¼¼°èÀÇ ºÐÀÚ À°Á¾ ½ÃÀå
Molecular Breeding
»óǰÄÚµå : 1588980
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2024³â 11¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 88 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,263,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,789,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

ºÐÀÚ À°Á¾ ¼¼°è ½ÃÀåÀº 2030³â±îÁö 311¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î Àü¸Á

2023³â 101¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°è ºÐÀÚ À°Á¾ ½ÃÀåÀº 2030³â 311¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, 2023-2030³â ºÐ¼® ±â°£ µ¿¾È ¿¬Æò±Õ 17.5%ÀÇ ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ¸¶Ä¿ Áö¿ø ¼±¹ß(MAS) ÇÁ·Î¼¼½º´Â CAGR 18.0%¸¦ ±â·ÏÇÏ¿© ºÐ¼® ±â°£ ¸»±îÁö 117¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, QTL ¸ÅÇÎ ÇÁ·Î¼¼½º ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 17.1%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀå 28¾ï ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 16.5%·Î ¼ºÀå Àü¸Á

¹Ì±¹ÀÇ ºÐÀÚ À°Á¾ ½ÃÀåÀº 2023³â 28¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2023-2030³â ºÐ¼® ±â°£ µ¿¾È 16.5%ÀÇ CAGRÀ» ±â·ÏÇÏ¿© 2030³â¿¡´Â 47¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ´Ù¸¥ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ª ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ µ¿¾È °¢°¢ 15.4%¿Í 14.7%ÀÇ CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ ¾à 12.5%ÀÇ CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¼¼°è ºÐÀÚ À°Á¾ ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ ¿ä¾à

ºÐÀÚ À°Á¾Àº ¿Ö ³ó¾÷¿¡ Çõ¸íÀ» ÀÏÀ¸Å³ °ÍÀΰ¡?

ºÐÀÚ À°Á¾Àº ºÐÀÚ ¼öÁØ¿¡¼­ À¯ÀüÀÚ Á¶ÀÛÀ» ÅëÇØ ÀÛ¹°ÀÇ Ç°Áú°ú ¼öÈ®·®À» Çâ»ó½ÃŰ´Â ¹æ¹ýÀÔ´Ï´Ù. ÀÌ Á¢±Ù¹ýÀº ºÐÀÚ ¸¶Ä¿¿Í À¯Àü°øÇÐ ±â¼úÀ» »ç¿ëÇÏ¿© ½Ä¹°ÀÇ ¹Ù¶÷Á÷ÇÑ ÇüÁúÀ» ½Äº°Çϰí À̸¦ »õ·Î¿î ÀÛ¹° ǰÁ¾¿¡ ÅëÇÕÇÏ´Â ¹æ½ÄÀÔ´Ï´Ù. ºÐÀÚ À°Á¾Àº º´ÃæÇØ¿Í È¯°æ ½ºÆ®·¹½º¿¡ °­ÇÑ ÀÛ¹°, ¿µ¾ç°¡¿Í ¼ºÀå·üÀÌ Çâ»óµÈ ÀÛ¹°À» °³¹ßÇÒ ¼ö ÀÖ°ÔÇÔÀ¸·Î½á ÀüÅëÀûÀÎ ³ó¹ýÀ» º¯È­½ÃÄ×½À´Ï´Ù. ÀÌ ±â¼úÀº Àα¸ Áõ°¡¿Í ½Ä½À°ü º¯È­·Î ÀÎÇØ Áõ°¡ÇÏ´Â ¼¼°è ½Ä·® ¼ö¿ä¸¦ ÃæÁ·½ÃŰ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. ºÐÀÚ À°Á¾Àº ÀÛ¹° °³·® °úÁ¤À» °¡¼ÓÈ­ÇÒ ¼ö ÀÖ´Â ´É·ÂÀ¸·Î ÀÎÇØ ³ó¾÷ »ê¾÷¿¡¼­ ºü¸£°Ô äÅÃÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù. ºÐÀÚ À°Á¾Àº ±âÁ¸ À°Á¾ ¹æ¹ý°ú ºñ±³ÇÏ¿© º¸´Ù Á¤È®Çϰí Á¤¹ÐÇÏ°Ô À¯Àü ¹°ÁúÀ» Á¶ÀÛÇÒ ¼ö ÀÖ¾î °í¼öÀÍ ¹× ½ºÆ®·¹½º¿¡ °­ÇÑ ÀÛ¹° ǰÁ¾À» º¸´Ù ºü¸£°Ô °³¹ßÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ±â¼úÀº °î¹°, °úÀÏ, ä¼Ò, ¿ÀÀÏ ½Ãµå µî ´Ù¾çÇÑ ÀÛ¹°ÀÇ Ç°Áú°ú ȸº¹·ÂÀ» Çâ»ó½ÃŰ´Â µ¥ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù.

ºÐÀÚ À°Á¾ÀÇ ÁÖ¿ä µ¿ÇâÀº?

Áö¼Ó°¡´ÉÇÑ ³ó¾÷¿¡ ´ëÇÑ °ü½É Áõ°¡, À¯Àü°øÇÐ ±â¼úÀÇ ¹ßÀü, ³ó¾÷ ¿¬±¸¿¡ ´ëÇÑ Á¤ºÎ Áö¿ø Áõ°¡ µî ¸î °¡Áö Æ®·»µå°¡ ºÐÀÚ À°Á¾ ½ÃÀåÀ» Çü¼ºÇϰí ÀÖ½À´Ï´Ù. Áö¼Ó°¡´ÉÇÑ ³ó¾÷À» ÇâÇÑ ¿òÁ÷ÀÓÀº ¹°, ³ó¾à, ºñ·á µîÀÇ ÅõÀÔÀ» ÁÙÀÌ´Â ÀÛ¹°À» °³¹ßÇÏ´Â ºÐÀÚ À°Á¾ÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ´Â ³ó¾÷ÀÌ È¯°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÁÙÀÌ°í ½Ä·® ¾Èº¸¸¦ °³¼±ÇÏ´Â µ¥ ÇʼöÀûÀ̸ç, CRISPR/Cas9 À¯ÀüÀÚ ÆíÁý°ú °°Àº À¯Àü°øÇÐÀÇ ¹ßÀüÀº º¸´Ù Á¤¹ÐÇϰí È¿À²ÀûÀÎ ÀÛ¹° °³·®À» °¡´ÉÇÏ°Ô ÇÏ¿© ºÐÀÚ À°Á¾ÀÇ °¡´É¼ºÀ» ³ÐÇôÁÖ°í ÀÖ½À´Ï´Ù. ³ó¾÷ »ý¸í°øÇÐ ¿¬±¸¿¡ ´ëÇÑ Á¤ºÎÀÇ ÀÌ´Ï¼ÅÆ¼ºê¿Í ÀÚ±Ý Áö¿øµµ ºÐÀÚ À°Á¾ ±â¼úÀÇ °³¹ß ¹× äÅÃÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â ºÐÀÚ À°Á¾ ½ÃÀåÀÇ ¼ºÀå¿¡ À¯¸®ÇÑ È¯°æÀ» Á¶¼ºÇϰí ÀÖ½À´Ï´Ù.

½ÃÀå ¼¼ºÐÈ­´Â ºÐÀÚ À°Á¾¿¡ ¾î¶² ¿µÇâÀ» ¹ÌÄ¡´Â°¡?

±â¼ú¿¡´Â ¸¶Ä¿ º¸Á¶ ¼±¹ß, ¸¶Ä¿ º¸Á¶ ¿ª±³¹è, À¯Àüü ¼±¹ß, À¯Àü°øÇÐ µîÀÌ ÀÖÀ¸¸ç, °¢°¢ ¸ñÀûÇÏ´Â ÀÛ¹° ÇüÁú¿¡ µû¶ó ´Ù¸¥ ¸ñÀûÀ» ´Þ¼ºÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÀ¿ë Ãø¸é¿¡¼­ ºÐÀÚ À°Á¾Àº ÀÛ¹°ÀÇ ¼öÈ®·® Çâ»ó, ³»º´¼º, ǰÁú Çâ»ó¿¡ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. ºÐÀÚ À°Á¾ÀÇ ÇýÅÃÀ» ¹Þ´Â ÁÖ¿ä ÀÛ¹°¿¡´Â °î¹°, À¯ÁöÁ¾ÀÚ, °úÀÏ, ä¼Ò µîÀÌ ÀÖ½À´Ï´Ù. Áö¿ªÀûÀ¸·Î´Â ¼±ÁøÀûÀÎ ³ó¾÷ °üÇà, »ý¸í°øÇÐ ¿¬±¸¿¡ ´ëÇÑ ¸·´ëÇÑ ÅõÀÚ, À¯¸®ÇÑ ±ÔÁ¦ Á¤Ã¥À¸·Î ½ÃÀåÀ» ÁÖµµÇϰí ÀÖ´Â ºÏ¹Ì°¡ ½ÃÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. À¯·´Àº Áö¼Ó°¡´ÉÇÑ ³ó¾÷À» À§ÇÑ ºÐÀÚ À°Á¾ÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ´Â Áß¿äÇÑ ½ÃÀåÀ̱⵵ ÇÕ´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾çÀº ½Ä·® ¼ö¿ä Áõ°¡, ³ó¾÷ »ý¸í°øÇп¡ ´ëÇÑ ³ë·Â È®´ë, ÀÛ¹° °³·® ÇÁ·Î±×·¥¿¡ ´ëÇÑ Á¤ºÎ Áö¿øÀ¸·Î ÀÎÇØ ºü¸£°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù.

ºÐÀÚ À°Á¾ ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇÏ´Â ¿äÀÎÀº?

ºÐÀÚ À°Á¾ ½ÃÀåÀÇ ¼ºÀåÀº ¼¼°è ½Ä·® ¼ö¿ä Áõ°¡, À¯Àü°øÇÐ ±â¼úÀÇ ¹ßÀü, Áö¼Ó°¡´ÉÇÑ ³ó¾÷ °üÇàÀÇ Çʿ伺 µî ¿©·¯ °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. Àα¸ Áõ°¡¿Í ½Ä½À°ü º¯È­·Î ÀÎÇØ ¼öÈ®·®ÀÌ ¸¹°í ½ºÆ®·¹½º¿¡ °­ÇÑ ÀÛ¹°¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ºÐÀÚ À°Á¾ÀÇ ±â¼ú Çõ½ÅÀº ÀÛ¹° °³·® °úÁ¤ÀÇ È¿À²¼ºÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Áö¼Ó°¡´ÉÇÑ ³ó¾÷¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í »ý¸í°øÇÐ ¿¬±¸¿¡ ´ëÇÑ Á¤ºÎÀÇ Áö¿øÀº ³ó¾÷ ºÐ¾ß¿¡¼­ ºÐÀÚ À°Á¾ÀÇ Ã¤ÅÃÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê(ÃÑ 32°Ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Molecular Breeding Market to Reach US$31.1 Billion by 2030

The global market for Molecular Breeding estimated at US$10.1 Billion in the year 2023, is expected to reach US$31.1 Billion by 2030, growing at a CAGR of 17.5% over the analysis period 2023-2030. Marker-Assisted Selection (MAS) Process, one of the segments analyzed in the report, is expected to record a 18.0% CAGR and reach US$11.7 Billion by the end of the analysis period. Growth in the QTL Mapping Process segment is estimated at 17.1% CAGR over the analysis period.

The U.S. Market is Estimated at US$2.8 Billion While China is Forecast to Grow at 16.5% CAGR

The Molecular Breeding market in the U.S. is estimated at US$2.8 Billion in the year 2023. China, the world's second largest economy, is forecast to reach a projected market size of US$4.7 Billion by the year 2030 trailing a CAGR of 16.5% over the analysis period 2023-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 15.4% and 14.7% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 12.5% CAGR.

Global Molecular Breeding Market - Key Trends and Drivers Summarized

Why Is Molecular Breeding Revolutionizing Agriculture?

Molecular breeding is a method used to enhance crop quality and yield through the manipulation of genes at the molecular level. This approach involves using molecular markers and genetic engineering techniques to identify desirable traits in plants and incorporate them into new crop varieties. Molecular breeding has transformed traditional agricultural practices by enabling the development of crops that are resistant to pests, diseases, and environmental stresses, as well as crops with improved nutritional content and growth rates. This technology is critical for meeting the increasing global demand for food, driven by population growth and changing dietary preferences. The adoption of molecular breeding is rapidly expanding in the agricultural industry due to its ability to accelerate crop improvement processes. Compared to traditional breeding methods, molecular breeding allows for more precise and targeted manipulation of genetic material, resulting in faster development of high-yield and stress-resistant crop varieties. This technology is being used to improve a wide range of crops, including cereals, fruits, vegetables, and oilseeds, enhancing their quality and resilience.

What Are the Key Trends in Molecular Breeding?

Several trends are shaping the molecular breeding market, including the growing focus on sustainable agriculture, advancements in genetic engineering technologies, and increasing government support for agricultural research. The push towards sustainable farming practices is driving the adoption of molecular breeding to develop crops that require fewer inputs such as water, pesticides, and fertilizers. This is essential for reducing the environmental impact of agriculture and improving food security. Advancements in genetic engineering, such as CRISPR/Cas9 gene editing, are enabling more precise and efficient crop improvement, expanding the possibilities for molecular breeding. Government initiatives and funding for agricultural biotechnology research are also accelerating the development and adoption of molecular breeding technologies. These trends are creating a favorable environment for the growth of the molecular breeding market.

How Do Market Segments Influence Molecular Breeding?

Techniques include marker-assisted selection, marker-assisted backcrossing, genomic selection, and genetic engineering, each serving different purposes based on the desired crop traits. In terms of application, molecular breeding is used for yield improvement, disease resistance, and quality enhancement of crops. The major crop types benefiting from molecular breeding include cereals, oilseeds, fruits, and vegetables. Geographically, the market is dominated by North America, driven by advanced agricultural practices, significant investments in biotechnology research, and favorable regulatory policies. Europe also represents a significant market, with increasing adoption of molecular breeding for sustainable agriculture. The Asia-Pacific region is experiencing rapid growth due to rising food demand, expanding agricultural biotechnology initiatives, and government support for crop improvement programs.

What Factors Are Driving the Growth in the Molecular Breeding Market?

The growth in the molecular breeding market is driven by several factors, including the increasing global demand for food, advancements in genetic engineering technologies, and the need for sustainable agriculture practices. The rising population and changing dietary patterns are boosting the demand for high-yield and stress-resistant crops. Technological innovations in molecular breeding are enhancing the efficiency of crop improvement processes. Additionally, the growing focus on sustainable agriculture and government support for biotechnology research are further driving the adoption of molecular breeding in the agricultural sector.

Select Competitors (Total 32 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â