Stratistics MRC¿¡ µû¸£¸é, ¼¼°è ½Ã½ºÅÛ¿ÂĨ(SoC) ½ÃÀåÀº 2024³â 1,879¾ï ´Þ·¯·Î ¿¹Ãø ±â°£ µ¿¾È 10.5%ÀÇ CAGR·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 3,566¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
½Ã½ºÅÛ¿ÂĨ(SoC)Àº ÀüÀÚ ½Ã½ºÅÛÀ̳ª ÄÄÇ»ÅÍ¿¡ ÇÊ¿äÇÑ ¸ðµç ºÎǰÀ» ÇϳªÀÇ ÀÛÀº Ĩ¿¡ ÅëÇÕÇÑ ÁýÀûȸ·ÎÀÔ´Ï´Ù. ÀϹÝÀûÀ¸·Î ¸Þ¸ð¸®, ÀÔÃâ·Â Æ÷Æ®, Áß¾Óó¸®ÀåÄ¡(CPU), ±×·¡ÇÈó¸®ÀåÄ¡(GPU), ±âŸ ÁÖº¯ÀåÄ¡ µîÀÌ Æ÷ÇԵǸç, SoC´Â ¼º´É°ú Àü·Â È¿À²À» ±Ø´ëÈÇÒ ¼ö ÀÖ¾î ¿þ¾î·¯ºí ±â¼ú, ÀÓº£µðµå ½Ã½ºÅÛ, ¸ð¹ÙÀÏ ±â±â, »ç¹°ÀÎÅÍ³Ý ±â±â µîÀÇ ¾ÖÇø®ÄÉÀ̼ǿ¡ ÀûÇÕÇϸç, ¿©·¯ °³ÀÇ °³º° ºÎǰÀ¸·Î ±¸¼ºµË´Ï´Ù. SoC´Â ¿©·¯ °³ÀÇ °³º° ºÎǰÀÇ Çʿ伺À» ÁÙÀÌ°í ´õ °¡º±°í ÄÄÆÑÆ®ÇÑ ¼³°è¸¦ °¡´ÉÇϰÔÇÔÀ¸·Î½á Çö´ë ÀüÀÚÁ¦Ç°ÀÇ °³¹ß°ú Áö´ÉÇü ³×Æ®¿öÅ© ÀåºñÀÇ º¸±ÞÀ» µ½°í ÀÖ½À´Ï´Ù.
¿¡¸¯½¼ÀÇ ÃֽЏðºô¸®Æ¼ º¸°í¼¿¡ µû¸£¸é, 2023³â ¸»±îÁö Àü ¼¼°è 5G ¸ð¹ÙÀÏ °¡ÀÔÀÚ°¡ 15¾ï ¸íÀ» µ¹ÆÄÇÒ °ÍÀ¸·Î ¿¹»óµÊ¿¡ µû¶ó, °í¼Ó µ¥ÀÌÅÍ Ã³¸®¿Í È¿À²ÀûÀÎ Àü·Â °ü¸®¸¦ Áö¿øÇϴ ÷´Ü SoC ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Å©°Ô Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
°í¼º´É ÄÄÇ»ÆÃ°ú AI ÅëÇÕ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡
¼ÒºñÀÚ °¡Àü, ÇコÄɾî, ÀÚµ¿Â÷ »ê¾÷ µî ´Ù¾çÇÑ ºÐ¾ß¿¡¼ AI ±â¹Ý ¾ÖÇø®ÄÉÀ̼ÇÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ´õ ³ôÀº ó¸® ´É·ÂÀ» °®Ãá °í±Þ SoC¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÃֽŠSoC´Â ¸Ó½Å·¯´× ¿öÅ©·Îµå¸¦ ÃÖÀûÈÇÏ°í ½Ç½Ã°£ ÀÇ»ç°áÁ¤°ú È¿À²¼º Çâ»óÀ» À§ÇØ Àü¿ë AI °¡¼Ó±â, GPU, NPU¸¦ žÀçÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, µ¥ÀÌÅͼ¾ÅÍ¿Í Å¬¶ó¿ìµå ÄÄÇ»ÆÃ ÀÎÇÁ¶óÀÇ ¼ºÀå¿¡ µû¶ó ±î´Ù·Î¿î ¿¬»ê 󸮸¦ °ü¸®ÇÒ ¼ö ÀÖ´Â °í¼º´É ÇÁ·Î¼¼¼ÀÇ Çʿ伺µµ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
°íµµÀÇ Á¦Á¶ °øÁ¤À¸·Î ÀÎÇÑ °íºñ¿ë
ĨÀÇ ¼³°è, °ËÁõ, Å×½ºÆ®¿¡´Â ¸·´ëÇÑ ¿¬±¸°³¹ß(R&D) ÅõÀÚ°¡ ÇÊ¿äÇϸç, ÀÌ´Â Áß¼Ò±â¾÷ÀÇ ½ÃÀå ÁøÀÔÀ» °¡·Î¸·´Â À庮ÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ¹ÝµµÃ¼ ±â¼úÀÌ 5nm ¹× 3nm¿Í °°Àº ¹Ì¼¼ °øÁ¤ ³ëµå·Î ¹ßÀüÇÔ¿¡ µû¶ó Á¦Á¶ÀÇ º¹À⼺ÀÌ Áõ°¡Çϰí, ÀÌ¿¡ µû¶ó ¼³ºñ ÅõÀÚ ¹× ¿î¿µ ºñ¿ëÀÌ Áõ°¡ÇÕ´Ï´Ù. ¶ÇÇÑ, ±ØÀڿܼ±(EUV) ±â¼ú°ú °°Àº ÷´Ü ¸®¼Ò±×·¡ÇÇ Àåºñ°¡ ÇÊ¿äÇϱ⠶§¹®¿¡ Á¦Á¶ ºñ¿ëÀÌ ´õ¿í Áõ°¡ÇÏ¿© ½ÃÀå ¼ºÀå¿¡ °É¸²µ¹ÀÌ µÇ°í ÀÖ½À´Ï´Ù.
¿¬°á ÀåÄ¡ Áõ°¡
¼ö½Ê¾ï °³ÀÇ ³×Æ®¿öÅ© µð¹ÙÀ̽º°¡ ÀÛ°í È¿À²ÀûÀÎ ÇÁ·Î¼¼½Ì À¯´ÖÀ» ¿ä±¸ÇÔ¿¡ µû¶ó, ¿øÈ°ÇÑ Åë½Å°ú µ¥ÀÌÅÍ Ã³¸®¸¦ À§ÇØ SoC°¡ Á¡Á¡ ´õ À¯·ÂÇÑ ¼±ÅÃÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀúÀü·Â SoC´Â ÇコÄɾî, »ê¾÷ ÀÚµ¿È, ½º¸¶Æ®È¨ µîÀÇ ºÐ¾ß¿¡¼ Á¤±³ÇÑ ±â´É°ú ½Ç½Ã°£ ¸ð´ÏÅ͸µÀ» Á¦°øÇϱâ À§ÇØ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. 5G ³×Æ®¿öÅ©ÀÇ ±¸ÃàÀ¸·Î ÀÎÇØ °í¼Ó ¿¬°á°ú ÀúÁö¿¬ µ¿ÀÛÀ» Á¦°øÇÏ´Â ÅëÇÕ Ä¨ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¿ä±¸°¡ ´õ¿í Ä¿Áö°í ÀÖ½À´Ï´Ù.
Áö¼ÓµÇ´Â ¹ÝµµÃ¼ ºÎÁ·°ú ÁöÁ¤ÇÐÀû ¸®½ºÅ©
»ï¼º°ú TSMC¶ó´Â ¼Ò¼öÀÇ ´ëÇü ¹ÝµµÃ¼ Á¦Á¶¾÷ü¿¡ Å©°Ô ÀÇÁ¸Çϰí Àֱ⠶§¹®¿¡ °ø±Þ Á¦¾àÀÌ ¹ß»ýÇÏ¿© ´Ù¾çÇÑ ºÐ¾ßÀÇ SoC °¡¿ë¼º¿¡ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. ¼¼°è »ý»ê°ú À¯ÅëÀº ¹Ì±¹°ú Áß±¹ µî ÁÖ¿ä °æÁ¦±¹ °£ÀÇ ºÐÀïÀ¸·Î ÀÎÇÑ ¹«¿ª Á¦ÇÑÀÇ ¿µÇâÀ» ¹Þ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÁöÁøÀ̳ª Á¤ÀüÀ¸·Î ÀÎÇÑ »ý»ê Áߴܰú °°Àº ÀÚ¿¬ÀçÇØ´Â ¹ÝµµÃ¼ °ø±Þ¸ÁÀ» ´õ¿í ±äÀå½Ãų ¼ö ÀÖ½À´Ï´Ù.
COVID-19ÀÇ ¿µÇâ
COVID-19 »çÅ´ SoC ½ÃÀå¿¡ ´Ù¾çÇÑ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ÇÑÆíÀ¸·Î, ºÀ¼â ±â°£ µ¿¾È ¿ø°Ý ±Ù¹«, ¿Â¶óÀÎ ±³À°, µðÁöÅÐ ¿£ÅÍÅ×ÀÎ¸ÕÆ®¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÀÎÇØ °í±Þ ÄÄÇ»ÆÃ ¼Ö·ç¼Ç¿¡ ´ëÇÑ Çʿ伺ÀÌ ³ô¾ÆÁö¸é¼ SoC¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. µðÁöÅÐ Àüȯ ÀÌ´Ï¼ÅÆ¼ºêÀÇ °¡¼ÓÈ¿Í Å¬¶ó¿ìµå ¼ºñ½º µµÀÔÀº ½ÃÀå ¼ºÀåÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¹Ý¸é, ÆÒµ¥¹ÍÀ¸·Î ÀÎÇÑ °ø±Þ¸Á È¥¶õ°ú »ý»ê Áö¿¬, ºñ¿ë Áõ°¡ ¹× °³ÀÎ ¼Òºñ °¨¼Òµµ ½ÃÀå¿¡ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È µðÁöÅÐ SoC ºÐ¾ß°¡ °¡Àå Å« ¼ºÀå¼¼¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
µðÁöÅÐ SoC ºÎ¹®Àº ³ôÀº ó¸® ´É·Â°ú ´ÙÀç´Ù´ÉÇÔÀ¸·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ½º¸¶Æ®Æù, ÅÂºí¸´, ±âŸ Ä¿³ØÆ¼µå µð¹ÙÀ̽º¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó µðÁöÅÐ SoCÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, AI ¹× ¸Ó½Å·¯´× ±â´ÉÀ» µðÁöÅÐ SoC¿¡ ÅëÇÕÇÏ¿© ¼º´É°ú ±â´ÉÀ» Çâ»ó½ÃÅ´À¸·Î½á ½ÃÀå ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È Ĩ ¾ÆÅ°ÅØÃ³ ºÎ¹®ÀÌ °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ÷´Ü SoC ¼ö¿ä¸¦ ÁÖµµÇϴ Ĩ ¾ÆÅ°ÅØÃ³ ºÎ¹®ÀÌ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¾ÖÇø®ÄÉÀ̼ÇÀÇ º¹À⼺ ¹× °í¼º´ÉÈ·Î ÀÎÇØ Ĩ ¾ÆÅ°ÅØÃ³ÀÇ Áö¼ÓÀûÀÎ ÁøÈ°¡ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, RISC-V ¹× ±âŸ ¿ÀÇ ¼Ò½º ¾ÆÅ°ÅØÃ³ÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖÀ¸¸ç, À¯¿¬¼º°ú ºñ¿ë ÀÌÁ¡ÀÌ ÀÌ ½ÃÀåÀÇ ±Þ°ÝÇÑ ¼ºÀåÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº °¡Àü »ê¾÷ÀÇ È®´ë, µµ½ÃÈ, ½º¸¶Æ® ±â±â äÅà Áõ°¡·Î ÀÎÇØ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Áß±¹, ÀϺ», Çѱ¹ µîÀÇ ±¹°¡µéÀº Á¤ºÎÀÇ ³ë·Â°ú ¹ÝµµÃ¼ Á¦Á¶¿¡ ´ëÇÑ ÅõÀÚ¿¡ ÈûÀÔ¾î ÷´Ü SoC äÅÃÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. °í¼º´É ÄÄÇ»ÆÃ ¹× AI ¾ÖÇø®ÄÉÀ̼ǿ¡ ´ëÇÑ ¼ö¿ä Áõ°¡´Â ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ½ÃÀå ¼ºÀåÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ´Â ÀÚµ¿Â÷, ÇコÄɾî, Åë½Å µîÀÇ »ê¾÷¿¡¼ ÷´Ü ÄÄÇ»ÆÃ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ºÏ¹ÌÀÇ SoC äÅÃÀÌ Áõ°¡Çϰí Àֱ⠶§¹®ÀÔ´Ï´Ù. ¶ÇÇÑ, AI¿Í µðÁöÅÐ Àüȯ¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁü¿¡ µû¶ó ÀÌ Áö¿ªÀÇ ¹ÝµµÃ¼ Á¦Á¶ ´É·Â¿¡¼ ÷´Ü SoC¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ¿© ½ÃÀå ¼ºÀåÀ» ´õ¿í ÃËÁøÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
According to Stratistics MRC, the Global System-on-Chip (SoC) Market is accounted for $187.9 billion in 2024 and is expected to reach $356.6 billion by 2030 growing at a CAGR of 10.5% during the forecast period. A System-on-Chip (SoC) is a single integrated circuit that combines all of the necessary parts of an electronic system or computer into a single, small chip. These elements usually include of memory, input/output ports, a central processing unit (CPU), a graphics processing unit (GPU), and other peripherals. SoCs are perfect for applications in wearable technology, embedded systems, mobile devices, and Internet of Things devices because of their ability to maximize performance and power efficiency. SoCs aid in the development of contemporary electronics and the spread of intelligent, networked devices by reducing the need for several separate components and enabling lighter, more compact designs.
According to Ericsson's latest mobility report, 5G mobile subscriptions are expected to surpass 1.5 billion globally by the end of 2023, creating substantial demand for advanced SoC solutions that can support high-speed data processing and efficient power management.
Growing demand for high-performance computing & AI integration
The need for sophisticated SoCs with more processing capacity is being driven by the growth of AI-powered applications in a variety of sectors, including as consumer electronics, healthcare, and the automotive industry. In order to optimize machine learning workloads and provide real-time decision-making and increased efficiency, modern SoCs have specialized AI accelerators, GPUs, and NPUs. High-performance processors that can manage challenging computational processes are also becoming more and more necessary as data centers and cloud computing infrastructure growth.
High cost of advanced manufacturing processes
Chip design, verification, and testing require significant research and development (R&D) investments, which can be a barrier for smaller companies entering the market. The complexity of fabrication increases as semiconductor technology advances to smaller process nodes like 5nm and 3nm, resulting in higher capital expenditures and operational costs. Additionally, the need for sophisticated lithography equipment, such as extreme ultraviolet (EUV) technology, further adds to manufacturing expenses hampering the market growth.
Growing number of connected devices
SoCs are increasingly the go-to option for facilitating smooth communication and data processing as billions of networked devices demand small, effective processing units. Low-power SoCs are being used by sectors including healthcare, industrial automation, and smart homes to provide sophisticated features and real-time monitoring. The need for integrated chip solutions that provide high-speed connection and low-latency operations is being further fueled by the rollout of 5G networks.
Ongoing semiconductor shortage & geopolitical risks
The significant reliance on a small number of major semiconductor producers, namely Samsung and TSMC, has resulted in supply constraints that have an impact on the availability of SoCs in a variety of sectors. Global production and distribution have been impacted by trade restrictions resulting from disputes between major economies, such as the US and China. Additionally, natural calamities, such as manufacturing shutdowns due to earthquakes or power outages, can further strain semiconductor supply networks.
Covid-19 Impact
The COVID-19 pandemic has had a mixed impact on the SoC market. On one hand, the increased demand for remote work, online education, and digital entertainment during lockdowns has driven the need for advanced computing solutions, boosting the demand for SoCs. The acceleration of digital transformation initiatives and the adoption of cloud services have further supported market growth. On the other hand, the pandemic has disrupted supply chains, leading to delays in production and increased costs and reduced consumer spending have also affected the market.
The digital SoC segment is expected to be the largest during the forecast period
The digital SoC segment is expected to account for the largest market share during the forecast period due to their high processing power and versatility. The growing demand for smartphones, tablets, and other connected devices drives the adoption of digital SoCs. Additionally, the integration of AI and machine learning capabilities into digital SoCs enhances their performance and functionality contributing to the market growth.
The chip architecture segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the chip architecture segment is predicted to witness the highest growth rate driving the demand for advanced SoCs. The increasing complexity of applications and the need for higher performance levels require continuous advancements in chip architecture. The adoption of RISC-V and other open-source architectures is also gaining traction, providing flexibility and cost advantages further support the rapid growth of this market.
During the forecast period, the Asia Pacific region is expected to hold the largest market share driven by the expanding consumer electronics industry, rising urbanization, and increasing adoption of smart devices. Countries like China, Japan, and South Korea are leading the adoption of advanced SoCs, supported by government initiatives and investments in semiconductor manufacturing. The growing demand for high-performance computing and AI applications further drives market growth in Asia Pacific.
Over the forecast period, the North America region is anticipated to exhibit the highest CAGR due to the growing demand for advanced computing solutions in industries such as automotive, healthcare, and telecommunications drives the adoption of SoCs in North America. Moreover, increasing focus on AI and digital transformation also boosts the demand for advanced SoCs in the region semiconductor manufacturing capabilities further support market growth.
Key players in the market
Some of the key players in System-on-Chip (SoC) market include Apple Inc., Broadcom Inc., HiSilicon, Huawei Technologies Co. Ltd, Infineon Technologies, Intel Corporation, Magna International Inc, Maxim Integrated Products, Inc, Mediatek Inc., Microchip Technology Inc., NXP Semiconductors NV, ON Semiconductor Qualcomm Incorporated, Renesas Electronics Corporation, Samsung Electronics Co. Ltd, STMicroelectronics NV, Taiwan Semiconductor (TSMC), Texas Instruments Incorporated and Toshiba Corporation.
In February 2025, Broadcom Inc announced availability of its end-to-end PCIe Gen 6 portfolio. Broadcom has further extended its multi-generational PCIe leadership by allowing early access to its PCIe Gen 6 Interop Development Platform (IDP), which simplifies interoperability and system design.
In February 2025, Algeria Telecom and Huawei announced the official launch of the national 400G WDM project, building an all-optical premium transmission foundation covering the whole country, helping Algeria accelerate the development of its national digital economy.
In January 2025, Infineon Technologies AG announced the formation of a new business unit to drive the company's growth in the area of sensors by combining the existing Sensor and Radio Frequency (RF) businesses into one dedicated organization.