Stratistics MRC¿¡ µû¸£¸é, ¼¼°è ¹Ì¼¼ÀÜÁ¸Áúȯ ½ÃÀåÀº 2024³â 19¾ï 6,000¸¸ ´Þ·¯·Î ¿¹Ãø ±â°£ µ¿¾È ¿¬Æò±Õ 14.88%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 45¾ï 1,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¹Ì¼¼ÀÜÁ¸Áúȯ(MRD)Àº ¹éÇ÷º´, ¸²ÇÁÁ¾, ´Ù¹ß¼º °ñ¼öÁ¾°ú °°Àº Ç÷¾×¾ÏÀÇ Áß¿äÇÑ ÁöÇ¥·Î, Àǻ簡 Ä¡·áÀÇ ¼º°ø ¿©ºÎ¸¦ ÆÄ¾ÇÇϰí ÇâÈÄ Ä¡·á ¹æÄ§À» °áÁ¤ÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. À¯¼¼Æ÷ ºÐ¼®, ÁßÇÕÈ¿¼Ò ¿¬¼â ¹ÝÀÀ(PCR), Â÷¼¼´ë ¿°±â¼¿ ºÐ¼®(NGS) µîÀÇ Ã·´Ü ±â¼úÀ» ÅëÇØ MRD¸¦ ¹Î°¨ÇÏ°Ô °ËÃâÇÒ ¼ö ÀÖ°Ô µÊ¿¡ µû¶ó °³º°ÈµÈ Ä¡·áÀÇ Á¶Á¤, Á¶±â °³ÀÔ, ȯÀÚÀÇ Àå±âÀû ¿¹ÈÄ °³¼±ÀÌ °¡´ÉÇØÁ³½À´Ï´Ù. ¶ÇÇÑ, MRD´Â Ä¡·á ÈÄ È¯ÀÚ Ã¼³»¿¡ ³²¾ÆÀÖ´Â ¼Ò¼öÀÇ ¾Ï¼¼Æ÷·Î ±âÁ¸ÀÇ ¿µ»ó °Ë»ç³ª ÀÓ»ó °Ë»ç·Î´Â °ËÃâÇÒ ¼ö ¾øÁö¸¸ Àç¹ßÀÇ ¿øÀÎÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù.
BD Biosciences¿¡ µû¸£¸é, MRD´Â ±Þ¼º ¸²ÇÁ¾Æ±¸¼º ¹éÇ÷º´, ´Ù¹ß¼º °ñ¼öÁ¾ µî Ç÷¾×¾ÏÀÇ ÀÓ»ó °Ë»ç¿¡¼ Áß¿äÇÑ ¹ÙÀÌ¿À¸¶Ä¿·Î ¹Î°¨µµ¿Í ƯÀ̵µ°¡ 95% ÀÌ»ó¿¡ ´ÞÇÏ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù.
¸ÂÃãÇü ÀÇ·áÀÇ È®»ê
Á¤¹Ð Á¾¾çÇÐÀÌ ´ëÁßȵʿ¡ µû¶ó MRD °Ë»çÀÇ Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖÀ¸¸ç, MRD °Ë»ç´Â Àç¹ß À§ÇèÀÌ ³·Àº ȯÀÚ¿¡°Ô´Â Ä¡·á °µµ¸¦ ³·Ãß°í, °íÀ§Ç豺 ȯÀÚ¿¡°Ô´Â Ä¡·á·®À» ´Ã¸®´Â µî ÀÜÁ¸ º´º¯À» Á¤È®ÇÏ°Ô ÆÄ¾ÇÇÏ¿© °³Àκ° ¸ÂÃã Ä¡·á¸¦ ¼öÁ¤ÇÒ ¼ö ÀÖ°Ô ÇÕ´Ï´Ù. ÀÌ ¹æ¹ýÀº ºÒÇÊ¿äÇÑ Ä¡·á·Î ÀÎÇÑ ºÎÀÛ¿ë°ú °æÁ¦Àû ºÎ´ãÀ» ÁÙÀ̰í ȯÀÚÀÇ ¿¹Èĸ¦ °³¼±ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ MRD °Ë»ç°¡ Á¤¹ÐÀÇ·áÀÇ Æ²¿¡ ÆíÀÔµÇ¸é¼ ½ÃÀåÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù.
°í°¡ÀÇ MRD °Ë»ç
MRD °Ë»çÀÇ °íºñ¿ëÀº MRD °Ë»çÀÇ º¸±ÞÀ» °¡·Î¸·´Â ÁÖ¿ä Àå¾Ö¹° Áß ÇϳªÀÔ´Ï´Ù. µðÁöÅÐ PCR, ´ÙÁß ÆÄ¶ó¹ÌÅÍ À¯¼¼Æ÷ ºÐ¼®, Â÷¼¼´ë ¿°±â¼¿ ºÐ¼®(NGS)°ú °°Àº ÷´Ü ¹æ¹ýÀº Ư¼ö Àåºñ, ÈÇÐÁ¦Ç°, ¼÷·ÃµÈ ÀÛ¾÷ÀÚ°¡ ÇÊ¿äÇϱ⠶§¹®¿¡ ºñ¿ëÀÌ ¸¹ÀÌ µì´Ï´Ù. äÅÃÇÏ´Â ±â¼ú°ú °Ë»çÇÏ´Â ¸¶Ä¿ÀÇ ¾ç¿¡ µû¶ó ´Ù¸£Áö¸¸, MRD °Ë»ç¿¡´Â 1ȸ´ç ¼ö¹é ´Þ·¯¿¡¼ ¼öõ ´Þ·¯ÀÇ ºñ¿ëÀÌ ¼Ò¿äµË´Ï´Ù. ƯÈ÷ °³¹ßµµ»ó±¹¿¡¼´Â ÀڱݷÂÀÌ ºÎÁ·ÇÑ ÀÇ·á ½Ã½ºÅÛ¿¡¼ °æÁ¦Àû ¿©À¯°¡ ¿©ÀüÈ÷ ¹®Á¦ÀÔ´Ï´Ù. ¶ÇÇÑ, Àå±â Ä¡·á¸¦ ¹Þ°í ÀÖ´Â ¾Ï ȯÀÚÀÇ MRD¸¦ Á¤±âÀûÀ¸·Î ¸ð´ÏÅ͸µÇÏ´Â °ÍÀº ºñ¿ëÀ» ´õ¿í Áõ°¡½Ã۰í Á¢±Ù¼ºÀ» Á¦ÇÑÇÒ ¼ö ÀÖ½À´Ï´Ù.
°íÇü¾Ï¿¡¼ MRD °Ë»ç È®´ë
°íÇü¾Ï¿¡¼ ¹Ì¼¼ÀÜÁ¸Áúȯ °Ë»çÀÇ »ç¿ëÀº Ç÷¾× ¾Ç¼º Á¾¾ç¿¡¼ ³Î¸® »ç¿ëµÇ°í ÀÖÀ½¿¡µµ ºÒ±¸Çϰí Å« ¼ºÀå ±âȸ¸¦ Á¦°øÇϰí ÀÖ½À´Ï´Ù. Àü¸³¼±¾Ï, ´ëÀå¾Ï, Æó¾Ï, À¯¹æ¾Ï°ú °°Àº °íÇü¾Ï¿¡¼ MRD¸¦ È®ÀÎÇÏ´Â À¯¸ÁÇÑ ¹æ¹ýÀº ¼øÈ¯ Á¾¾ç DNA(ctDNA) ºÐ¼®ÀÔ´Ï´Ù. ±âÁ¸ÀÇ À̹Ì¡ ¹æ¹ý°ú ´Þ¸® ctDNA¸¦ ÅëÇÑ MRD °ËÃâÀº Á¾¾çÀÌ ½ºÄµ¿¡ ³ªÅ¸³ª±â Àü¿¡ ºÐÀÚÀû Àç¹ßÀ» °¨ÁöÇÏ¿© º¸´Ù Á¶±â¿¡ °³ÀÔÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ¶ÇÇÑ, Foundation Medicine, Natera, Guardant Health¿Í °°Àº ±â¾÷µéÀÇ °íÇü¾Ï MRD ºÐ¼®¿¡ ´ëÇÑ ÅõÀÚ´Â »õ·Î¿î ¾ÏÁ¾¿¡ ´ëÇÑ ¿¬±¸¿Í »ó¾÷Àû È®ÀåÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
¾ö°ÝÇÑ ±ÔÁ¦ Á¶°Ç
MRD °Ë»ç´Â ÀÓ»ó Àû¿ëÀÌ Áß¿äÇÑ ¾Ï Ä¡·á °áÁ¤¿¡ °ü¿©Çϱ⠶§¹®¿¡ ±ÔÁ¦ ´ç±¹ÀÇ ¾ö°ÝÇÑ ¸ð´ÏÅ͸µÀ» ¹Þ°í ÀÖÀ¸¸ç, À¯·´ÀǾàǰû(EMA), ¹Ì±¹ ½ÄǰÀǾ౹(FDA) ¹× ±âŸ ±¹Á¦ÀûÀÎ ÀÇ·á ´ç±¹Àº MRD ÃøÁ¤¹ýÀ» ½ÂÀÎÇϱâ Àü¿¡ öÀúÇÑ ÀÓ»óÀû °ËÁõÀ» ¿ä±¸Çϰí ÀÖ½À´Ï´Ù. ¿ä±¸ÇÕ´Ï´Ù. ±ÔÁ¦ ´ç±¹ÀÇ ½ÂÀÎ ÀýÂ÷´Â ½Ã°£°ú ºñ¿ëÀÌ ¸¹ÀÌ ¼Ò¿äµÇ±â ¶§¹®¿¡ ½ÅÁ¦Ç° Ãâ½Ã°¡ Áö¿¬µÉ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ±¹Á¦ÀûÀ¸·Î »ç¾÷À» È®ÀåÇÏ·Á´Â ±â¾÷µéÀº Áö¿ª¸¶´Ù ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©°¡ ´Ù¸£±â ¶§¹®¿¡ ÄÄÇöóÀ̾𽺠¹®Á¦¿¡ Á÷¸éÇÒ ¼ö ÀÖ½À´Ï´Ù. º¯ÈÇÏ´Â ±ÔÁ¦ ¿ä°Ç ¹ÌÁؼö·Î ÀÎÇØ Á¦Ç° ȸ¼ö, ó¹ú, ½ÃÀå ÁøÀÔ Á¦ÇÑ µîÀÌ ¹ß»ýÇÒ ¼ö ÀÖ½À´Ï´Ù.
COVID-19 »çÅ´ ¹Ì¼¼ÀÜÁ¸Áúȯ(MRD) ½ÃÀå¿¡ ´Ù¾çÇÑ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. Ãʱ⿡´Â ºÀ¼â¿Í ÀÇ·á ½Ã½ºÅÛÀÇ °úµµÇÑ ºÎ´ãÀ¸·Î ÀÎÇØ ÀÓ»ó °Ë»ç, ¾Ï °ËÁø ¹× Áø´Ü ÀýÂ÷°¡ ÁߴܵǾú°í, MRD Æò°¡¿Í °°ÀÌ ±ä±ÞÇÏÁö ¾ÊÀº ¸¹Àº ¾Ï ¸ð´ÏÅ͸µ °Ë»çÀÇ ¿ì¼± ¼øÀ§°¡ ³·¾ÆÁö°Å³ª Áö¿¬µÇ¾î °Ë»ç·®ÀÌ °¨¼ÒÇß½À´Ï´Ù. ±×·¯³ª Àü¿°º´Àº ¿ø°Ý ¸ð´ÏÅ͸µ, ¾×ü »ý°ËÀÇ Ã¤ÅÃ, ºÐ»êÇü ÀÓ»ó °Ë»çÀÇ °³¹ßÀ» °¡¼ÓÈÇÏ¿© ¼øÈ¯ Á¾¾ç DNA(ctDNA) ºÐ¼®°ú °°Àº ºñħ½ÀÀû MRD °ËÃâ ±â¼ú¿¡ ´ëÇÑ °ü½ÉÀ» °¡¼ÓÈÇß½À´Ï´Ù. ¶ÇÇÑ, COVID-19 ÀÌÈÄ Á¤¹ÐÀÇ·á¿Í Á¾¾çÇÐ ¿¬±¸¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼ MRD °Ë»çÀÇ Á߿伺ÀÌ ÀçÈ®Àεǰí ÀÖÀ¸¸ç, ÀÌ¿¡ µû¶ó »õ·Î¿î ÅõÀÚ, ±ÔÁ¦ ´ç±¹ÀÇ Áö¿ø, ½ÃÀå È®´ë¸¦ À§ÇÑ ±â¼ú °³¹ßÀÌ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È, ¾î¼¼ÀÌ Å°Æ® ¹× ½Ã¾à ºÎ¹®ÀÌ °¡Àå Å« ½ÃÀåÀ¸·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¾î¼¼ÀÌ Å°Æ® ¹× ½Ã¾à ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ ¾î¼¼ÀÌ Å°Æ® ¹× ½Ã¾àÀº À¯¼¼Æ÷ ºÐ¼®, ÁßÇÕÈ¿¼Ò ¿¬¼â ¹ÝÀÀ(PCR), Â÷¼¼´ë ¿°±â¼¿ ºÐ¼®(NGS) µî MRD °Ë»ç¿¡ ÀÚÁÖ »ç¿ëµÇ´Â ±â¹ý¿¡ ÇÊ¿äÇÕ´Ï´Ù. À̵éÀº ¹Ýº¹ÀûÀ¸·Î »ç¿ëµÇ±â ¶§¹®¿¡ º´¿ø, ¿¬±¸ ½Ã¼³, Áø´Ü ½ÇÇè½Ç¿¡¼ Áö¼ÓÀûÀ¸·Î »ç¿ëµÇ¾î ½ÃÀå¿¡¼ÀÇ Áö¼ÓÀûÀÎ ¿ìÀ§¸¦ º¸ÀåÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ ºÎ¹®ÀÇ ¼ºÀåÀº ÀÜÁ¸ ¾Ï¼¼Æ÷ÀÇ ÈçÀûÀ» °ËÃâÇϱâ À§ÇÑ °í°¨µµ ¹× ƯÀÌÀûÀÎ ½Ã¾àÀÇ °³¹ß·Î ÀÎÇØ ´õ¿í ÃËÁøµÇ¾î MRD ½ÃÀåÀÇ Áß¿äÇÑ ¼öÀÍ¿øÀÌ µÇ°í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È Ä¡·á ¹ÝÀÀ Æò°¡ ºÎ¹®ÀÌ °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È Ä¡·á ¹ÝÀÀ Æò°¡ ºÎ¹®ÀÌ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¸é¿ª¿ä¹ý, Ç¥Àû Ä¡·áÁ¦, ÈÇпä¹ý ¿ä¹ýÀÇ È¿°ú¸¦ Æò°¡Çϱâ À§ÇØ MRD °Ë»çÀÇ »ç¿ëÀÌ È®´ëµÇ°í ÀÖ´Â °ÍÀÌ ÀÌ ½ÃÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. µðÁöÅÐ PCR°ú Â÷¼¼´ë ¿°±â¼¿ ºÐ¼®(NGS)ÀÇ °³¹ß·Î ÀÓ»óÀÇ´Â MRD »óÅ¿¡ µû¶ó ½Ç½Ã°£À¸·Î Ä¡·á¹ýÀ» º¯°æÇÏ¿© ȯÀÚÀÇ ¿¹Èĸ¦ °³¼±ÇÏ°í ºÒÇÊ¿äÇÑ Ä¡·á µ¶¼ºÀ» °¨¼Ò½Ãų ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ, ÀÌ ½ÃÀåÀÇ ¼ºÀåÀº ÀÓ»ó °Ë»ç ¹× ½ÃÀå °³Ã´¿¡¼ ¹ÙÀÌ¿À¸¶Ä¿·Î¼ MRD¿¡ ´ëÇÑ ±ÔÁ¦ ´ç±¹ÀÇ ½ÂÀο¡ ÈûÀÔ¾î ¾Ï Ä¡·á ÇÁ·ÎÅäÄÝ¿¡ ´ëÇÑ ÅëÇÕÀÌ °¡¼Óȵǰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì´Â ÷´Ü ÀÇ·á ÀÎÇÁ¶ó, °íÁ¤¹Ð ÀÇ·áÀÇ ³ôÀº µµÀÔ, ¾Ï ¿¬±¸¿¡ ´ëÇÑ È°¹ßÇÑ ÅõÀÚ·Î ÀÎÇØ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ Áö¿ªÀº Ç÷¾× ¾Ç¼ºÁ¾¾ç ¹ß»ý·üÀÌ ³ô°í, ÆòÆÇÀÌ ÁÁÀº Áø´Ü ¿¬±¸¼Ò°¡ ÀÖÀ¸¸ç, MRD °ËÃâÀ» À§ÇÑ µðÁöÅÐ PCR ¹× Â÷¼¼´ë ¿°±â¼¿ ºÐ¼®(NGS)°ú °°Àº ÷´Ü ±â¼ú¿¡ ½±°Ô Á¢±ÙÇÒ ¼ö ÀÖ´Ù´Â ÀÌÁ¡ÀÌ ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¹Ì±¹ FDAÀÇ ¿ìÈ£ÀûÀÎ ±ÔÁ¦, MRD¸¦ ¹ÙÀÌ¿À¸¶Ä¿·Î »ç¿ëÇÏ´Â ÀÓ»ó °Ë»çÀÇ Áõ°¡, Á¦¾àȸ»ç¿Í Áø´Üȸ»çÀÇ ÆÄÆ®³Ê½Ê È®´ë µîÀÌ MRDÀÇ ºÏ¹Ì ½ÃÀå ¿ìÀ§¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ´Â ¾Ï ¹ßº´·ü Áõ°¡, ´õ ³ªÀº ÀÇ·á ½Ã¼³ÀÇ °³¹ß, ÃÖ÷´Ü Áø´Ü µµ±¸ÀÇ »ç¿ë Áõ°¡, Áß±¹, Àεµ, ÀϺ» µîÀÇ ±¹°¡¿¡¼ Á¤¹Ð ÀÇ·á ¹× Á¾¾çÇÐ ¿¬±¸¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí Àֱ⠶§¹®¿¡ MRD °Ë»ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí Àֱ⠶§¹®ÀÔ´Ï´Ù. ¶ÇÇÑ, ¾Ï Áø´Ü¹ýÀ» °³¼±Çϱâ À§ÇÑ Á¤ºÎÀÇ ³ë·Â, ÀÇ·áºñ ÁöÃâ Áõ°¡, ¾Ï Á¶±â ¹ß°ß¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁü¿¡ µû¶ó ½ÃÀå ¼ºÀåµµ °¡¼Óȵǰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ª¿¡¼´Â ¿Ü±¹°è Áø´Ü¾÷ü¿Í Áö¿ª ÀÇ·á ¼ºñ½º Á¦°øÀÚ¿ÍÀÇ Á¦ÈÞµµ Áõ°¡Çϰí ÀÖÀ¸¸ç, MRD ±â¼úÀÇ Ã¤Åðú Á¢±Ù¼º Çâ»ó¿¡ ´ëÇÑ ±â´ë°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Minimal Residual Disease Market is accounted for $1.96 billion in 2024 and is expected to reach $4.51 billion by 2030 growing at a CAGR of 14.88% during the forecast period. Minimal Residual Disease (MRD) is an important marker in hematologic cancers like leukemia, lymphoma, and multiple myeloma. It helps doctors figure out how well treatment is working and make decisions about future care. Advanced techniques like flow cytometry, polymerase chain reaction (PCR), and next-generation sequencing (NGS) enable highly sensitive detection of MRD, allowing for personalized treatment adjustments, early intervention, and improved long-term patient outcomes. Moreover, MRD is the small number of cancer cells that remain in a patient's body after treatment, which are undetectable through conventional imaging or laboratory tests but can still cause relapse.
According to BD Biosciences, MRD is a crucial biomarker in clinical trials for blood cancers such as acute lymphoblastic leukemia and multiple myeloma, with sensitivity and specificity values often exceeding 95%.
Increasing personalized medicine adoption
The need for MRD testing is growing as precision oncology becomes more prevalent. MRD tests enable individualized treatment modifications by precisely identifying residual disease, such as lowering treatment intensity for patients with a low risk of relapse or increasing therapy for high-risk patients. This method reduces the negative effects and financial burden of needless treatments while also improving patient outcomes. Additionally, the market is expanding as a result of MRD testing's incorporation into precision medicine frameworks.
Expensive MRD testing
The high expense of MRD testing is one of the main obstacles preventing its widespread use. Advanced methods like digital PCR, multi-parameter flow cytometry, and next-generation sequencing (NGS) are costly because they call for specialized equipment, chemicals, and skilled workers. Depending on the technology employed and the quantity of markers examined, MRD testing can cost anywhere from hundreds to thousands of dollars per test. Affordability is still a problem for healthcare systems with little funding, especially in developing nations. Furthermore, regular MRD monitoring for cancer patients receiving long-term therapy raises costs even more and restricts access.
Extension of MRD examination in solid cancers
The use of minimal residual disease (MRD) testing in solid tumors offers a substantial growth opportunity, despite the fact that it has been extensively adopted in hematologic malignancies. A promising method for identifying MRD in solid tumors like prostate, colorectal, lung, and breast cancers is circulating tumor DNA (ctDNA) analysis. In contrast to conventional imaging methods, ctDNA-based MRD detection enables earlier intervention by detecting molecular recurrence before tumors appear on scans. Moreover, research and commercial expansion into new cancer types are being fueled by investments made in MRD assays for solid tumors by companies such as Foundation Medicine, Natera, and Guardant Health.
Tough regulatory conditions
MRD testing is subject to strict regulatory oversight, as its clinical applications involve critical cancer treatment decisions. Before approving MRD assays, regulatory bodies like the European Medicines Agency (EMA), the U.S. Food and Drug Administration (FDA), and other international health authorities demand thorough clinical validation. The lengthy and expensive regulatory approval process can postpone new products' release onto the market. Additionally, businesses looking to expand internationally face compliance issues due to regional differences in regulatory frameworks. Product recalls, penalties, or limitations on market access may arise from noncompliance with changing regulatory requirements.
The COVID-19 pandemic had a mixed effect on the market for minimal residual disease (MRD). At first, lockdowns and overburdened healthcare systems disrupted clinical trials, cancer screenings, and diagnostic procedures. Testing volumes decreased as a result of the deprioritization or delay of numerous non-urgent cancer monitoring tests, such as MRD evaluations. But the pandemic also spurred interest in non-invasive MRD detection techniques like circulating tumor DNA (ctDNA) analysis by speeding up developments in remote monitoring, liquid biopsy adoption, and decentralized clinical trials. Furthermore, the significance of MRD testing has also been reaffirmed by the post-pandemic increased focus on precision medicine and oncology research, which has resulted in new investments, regulatory support, and technological developments that propel market expansion.
The Assay Kits & Reagents segment is expected to be the largest during the forecast period
The Assay Kits & Reagents segment is expected to account for the largest market share during the forecast period. These assay kits and reagents are necessary for methods that are frequently employed in MRD testing, including flow cytometry, polymerase chain reaction (PCR), and next-generation sequencing (NGS). Their recurrent nature guarantees ongoing use in hospitals, research facilities, and diagnostic labs, supporting their continued market dominance. Moreover, this segment's growth is further fueled by developments in highly sensitive and specific reagents for detecting traces of remaining cancer cells, which makes it a significant source of revenue for the MRD market.
The Treatment Response Assessment segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the Treatment Response Assessment segment is predicted to witness the highest growth rate. The growing use of MRD testing to assess the efficacy of immunotherapy's, targeted therapies, and chemotherapy regimens is what is driving this market. Clinicians can now modify treatment in real time based on MRD status thanks to developments in digital PCR and next-generation sequencing (NGS), which enhances patient outcomes and lowers needless treatment toxicity. Additionally, growth in this market is also being fueled by regulatory approvals for MRD as a biomarker in clinical trials and drug development, which is speeding up its incorporation into oncology treatment protocols.
During the forecast period, the North America region is expected to hold the largest market share, driven by advanced healthcare infrastructure, high adoption of precision medicine, and strong investments in cancer research. The area benefits from a high incidence of hematologic malignancies, reputable diagnostic labs, and easy access to state-of-the-art technologies like digital PCR for MRD detection and next-generation sequencing (NGS). Furthermore, the U.S. FDA's supportive regulations, the rise in clinical trials using MRD as a biomarker, and the expansion of pharmaceutical and diagnostic company partnerships all contribute to North America's market dominance in MRD.
Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR because of the increased incidence of cancer, the development of better healthcare facilities, and the growing use of cutting-edge diagnostic tools. The need for MRD testing is being driven by significant investments being made in precision medicine and oncology research by nations like China, India, and Japan. Moreover, the market is also growing faster due to government initiatives to improve cancer diagnostics, rising healthcare spending, and increased awareness of early cancer detection. Increased partnerships between foreign diagnostic firms and regional healthcare providers are also taking place in the area, which will increase MRD technology adoption and accessibility.
Key players in the market
Some of the key players in Minimal Residual Disease market include Adaptive Biotechnologies Corporation, F. Hoffmann-La Roche Ltd, Natera Inc., Guardant Health, QIAGEN N.V., Bio-Rad Laboratories Inc., Exact Sciences Corporation, Sysmex Corporation, NeoGenomics Inc., Illumina Inc., Thermo Fisher Scientific Inc., Bio-Techne Corporation, Invitae Corporation, Invivoscribe Inc., Quest Diagnostics, PerkinElmer Inc., Agilent Technologies Inc. and Laboratory Corporation of America Holdings.
In February 2025, Bio-Rad Laboratories, Inc launched its TrailBlazer Tag and TrailBlazer StarBright Dye Label Kits. The new kits are designed to offer a convenient method to label any antibody with one of Bio-Rad's StarBright Dyes, for use in either flow cytometry or fluorescent western blot experiments.
In November 2024, Roche announced that it has entered into a definitive merger agreement to acquire Poseida Therapeutics, Inc., a public clinical-stage biopharmaceutical company pioneering donor-derived CAR-T cell therapies. Poseida's R&D portfolio includes pre-clinical and clinical-stage off-the-shelf CAR-T therapies across several therapeutic areas including haematological malignancies, solid tumours, and autoimmune disease, as well as manufacturing capabilities and technology platforms.
In March 2024, Sysmex Corporation and CellaVision AB will be working together to advance hematology solutions by expanding its portfolio, including next-generation cell morphology analyzers. Going forward, the companies will work to further increase efficiency and standardization of the testing workflow in the hematology field, increase the precision of cell morphology classification, and provide value in supporting diagnosis.