â Á¦³×·¹ÀÌÆ¼ºê AI¸¦ Ȱ¿ëÇÑ »õ·Î¿î ³×Æ®¿öÅ©, º¸¾È, °üÃø °¡´É¼ºÀ» ¹ßÇ¥ÇÏ°í °æÀï ¿ìÀ§¸¦ È®º¸Çϱâ À§ÇÑ Çõ½ÅÀÇ Á߿伺À» °Á¶Çß½À´Ï´Ù.
Mphasis.aiÀÇ »ê¾÷ Æ÷Ä¿½º : Mphasis´Â ±âÁ¸ ±â¼ú ȯ°æ¿¡ AI ±â´ÉÀ» ÅëÇÕÇÏ°í Æ¯Á¤ ºÐ¾ßÀÇ ¾÷¹« È¿À²¼ºÀ» ÃÖÀûÈÇÏ´Â µ¥ ÁÖ·ÂÇϰí ÀÖ½À´Ï´Ù.
Àü·«Àû ÆÄÆ®³Ê½Ê : Google Ŭ¶ó¿ìµåÀÇ AI ÄÁ¼³ÆÃ ¼ºñ½º È®´ë´Â ±â¾÷ÀÌ Àü·«Àû Á¦ÈÞ¸¦ Ȱ¿ëÇÏ¿© Á¦°øÇÏ´Â ¼ºñ½º¸¦ È®ÀåÇÏ°í »õ·Î¿î ½ÃÀåÀ» °³Ã´ÇÏ´Â ¹æ¹ýÀ» º¸¿©ÁÝ´Ï´Ù.
±âŸ ÇýÅà :
- ¿¢¼¿ Çü½Ä ½ÃÀå ¿¹Ãø(ME) ½ÃÆ®
- 3°³¿ù°£ÀÇ ¾Ö³Î¸®½ºÆ® ¼Æ÷Æ®
¸ñÂ÷
Á¦1Àå ¼·Ð
- Á¶»ç ÀüÁ¦Á¶°Ç ¹× ½ÃÀå Á¤ÀÇ
- Á¶»ç ¹üÀ§
Á¦2Àå Á¶»ç ¹æ¹ý
Á¦3Àå ÁÖ¿ä ¿ä¾à
Á¦4Àå ½ÃÀå ÀλçÀÌÆ®
- ½ÃÀå °³¿ä
- ¾÷°èÀÇ ¸Å·Âµµ-Porter's Five Forces ºÐ¼®
- ¼ÒºñÀÚÀÇ Çù»ó·Â
- °ø±Þ±â¾÷ÀÇ Çù»ó·Â
- ½Å±Ô Âü°¡¾÷üÀÇ À§Çù
- ´ëüǰÀÇ À§Çù
- °æÀï ±â¾÷°£ °æÀï °ü°èÀÇ °µµ
- ½ÃÀå¿¡ ´ëÇÑ COVID-19ÀÇ ¿µÇâ
Á¦5Àå ½ÃÀå ¿ªÇÐ
- ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
- °í¼º´É ÄÄÇ»ÆÃ µ¥ÀÌÅͼ¾ÅÍÀÇ AI Çϵå¿þ¾î ¼ö¿ä Áõ°¡
- IIoT ¹× ÀÚµ¿È ±â¼úÀÇ ¿ëµµ È®´ë
- ¸Ó½Å·¯´× ¹× µö·¯´× ±â¼úÀÇ ¿ëµµ È®´ë
- ÀÚµ¿Â÷³ª ÇコÄÉ¾î µîÀÇ »ê¾÷¿¡¼ »ý¼ºµÇ´Â ¹æ´ëÇÑ µ¥ÀÌÅÍ·®
- ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
- ¾÷°è¿¡¼ ¼÷·ÃµÈ Àü¹®°¡ÀÇ ºÎÁ·
Á¦6Àå ½ÃÀå ¼¼ºÐÈ
- Á¦Ç°º°
- Àü°³º°
- ¿ÂÇÁ·¹¹Ì½º
- Ŭ¶ó¿ìµå
- ÇÏÀ̺긮µå
- ÃÖÁ¾ »ç¿ëÀÚº°
- ±â¾÷
- Á¤ºÎ±â°ü
- Ŭ¶ó¿ìµå ¼ºñ½º Á¦°ø¾÷ü
- Áö¿ªº°
- ºÏ¹Ì
- À¯·´
- ¿µ±¹
- µ¶ÀÏ
- ÇÁ¶û½º
- ÀÌÅ»¸®¾Æ
- ½ºÆäÀÎ
- ¾Æ½Ã¾Æ
- È£ÁÖ ¹× ´ºÁú·£µå
- ¶óƾ¾Æ¸Þ¸®Ä«
- Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
- »ç¿ìµð¾Æ¶óºñ¾Æ
- ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
- īŸ¸£
- À̽º¶ó¿¤
- ³²¾ÆÇÁ¸®Ä«
Á¦7Àå °æÀï ±¸µµ
- ±â¾÷ ÇÁ·ÎÆÄÀÏ
- Intel Corporation
- Nvidia Corporation
- Samsung Electronics Co. Ltd
- Micron Technology Inc.
- Sensetime Group Inc.
- IBM Corporation
- Google LLC
- Microsoft Corporation
- Amazon Web Services Inc.
- Cisco Systems Inc.
- Arm Holdings
- Dell Inc.
- Hewlett Packard Enterprise Development LP
- Advanced Micro Devices
- Synopsys Inc.
Á¦8Àå ÅõÀÚ ºÐ¼®
Á¦9Àå ½ÃÀåÀÇ ¹Ì·¡
AJY
¿µ¹® ¸ñÂ÷
The AI Infrastructure Market size is estimated at USD 82.23 billion in 2025, and is expected to reach USD 205.65 billion by 2030, at a CAGR of 20.12% during the forecast period (2025-2030).
AI Infrastructure Market: Driving Innovation and Efficiency
Key Highlights
- Demand Surge in High-Performance Computing Data Centers: The AI Infrastructure market is experiencing exponential growth, driven by increasing demand for AI hardware in high-performance computing (HPC) data centers. Businesses are realizing the transformative potential of artificial intelligence, fueling investments across various industries.
- Nvidia's BlueField-3 DPU: This technology, the world's first 400GbE data processing unit (DPU), is ten times faster than its predecessor, underscoring significant advancements in AI hardware.
- Google Cloud and Intel Collaboration: These tech giants jointly developed a chip designed to enhance AI capabilities, security, and productivity in data centers, marking a trend of strategic partnerships.
- AMD's MI300X Series: Advanced Micro Devices Inc. introduced the MI300X chip series, enabling the execution of generative AI models with up to 80 billion parameters, demonstrating the escalating complexity of AI models.
- IIoT and Automation Technologies Propelling Growth: The integration of Industrial Internet of Things (IIoT) and automation technologies is significantly boosting the AI Infrastructure market. These innovations are enhancing efficiency, optimizing processes, and generating valuable data.
- AFCOM 2021 Study Results: Over 40% of participants plan to deploy robotics and automation in data center monitoring and maintenance by 2024, signaling a sharp rise in automation.
- Advantech and Actility Integration: These companies launched an AI-based solution for machine prognostics and health management, enabling real-time machine status monitoring.
- TD SYNNEX's Data-IoTSolv: This solution suite equips partners with tools for leveraging data analytics and IoT, illustrating the growing demand for AI-powered IoT solutions.
- Machine Learning and Deep Learning Driving Innovation: Machine learning and deep learning technologies are critical drivers of AI infrastructure growth, empowering companies to extract valuable insights from massive datasets.
- TAZI.AI's Funding Success: The startup secured $4.6 million to roll out machine learning solutions in healthcare, insurance, and pharmaceuticals, highlighting sector-specific AI adoption.
- Government Sector Utilization: Machine learning is increasingly used in government sectors to automate operations and analyze data, freeing human resources for core functions.
- Pandemic-Era Acceleration: The pandemic sped up AI and ML adoption for network automation, with network providers recognizing the essential role of AI in operational streamlining.
- Data Explosion in Automotive and Healthcare Sectors: The growing volume of data in industries like automotive and healthcare is propelling the need for advanced AI technologies to manage and analyze data efficiently.
- Alpine Health Systems' AI-Powered Platform: This platform simplifies hospital discharge processes for patients with complex medical conditions, demonstrating AI's potential in healthcare management.
- Intangles Lab's Ambient Cognitive AI for EVs: This innovation addresses range anxiety in electric vehicles, particularly in the commercial EV sector.
- AI in Healthcare Applications: AI is increasingly used for clinical decision-making, disease diagnosis, and patient data management, showcasing its versatility in healthcare.
- Market Landscape and Future Outlook: The AI Infrastructure market is poised for sustained growth, led by a mix of tech giants, startups, and cloud providers delivering cutting-edge solutions.
- Cloud Segment Growth: The AI Infrastructure cloud market, valued at $16.12 billion in 2022, is forecasted to reach $49.29 billion by 2028, reflecting a CAGR of 20.22%.
- North American Market Leadership: North America led the AI infrastructure market in 2022 with $19.57 billion in value, projected to hit $56.59 billion by 2028, growing at a 19.10% CAGR.
- Emerging Technologies: Innovations like quantum computing, 6G connectivity, and advanced robotics are expected to push the boundaries of AI infrastructure capabilities, enabling new applications and use cases.
AI Infrastructure Market Trends
Hardware Segment Cornerstone of AI Infrastructure
- Market Size and Growth: The hardware segment is the backbone of the AI Infrastructure market. In 2022, it accounted for 73.70% of the market share, valued at $34.52 billion. It is expected to grow at a CAGR of 19.19%, reaching $100.29 billion by 2028.
- Processor Subsegment Leads: Processors were valued at $20.73 billion in 2022 and are forecasted to reach $57.56 billion by 2028, driven by the increasing complexity of AI algorithms requiring more powerful processing.
- Customization Trend: Companies are shifting towards custom AI chips, like Huawei's Ascend 910 AI processor, which demonstrated twice the training speed of common cards using TensorFlow.
- Edge Computing Influence: The rise of edge computing is shaping AI processor development. Manufacturers are focusing on processors that enable real-time data processing at the point of use, particularly in IoT applications.
- Hybrid Processors: Companies are developing hybrid AI processors that combine CPUs with GPUs or Neural Processing Units (NPUs), enhancing versatility and efficiency for diverse AI applications.
North America to Hold Major Market Share
Cloud Segment: Catalyst for AI Democratization
- Rapid Growth Trajectory: The cloud segment, valued at $16.12 billion in 2022, is projected to grow at a 20.22% CAGR, reaching $49.29 billion by 2028. This growth is outpacing the overall market CAGR, signaling the critical role of cloud solutions in AI infrastructure.
- Democratization of AI: Cloud-based AI infrastructure lowers adoption barriers, making AI technologies accessible to businesses of all sizes. This democratization accelerates digital transformation and fosters innovation.
- Scalability and Flexibility: Cloud platforms offer unmatched scalability, enabling enterprises to easily manage AI workloads, such as model training and inference, which are data-intensive.
- AI-as-a-Service Proliferation: The rise of AI-as-a-Service (AIaaS) allows companies to access pre-trained models and toolsets. For example, Nvidia's DGX Cloud offers supercomputing services for AI model training, while Salesforce's AI Cloud delivers enterprise-ready AI tools.
- Strategic Collaborations: Collaborations between AI hardware providers and cloud platforms, such as Google Cloud's partnership with Singapore's Smart Nation initiative, are creating sector-specific AI cloud solutions.
- Market Outlook: The AI Infrastructure market will continue to evolve with the hardware and cloud segments developing synergistically. As AI applications proliferate, the demand for scalable, robust infrastructure will grow, spurring further specialization in AI hardware and cloud-native solutions.
AI Infrastructure Industry Overview
Tech Giants Lead the Market: The AI Infrastructure market is dominated by tech giants like Intel, Nvidia, IBM, Microsoft, and Samsung. These companies hold significant market share due to their extensive resources, comprehensive AI solutions, and global reach.
Nvidia's DGX Cloud Service: This AI supercomputing service enables businesses to train sophisticated generative AI models, showcasing the company's leadership in providing end-to-end AI infrastructure solutions.
IBM and Microsoft Hybrid Solutions: Both companies have developed hybrid cloud solutions that integrate AI capabilities, empowering enterprises to deploy AI across various environments efficiently.
Substantial R&D Investments: Leading players invest heavily in research and development to maintain their competitive edge, ensuring they stay at the forefront of AI technology advancements.
Innovation and Specialization Drive Market Success: Success in the AI Infrastructure market hinges on continuous innovation and industry-specific specialization.
Cisco's Generative AI Solutions: Cisco introduced new network, security, and observability offerings powered by generative AI, highlighting the importance of innovation in gaining a competitive edge.
Mphasis.ai's Industry Focus: Mphasis focuses on integrating AI capabilities into existing technological environments, optimizing operational efficiency in specific sectors.
Strategic Partnerships: Google Cloud's expansion of AI consulting services exemplifies how companies can leverage strategic collaborations to broaden their offerings and tap into new markets.
Additional Benefits:
- The market estimate (ME) sheet in Excel format
- 3 months of analyst support
TABLE OF CONTENTS
1 INTRODUCTION
- 1.1 Study Assumptions and Market Definition
- 1.2 Scope of the Study
2 RESEARCH METHODOLOGY
3 EXECUTIVE SUMMARY
4 MARKET INSIGHTS
- 4.1 Market Overview
- 4.2 Industry Attractiveness - Porter's Five Forces Analysis
- 4.2.1 Bargaining Power of Consumers
- 4.2.2 Bargaining Power of Suppliers
- 4.2.3 Threat of New Entrants
- 4.2.4 Threat of Substitute Products
- 4.2.5 Intensity of Competitive Rivalry
- 4.3 Impact of COVID-19 on the Market
5 MARKET DYNAMICS
- 5.1 Market Drivers
- 5.1.1 Increasing Demand for AI Hardware in High-performance Computing Data Centers
- 5.1.2 Increasing Applications of IIoT and Automation Technologies
- 5.1.3 Rising Application of Machine Leaning and Deep Learning Technologies
- 5.1.4 Huge Volume of Data Being Generated in Industries such as Automotive and Healthcare
- 5.2 Market Restraints
- 5.2.1 Lack of Skilled Professionals in the Industry
6 MARKET SEGMENTATION
- 6.1 By Offering
- 6.1.1 Hardware
- 6.1.1.1 Processor
- 6.1.1.2 Storage
- 6.1.1.3 Memory
- 6.1.2 Software
- 6.2 By Deployment
- 6.2.1 On-premise
- 6.2.2 Cloud
- 6.2.3 Hybrid
- 6.3 By End User
- 6.3.1 Enterprises
- 6.3.2 Government
- 6.3.3 Cloud Service Providers
- 6.4 By Geography
- 6.4.1 North America
- 6.4.1.1 United States
- 6.4.1.2 Canada
- 6.4.2 Europe
- 6.4.2.1 United Kingdom
- 6.4.2.2 Germany
- 6.4.2.3 France
- 6.4.2.4 Italy
- 6.4.2.5 Spain
- 6.4.3 Asia
- 6.4.3.1 China
- 6.4.3.2 India
- 6.4.3.3 South Korea
- 6.4.3.4 Japan
- 6.4.4 Australia and New Zealand
- 6.4.5 Latin America
- 6.4.5.1 Brazil
- 6.4.5.2 Mexico
- 6.4.6 Middle East and Africa
- 6.4.6.1 Saudi Arabia
- 6.4.6.2 United Arab Emirates
- 6.4.6.3 Qatar
- 6.4.6.4 Israel
- 6.4.6.5 South Africa
7 COMPETITIVE LANDSCAPE
- 7.1 Company Profiles
- 7.1.1 Intel Corporation
- 7.1.2 Nvidia Corporation
- 7.1.3 Samsung Electronics Co. Ltd
- 7.1.4 Micron Technology Inc.
- 7.1.5 Sensetime Group Inc.
- 7.1.6 IBM Corporation
- 7.1.7 Google LLC
- 7.1.8 Microsoft Corporation
- 7.1.9 Amazon Web Services Inc.
- 7.1.10 Cisco Systems Inc.
- 7.1.11 Arm Holdings
- 7.1.12 Dell Inc.
- 7.1.13 Hewlett Packard Enterprise Development LP
- 7.1.14 Advanced Micro Devices
- 7.1.15 Synopsys Inc.
8 INVESTMENT ANALYSIS
9 FUTURE OF THE MARKET
°ü·ÃÀÚ·á