ºÐÀÚ À°Á¾ ½ÃÀå ¿¹Ãø(-2030³â) : Á¦Ç° À¯Çü, ÇüÁú À¯Çü, ±â¼ú, ¹æ¹ý, ¿ëµµ, ÃÖÁ¾»ç¿ëÀÚ, Áö¿ªº° ¼¼°è ºÐ¼®
Molecular Breeding Market Forecasts to 2030 - Global Analysis By Product Type (Seeds, Aquatic Species, Livestock Genetics, and Other Product Types), Trait Type, Technology, Method, Application, End User and By Geography
»óǰÄÚµå : 1625202
¸®¼­Ä¡»ç : Stratistics Market Research Consulting
¹ßÇàÀÏ : 2025³â 01¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 200+ Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 4,150 £Ü 5,861,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 5,250 £Ü 7,415,000
PDF (2-5 User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷Àå¿¡¼­ 5¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,350 £Ü 8,969,000
PDF & Excel (Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷ÀåÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇÕ´Ï´Ù. Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ¹× Excel ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 7,500 £Ü 10,593,000
PDF & Excel (Global Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 10ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ºÐÀÚ À°Á¾ ½ÃÀåÀº 2024³â¿¡ 47¾ï ´Þ·¯¸¦ Â÷ÁöÇÏ¸ç ¿¹Ãø ±â°£ Áß CAGRÀº 19.1%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 134¾ï 2,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ºÐÀÚ À°Á¾Àº ÷´Ü ºÐÀÚ»ý¹°ÇÐ ±â¼úÀ» ÀÀ¿ëÇÏ¿© ¹Ì»ý¹°, ½Ä¹°, µ¿¹°ÀÇ À¯ÀüÀû Ư¼ºÀ» °³¼±ÇÏ´Â °úÁ¤ÀÔ´Ï´Ù. ±âÁ¸ÀÇ À°Á¾ ±â¼ú¿¡ ºñÇØ À¯ÀüÀÚ ÆíÁý, À¯Àüü ¼±¹ß, ¸¶Ä¿ Áö¿ø ¼±¹ß(MAS) µîÀÇ ±â¼úÀ» »ç¿ëÇÏ¿© º¸´Ù È¿°úÀûÀ¸·Î À¯¸®ÇÑ À¯ÀüÀÚ¸¦ ã¾Æ³»°í ¼öÁ¤Çϰí ÅëÇÕÇÒ ¼ö ÀÖ½À´Ï´Ù. ³ó¾÷ ¹®Á¦¸¦ ±Øº¹Çϱâ À§ÇØ ºÐÀÚ À°Á¾Àº ¼öÈ®·® Áõ°¡, ³»º´¼º, ³»°Ç¼º, ³»°ÇÁ¶¼º, ¿µ¾ç°¡ Çâ»ó µî °³¼±µÈ ÇüÁúÀ» °¡Áø ÀÛ¹° ¹× °¡ÃàÀÇ »ý»êÀ» ÃËÁøÇÕ´Ï´Ù.

½Ä·®¾Èº¸¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡

½Ä·®¾Èº¸¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡´Â ºÐÀÚ À°Á¾ »ê¾÷À» ÃËÁøÇÏ´Â ÁÖ¿ä ¿äÀÎ Áß ÇϳªÀÔ´Ï´Ù. ¼¼°è Àα¸°¡ °è¼Ó Áõ°¡ÇÔ¿¡ µû¶ó ƯÈ÷ ½ÅÈï ±¹°¡¿¡¼­ ³ó¾÷ÀÇ È¸º¹·Â°ú »ý»ê·® Áõ°¡¿¡ ´ëÇÑ ¿ä±¸°¡ Á¡Á¡ ´õ Àý½ÇÇØÁö°í ÀÖ½À´Ï´Ù. ºÐÀÚ À°Á¾À» ÅëÇØ ÇØÃæ°ú Áúº´, ±âÈÄ º¯È­·Î ÀÎÇÑ ´õÀ§¿Í °¡¹³°ú °°Àº °¡È¤ÇÑ ±â»ó Á¶°Ç¿¡ ´õ °­ÇÑ ÀÛ¹°°ú °¡ÃàÀ» »ý»êÇÒ ¼ö ÀÖ½À´Ï´Ù. ºÐÀÚ À°Á¾Àº ¼öÈ®·®, ǰÁú ¹× Áö¼Ó°¡´É¼ºÀ» Çâ»ó½ÃÄÑ ¾ÈÁ¤ÀûÀÌ°í °Ç°­ÇÑ ½Ä·® °ø±ÞÀ» º¸ÀåÇϱâ À§ÇÑ Áß¿äÇÑ ´ëÀÀÃ¥À̸ç, ÇâÈÄ ½Ä·®¾Èº¸ ¹®Á¦¸¦ ÇØ°áÇÏ´Â µ¥ ÇʼöÀûÀÎ ¿ä¼ÒÀÔ´Ï´Ù.

¼÷·ÃµÈ ³ëµ¿·Â ºÎÁ·

ºÐÀÚ À°Á¾¿¡´Â À¯Àüü ¼±¹ß, CRISPR À¯ÀüÀÚ ÆíÁý, Â÷¼¼´ë ¿°±â¼­¿­ ºÐ¼® µî º¹ÀâÇÑ ±â¹ýÀÌ »ç¿ëµÇ¸ç, À¯ÀüÇÐ, »ý¹°Á¤º¸ÇÐ, »ý¸í°øÇÐ µîÀÇ Àü¹® Áö½ÄÀÌ ÇÊ¿äÇÕ´Ï´Ù. ±â¾÷À̳ª ¿¬±¸±â°üÀº ÀÌ·¯ÇÑ Ã·´Ü ±â¼ú¿¡ ´ëÇÑ °æÇèÀ» °¡Áø À¯´ÉÇÑ ÀÎÀç°¡ ºÎÁ·ÇÏ¿© ºÐÀÚ À°Á¾ÀÇ ÀáÀç·ÂÀ» ÃæºÐÈ÷ Ȱ¿ëÇÏÁö ¸øÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Àü¹® Áö½ÄÀÇ ºÎÁ·Àº ºÐÀÚ À°Á¾ ±â¼úÀÇ µµÀÔÀ» ¹æÇØÇϰí, ¿î¿µ ºñ¿ëÀ» »ó½Â½Ã۸ç, ¿¬±¸°³¹ß Ȱµ¿À» Áö¿¬½Ãų ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Àη ºÎÁ·À» ÇØ¼ÒÇϱâ À§Çؼ­´Â ÀÌ·¯ÇÑ ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ±³À° ±¸»ó°ú ÇмúÀû Á¦ÈÞ¿¡ ´ëÇÑ ÅõÀÚ°¡ ÇʼöÀûÀÔ´Ï´Ù.

À¯ÀüÀÚ º¯Çü ÀÛ¹° ¹× À¯ÀüÀÚ ÆíÁýÀÇ Ã¤Åà Áõ°¡

CRISPR/Cas9°ú °°Àº À¯ÀüÀÚ ÆíÁý ¹× À¯ÀüÀÚ ÀçÁ¶ÇÕ ±â¼úÀº ÀÛ¹° ¼öÈ®·® Áõ°¡ ¹× º´ÇØÃæ ÀúÇ×¼º Çâ»ó¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ´ëÇÑ Á¤È®Çϰí È¿°úÀûÀÎ ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀº ±âÁ¸ À°Á¾ ±â¼ú¿¡¼­ ÇÊ¿äÇÑ ½Ã°£ÀÇ ÀϺκÐÀ¸·Î ¿øÇϴ ǰÁúÀÇ ÀÛ¹°À» Àç¹èÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. À¯ÀüÀÚ º¯Çü ÀÛ¹° ¹× À¯ÀüÀÚ ÆíÁý ÀÛ¹°Àº ±ÔÁ¦ ´ç±¹ÀÇ ½ÂÀÎÀÌ ÁøÇàµÊ¿¡ µû¶ó ³ó¾÷¿¡ Á¡Á¡ ´õ ¸¹ÀÌ Ä§ÅõÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â Áö¼Ó°¡´É¼º, ±âÈÄ º¯È­ ÀúÇ×¼º ¹× ½Ä·®¾Èº¸¿Í °ü·ÃµÈ ¹®Á¦¿¡ ´ëÀÀÇÏ´Â µ¥ µµ¿òÀÌ µÇ°í ÀÖÀ¸¸ç, ³ó¾÷¿¡¼­ ºÐÀÚ À°Á¾ÀÇ ¹ßÀüÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

ÀüÅë ³ó¹ýÀÇ Ã¤Åà Áö¿¬

¸¹Àº ³ó°¡°¡ ¿©ÀüÈ÷ ÀüÅëÀûÀÎ À°Á¾ ¹æ¹ýÀ» »ç¿ëÇÏ´Â ÀÌÀ¯´Â ƯÈ÷ ³óÃÌÀ̳ª Àα¸°¡ ÀûÀº Áö¿ª¿¡¼­ ÀüÅëÀû À°Á¾ ¹æ¹ý¿¡ Àͼ÷Çϰí Ãʱ⠺ñ¿ëÀÌ Àú·ÅÇϱ⠶§¹®ÀÔ´Ï´Ù. ºÐÀÚ À°Á¾Àº ¼öÈ®·® Áõ°¡, Áúº´¿¡ ´ëÇÑ ³»¼º µî ¸¹Àº ÀåÁ¡ÀÌ ÀÖÀ½¿¡µµ ºÒ±¸Çϰí ÀÎÇÁ¶ó, ¼÷·ÃµÈ ÀηÂ, Àåºñ¿¡ ¸¹Àº ÅõÀÚ¸¦ ÇÊ¿ä·Î ÇÏ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ¶ÇÇÑ À¯ÀüÀÚº¯ÇüÀÛ¹°(GMO)¿¡ ´ëÇÑ À±¸®Àû ¿ì·Á, ±ÔÁ¦ À庮, È¿°ú¿¡ ´ëÇÑ ÀDZ¸½É µîÀ¸·Î ÀÎÇØ ³ó°¡°¡ ½Å±â¼ú¿¡ ½ÅÁßÀ» ±âÇÏ´Â °æ¿ìµµ ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºÐÀÚ À°Á¾¿¡ ´ëÇÑ ÀúÇ×Àº ºÐÀÚ À°Á¾ÀÇ ±¤¹üÀ§ÇÑ »ç¿ëÀ» ¹æÇØÇÏ°í ³ó¾÷ÀÇ Áö¼Ó°¡´É¼º°ú ½Ä·®¾Èº¸¿Í °ü·ÃµÈ Áß¿äÇÑ ¹®Á¦¸¦ ÇØ°áÇÒ ¼ö ÀÖ´Â ´É·ÂÀ» ¶³¾î¶ß¸³´Ï´Ù.

COVID-19ÀÇ ¿µÇâ

COVID-19 ÆÒµ¥¹ÍÀº ºÐÀÚ À°Á¾ ½ÃÀå¿¡ ´Ù¾çÇÑ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ÀϺΠºÐÀÚ À°Á¾ ³ë·ÂÀº ¼¼°è °ø±Þ¸Á È¥¶õ, ¿¬±¸ ÀÚ±Ý °¨¼Ò, ¾ß¿Ü ½ÇÇè Áß´Ü µîÀ¸·Î ÀÎÇØ ÁøÃ´ÀÌ ´õµð°Ô ÁøÇàµÇ¾ú½À´Ï´Ù. Àü¿°º´À¸·Î ÀÎÇØ ȸº¹·Â ÀÖ´Â ³ó¾÷ ½Ã½ºÅÛ°ú ½Ä·®¾Èº¸ÀÇ Çʿ伺ÀÌ °­Á¶µÇ¸é¼­ ºÐÀÚ À°Á¾°ú °°Àº ±â¼ú¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁ³½À´Ï´Ù. ÆÒµ¥¹Í ÀÌÈÄ Á¤ºÎ¿Í ¹Î°£ ±â¾÷Àº ½Ä·® ¾ÈÁ¤À» º¸ÀåÇϱâ À§ÇØ ÀÛ¹° ¼öÈ®·®À» ´Ã¸®°í ȸº¹·ÂÀ» ³ôÀÌ´Â °ÍÀÌ ¾ó¸¶³ª Áß¿äÇÑÁö ÀνÄÇÏ°í ³ó¾÷ÀÇ ¹ßÀü°ú ÅõÀÚ¿¡ ´Ù½Ã ÃÊÁ¡À» ¸ÂÃ߱⠽ÃÀÛÇß½À´Ï´Ù.

¿¹Ãø ±â°£ Áß À¯Àüü ¼±¹ß(GS) ºÐ¾ß°¡ °¡Àå Å« ½ÃÀåÀ¸·Î ºÎ»óÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

À¯Àüü ¼±¹ß(GS) ºÐ¾ß´Â À°Á¾ÀÇ È¿À²¼º°ú Á¤È®¼ºÀ» ³ôÀÏ ¼ö ÀÖÀ¸¹Ç·Î °¡Àå Å« ±Ô¸ð·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À¯Àüü Â÷¿øÀÇ ¸¶Ä¿¸¦ Ȱ¿ëÇÔÀ¸·Î½á À¯Àüü ¼±¹ßÀº ±¤¹üÀ§ÇÑ Ç¥ÇöÇü °Ë»ç ¾øÀ̵µ ³»º´¼ºÀ̳ª ¼öÈ®·® Áõ°¡¿Í °°Àº ¹Ù¶÷Á÷ÇÑ ÇüÁúÀ» ´õ ºü¸£°Ô ½Äº°ÇÒ ¼ö ÀÖ½À´Ï´Ù. À̸¦ ÅëÇØ À°Á¾ °úÁ¤À» °¡¼ÓÈ­ÇÏ°í ºñ¿ëÀ» Àý°¨ÇÏ¸ç ¿ì¼öÇÑ ÀÛ¹°°ú °¡ÃàÀ» °³¹ßÇÒ ¼ö ÀÖ½À´Ï´Ù. °í¸ÅÃâ, ź·Â¼º, Áö¼Ó°¡´ÉÇÑ ³ó»ê¹°¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó À¯Àüü ¼±¹ßÀº Àü ¼¼°è À°Á¾°¡µé¿¡°Ô ÇʼöÀûÀÎ ÅøÀÌ µÇ°í ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ Áß °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµÇ´Â ¿¬±¸±â°ü ºÎ¹®

¿¬±¸±â°üÀº À°Á¾ ¹× À¯ÀüÀÚ ±â¼ú °³¹ß¿¡ ±â¿©Çϰí ÀÖÀ¸¹Ç·Î ¿¹Ãø ±â°£ Áß °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¿¬±¸ ±â°üÀÇ È°µ¿Àº ³ôÀº ¼öÈ®·®, Áúº´ ÀúÇ×¼º, ±âÈÄ º¯È­ ÀúÇ×¼º µî °³¼±µÈ ÇüÁúÀ» °¡Áø ÀÛ¹° ¹× °¡ÃàÀÇ °³¹ßÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. Á¤ºÎ, ¹Î°£ ºÎ¹® ¹× Çаè¿ÍÀÇ Çù·ÂÀ» ÃËÁøÇÔÀ¸·Î½á ÀÌµé ¿¬±¸ ±â°üÀº ºÐÀÚ À°Á¾ ±â¼úÀ» È®ÀåÇϰí, ½Ä·®¾Èº¸ ¹®Á¦¸¦ ÇØ°áÇϰí, Àü ¼¼°è¿¡¼­ Áö¼Ó°¡´ÉÇÑ ³ó¾÷ °üÇàÀ» ÃËÁøÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª :

¾Æ½Ã¾ÆÅÂÆò¾çÀº ½Ä·®¾Èº¸¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, ´ë±Ô¸ð ³ó¾÷ ±â¹Ý, ±âÈÄ º¯È­¿¡ °­ÇÑ ÀÛ¹°ÀÇ Çʿ伺 µîÀ¸·Î ÀÎÇØ ¿¹Ãø ±â°£ Áß °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Áß±¹°ú Àεµ¿Í °°Àº ±¹°¡µéÀº ÀÛ¹°ÀÇ ¼öÈ®·®, ³»º´¼º, °¡¹³ ÀúÇ×¼ºÀ» Çâ»ó½Ã۱â À§ÇØ »ý¸í°øÇÐ ¹× ºÐÀÚ À°Á¾¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ Áö¼Ó°¡´ÉÇÑ ³ó¹ý¿¡ ´ëÇÑ ÀÎ½Ä Áõ°¡, Á¤ºÎ Áö¿ø, À¯ÀüÀÚ º¯Çü ÀÛ¹° ¹× À¯ÀüÀÚ ÆíÁý ÀÛ¹°ÀÇ Ã¤Åà Ȯ´ë´Â ÀÌ Áö¿ª ½ÃÀå ¼ºÀåÀ» ´õ¿í °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª :

¿¹Ãø ±â°£ Áß ºÏ¹Ì´Â °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ´Â ÀÌ Áö¿ªÀÇ Ã·´Ü ¿¬±¸ ÀÎÇÁ¶ó, ³ôÀº »ý¸í°øÇÐ ±â¼ú äÅ÷ü, ³ó¾÷ Çõ½Å¿¡ ´ëÇÑ Á¤ºÎÀÇ °­·ÂÇÑ Áö¿ø ´öºÐÀÔ´Ï´Ù. ¹Ì±¹°ú ij³ª´Ù´Â ÀÛ¹°ÀÇ ¼öÈ®·®, ÇØÃæ ÀúÇ×¼º, ±âÈÄ ÀûÀÀ¼ºÀ» Çâ»ó½ÃŰ´Â ºÐÀÚ À°Á¾ ±â¼úÀ» Ȱ¿ëÇÑ À¯ÀüÀÚ º¯Çü ÀÛ¹° °³¹ßÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ Áö¼Ó°¡´ÉÇÑ ³ó¹ý¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿Í ½Ä·®¾Èº¸¿¡ ´ëÇÑ Çʿ伺ÀÌ ºÐÀÚ À°Á¾¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÃËÁøÇÏ¿© ºÏ¹Ì¸¦ ³ó¾÷ Çõ½ÅÀÇ Áß¿äÇÑ °ÅÁ¡À¸·Î ¸¸µé°í ÀÖ½À´Ï´Ù.

¹«·á ¸ÂÃãÇü ¼­ºñ½º :

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. :

¸ñÂ÷

Á¦1Àå °³¿ä

Á¦2Àå ¼­¹®

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

Á¦4Àå Porter's Five Forces ºÐ¼®

Á¦5Àå ¼¼°èÀÇ ºÐÀÚ À°Á¾ ½ÃÀå : Á¦Ç° À¯Çüº°

Á¦6Àå ¼¼°èÀÇ ºÐÀÚ À°Á¾ ½ÃÀå : ÇüÁú À¯Çüº°

Á¦7Àå ¼¼°èÀÇ ºÐÀÚ À°Á¾ ½ÃÀå : ±â¼úº°

Á¦8Àå ¼¼°èÀÇ ºÐÀÚ À°Á¾ ½ÃÀå : ¹æ¹ýº°

Á¦9Àå ¼¼°èÀÇ ºÐÀÚ À°Á¾ ½ÃÀå : ¿ëµµº°

Á¦10Àå ¼¼°èÀÇ ºÐÀÚ À°Á¾ ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

Á¦11Àå ¼¼°èÀÇ ºÐÀÚ À°Á¾ ½ÃÀå : Áö¿ªº°

Á¦12Àå ÁÖ¿ä ¹ßÀü

Á¦13Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

According to Stratistics MRC, the Global Molecular Breeding Market is accounted for $4.70 billion in 2024 and is expected to reach $13.42 billion by 2030 growing at a CAGR of 19.1% during the forecast period. Molecular breeding is the process of improving the genetic characteristics of microbes, plants, or animals by applying sophisticated molecular biology techniques. Compared to conventional breeding techniques, it uses technologies like gene editing, genomic selection, and marker-assisted selection (MAS) to more effectively find, modify, and incorporate advantageous genes. In order to overcome agricultural issues, molecular breeding expedites the production of crops and livestock with improved traits like increased yield, disease resistance, drought tolerance, and improved nutritional content.

Market Dynamics:

Driver:

Increasing demand for food security

The growing need for food security is one of the main factors propelling the molecular breeding industry. The demand for increased agricultural resilience and production is become more urgent as the world's population continues to rise, especially in emerging nations. Through molecular breeding, it is possible to create crops and livestock that are more resilient to pests, illnesses, and harsh weather conditions like heat or drought, which are becoming more common as a result of climate change. Molecular breeding is a vital respond to guarantee a steady, wholesome food supply by enhancing yield, quality, and sustainability, making it indispensable to addressing upcoming issues with food security.

Restraint:

Lack of skilled workforce

Complex methods like genomic selection, CRISPR gene editing, and next-generation sequencing are used in molecular breeding, and they call for specific expertise in genetics, bioinformatics, and biotechnology. Companies and research institutes are unable to fully utilize the promise of molecular breeding due to a lack of qualified personnel with experience in these cutting-edge technologies. This lack of expertise might hinder the implementation of molecular breeding technologies, raise operating expenses, and postpone research and development activities. In order to close this workforce gap, it will be essential to make investments in training initiatives and academic collaborations as the demand for these technologies increases.

Opportunity:

Rising adoption of GMOs and gene editing

Gene editing and genetic modification methods like CRISPR/Cas9 provide accurate and effective solutions to the growing demand for increased crop yields, better resistance to pests and diseases. In a fraction of the time needed by conventional breeding techniques, these technologies allow the growth of crops with desired qualities. GMOs and gene-edited crops are becoming increasingly prevalent in agriculture due to increasing regulatory approval. This trend is assisting in addressing issues related to sustainability, climate change resilience, and food security, which is further propelling the development of molecular breeding in agriculture.

Threat:

Slow adoption in traditional farming practices

Many farmers still use traditional breeding methods because they are familiar with them as well as are less expensive initially, particularly in rural or underdeveloped areas. Even though molecular breeding has many benefits, such as increased yields and resistance to disease, it frequently necessitates a large investment in infrastructure, skilled labor, and equipment. Farmers may also be cautious of new technology because of ethical concerns about genetically modified organisms (GMOs), regulatory barriers, or doubts about their efficacy. This resistance to molecular breeding hinders its broad use and reduces its ability to solve important issues with agricultural sustainability and food security.

Covid-19 Impact

The COVID-19 pandemic had a mixed impact on the molecular breeding market. Some molecular breeding efforts were slowed down by the disruption of global supply chains, decreased research funding, and stopped field experiments. Interest in technologies like molecular breeding increased as a result of the pandemic's emphasis on the necessity of resilient agricultural systems and food security. After the epidemic, governments and private businesses realized how crucial it was to increase crop yields and resilience in order to guarantee food stability, which sparked a renewed focus on agricultural advances and investment.

The genomic selection (GS) segment is expected to be the largest during the forecast period

The genomic selection (GS) segment is estimated to be the largest, due to its ability to enhance breeding efficiency and precision. By utilizing genome-wide markers, genomic selection enables faster identification of desirable traits, such as disease resistance and yield improvement, without the need for extensive phenotypic testing. This accelerates the breeding process, reduces costs, and allows for the development of superior crops and livestock. As the demand for high-yielding, resilient, and sustainable agricultural products increases, genomic selection is becoming an essential tool for breeders worldwide.

The research institutes segment is expected to have the highest CAGR during the forecast period

The research institutes segment is anticipated to witness the highest CAGR during the forecast period, due to their contribution to the development of breeding techniques and genetic technologies. Their work accelerates the development of crops and livestock with improved traits, such as higher yield, disease resistance, and climate resilience. By fostering collaboration with governments, private sectors, and academia, these institutes play a crucial role in scaling molecular breeding techniques, addressing food security challenges, and promoting sustainable agricultural practices globally.

Region with largest share:

Asia Pacific is expected to have the largest market share during the forecast period fuelled by the increasing demand for food security, a large agricultural base, and the need for climate-resilient crops. Countries like China and India are investing heavily in biotechnology and molecular breeding to improve crop yields, disease resistance, and drought tolerance. Additionally, rising awareness of sustainable farming practices, government support, and growing adoption of genetically modified and gene-edited crops are further accelerating the market's growth in this region.

Region with highest CAGR:

During the forecast period, the North America region is anticipated to register the highest CAGR, owing to the region's advanced research infrastructure, high adoption of biotechnology, and strong government support for agricultural innovation. The U.S. and Canada are leading the development of genetically modified crops, utilizing molecular breeding techniques to enhance crop yields, pest resistance, and climate adaptability. Additionally, increasing demand for sustainable farming practices and the need for food security are encouraging investments in molecular breeding, making North America a key hub for innovation in agriculture.

Key players in the market

Some of the key players profiled in the Molecular Breeding Market include Kaltura, Inc., Syngenta AG, DuPont de Nemours, Inc., Corteva Agriscience, BASF SE, Limagrain, KWS SAAT SE & Co. KGaA, Bayer CropScience, Inari Agriculture, Evogene Ltd., Genezen Laboratories, Ceres, Inc., Bioceres Crop Solutions, Phytocontrol, Vilmorin & Cie, AgBiome, Inc., Zymergen, and Plant Health Care Plc.

Key Developments:

In September 2023, Corteva Agriscience introduced a new insect-resistant trait in corn, leveraging molecular breeding technologies to improve the resistance of corn against major pests.

In May 2023, Syngenta announced the launch of a soybean variety developed through molecular breeding techniques for enhanced tolerance to drought and extreme temperatures. The new variety is designed to help farmers in regions affected by climate change, ensuring better productivity under stress conditions.

In February 2023, Bayer CropScience launched a new seed applied technology for wheat that integrates molecular breeding techniques to improve disease resistance and overall plant health. The technology aims to address the challenges of wheat rusts and other fungal diseases, thus increasing yields for wheat farmers.

Product Types Covered:

Trait Types Covered:

Technologies Covered:

Methods Covered:

Applications Covered:

End Users Covered:

Regions Covered:

What our report offers:

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

Table of Contents

1 Executive Summary

2 Preface

3 Market Trend Analysis

4 Porters Five Force Analysis

5 Global Molecular Breeding Market, By Product Type

6 Global Molecular Breeding Market, By Trait Type

7 Global Molecular Breeding Market, By Technology

8 Global Molecular Breeding Market, By Method

9 Global Molecular Breeding Market, By Application

10 Global Molecular Breeding Market, By End User

11 Global Molecular Breeding Market, By Geography

12 Key Developments

13 Company Profiling

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â