¼¼°èÀÇ ÀÇ·á¿ë ÅÚ·¹ÇÁ·¹Á𽺠·Îº¿ ½ÃÀå : ÄÄÆ÷³ÍÆ®º°, À¯Çüº°, ÃÖÁ¾ »ç¿ëÀÚº°, Áö¿ªº° ¼¼°è ºÐ¼® ¿¹Ãø(-2030³â)
Medical Telepresence Robots Market Forecasts to 2030 - Global Analysis By Component, Type, End User and By Geography
»óǰÄÚµå : 1617103
¸®¼­Ä¡»ç : Stratistics Market Research Consulting
¹ßÇàÀÏ : 2024³â 12¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 200+ Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 4,150 £Ü 5,751,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 5,250 £Ü 7,275,000
PDF (2-5 User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷Àå¿¡¼­ 5¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,350 £Ü 8,799,000
PDF & Excel (Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷ÀåÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇÕ´Ï´Ù. Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ¹× Excel ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 7,500 £Ü 10,393,000
PDF & Excel (Global Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 10ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Stratistics MRC¿¡ µû¸£¸é ¼¼°è ÀÇ·á¿ë ÅÚ·¹ÇÁ·¹Á𽺠·Îº¿ ½ÃÀåÀº 2024³â 3¾ï 9,478¸¸ ´Þ·¯¸¦ Â÷ÁöÇϰí, 2030³â¿¡´Â 12¾ï 5,132¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ¿¹Ãø ±â°£ Áß º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)Àº 21.2%·Î ¼ºÀåÇÒ Àü¸ÁÀÔ´Ï´Ù.

ÀÇ·á¿ë ÅÚ·¹ÇÁ·¹Á𽺠·Îº¿Àº ¿ø°ÝÁö¿¡¼­ °Ç°­ °ü¸® Á¦°øÀ» ÃËÁøÇϱâ À§ÇØ ¼³°èµÈ ÷´Ü ·Îº¿ ½Ã½ºÅÛÀ¸·Î, ÀÇ·á Á¾»çÀÚ°¡ ¿ø°ÝÁö¿¡¼­ ½Ç½Ã°£À¸·Î ȯÀÚ¿Í »óÈ£ ÀÛ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. ·Îº¿Àº ÀϹÝÀûÀ¸·Î È­»ó ȸÀÇ, °íÇØ»óµµ Ä«¸Þ¶ó, ¸¶ÀÌÅ©, À̵¿±â´É µîÀ» Á¶ÇÕÇÏ¿© žÀçÇϰí ÀÖ¾î Àǻ簡 ¿ø°ÝÁö¿¡¼­ °¡»óÀÇ ÁøÂûÀ» Çϰųª ȯÀÚÀÇ »óÅ ¸¦ ¸ð´ÏÅ͸µÇϰųª Áø´ÜÀ» ÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ƯÈ÷ °Ç°­ °ü¸® Àü¹®°¡¿¡ ´ëÇÑ ¾×¼¼½º°¡ Á¦ÇÑµÈ ¸¸Å­ ÃæºÐÇÑ ¼­ºñ½º°¡ ¾ø´Â Áö¿ª°ú Áö¿ª¿¡¼­´Â Å« ÀÌÁ¡ÀÌ ÀÖ½À´Ï´Ù.

America's Health Rankings 2023 Annual Report¿¡ µû¸£¸é ¹Ì±¹¿¡¼­´Â 2022³â¿¡ 2,900¸¸ ¸í ÀÌ»óÀÇ ¼ºÀÎÀÌ 3°³ ÀÌ»óÀÇ ¸¸¼º Áúȯ¿¡ µî·ÏµÇ¾ú½À´Ï´Ù.

¿ø°Ý ÀÇ·á ¼­ºñ½º¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡

¿ø°Ý ÀÇ·á ¼­ºñ½º¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡´Â ÀÇ·á¿ë ÅÚ·¹ÇÁ·¹Á𽺠·Îº¿ÀÇ Áøº¸¸¦ Å©°Ô µÞ¹ÞħÇϰí, °Ç°­ °ü¸® Á¦°ø¿¡ Çõ¸íÀ» °¡Á®¿Ô½À´Ï´Ù. ȯÀÚ¿Í ½Ç½Ã°£À¸·Î »óÈ£ÀÛ¿ëÇÒ ¼ö ÀÖ°Ô ÇÏ°í ¿ø°ÝÁö³ª ¼­ºñ½º°¡ ÃæºÐÇÏÁö ¾ÊÀº Áö¿ªÀÇ »ç¶÷µéÀÇ °ÝÂ÷¸¦ ä¿ì±â ¿ø°Ý ÀÇ·á°¡ ¼ºÀåÇÏ´Â µ¿¾È ÀÇ·á¿ë ÅÚ·¹ÇÁ·¹Á𽺠·Îº¿Àº ¹°¸®ÀûÀÎ ÀÔȸ¸¦ ÇÊ¿ä·Î ÇÏÁö ¾Ê°í Áú ³ôÀº Äɾ Á¦°øÇϴµ¥ À־ ÇʼöÀûÀÎ ÅøÀÌ µÇ°í ÀÖ½À´Ï´Ù. ·Îº¿ ¾Ï°ú °°Àº ±â´ÉÀ» °®Ãá ÀÌ ·Îº¿Àº ÀÇ»çÀÇ °¡»ó ÁøÂû, ¿ø°Ý ÁøÂû, ½ÉÁö¾î ¿Ü°ú ¼ö¼úÀÇ º¸Á¶¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.

¿î¿µ»óÀÇ °úÁ¦

ÀÇ·á¿ë ÅÚ·¹ÇÁ·¹Á𽺠·Îº¿Àº ±× º¸±Þ°ú À¯È¿¼ºÀ» ¹æÇØÇÏ´Â ¸î °¡Áö ¿î¿µ»óÀÇ °úÁ¦¿¡ Á÷¸éÇϰí ÀÖ½À´Ï´Ù. ƯÈ÷ ÀÚ¿øÀÌ ÇÑÁ¤µÈ ȯ°æ¿¡¼­´Â ÀÌ¿ëÇϱ⠾î·Á¿î °ÍÀÔ´Ï´Ù. °í±Þ ¼¾¼­, ¼ÒÇÁÆ®¿þ¾î µîÀÇ °í±Þ ±â¼úÀÌ ÇÊ¿äÇϱ⠶§¹®¿¡ ¿¬°á ¹®Á¦ ¹× ½Ã½ºÅÛ ¿ÀÀÛµ¿ µî ±â¼úÀûÀÎ ¹®Á¦¸¦ ÀÏÀ¸Å³ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ °Ç°­ °ü¸® Àü¹®°¡¿¡ ´ëÇÑ Àü¹® ±³À°ÀÌ ÇÊ¿äÇÏ´Ù´Â °úÁ¦µµ ÀÖ½À´Ï´Ù.

ÀüÀÚ ÀÇ·á ±â·Ï°úÀÇ ÅëÇÕ

ÀüÀÚ ÀÇ·á ±â·Ï(EHR)°úÀÇ ÅëÇÕÀº ½Ç½Ã°£À¸·Î ȯÀÚ µ¥ÀÌÅÍ¿¡ ¿øÈ°ÇÏ°Ô ¾×¼¼½ºÇÒ ¼öÀÖ¾î ÀÇ·á¿ë ÅÚ·¹ÇÁ·¹Á𽺠·Îº¿ÀÇ ±â´ÉÀ» Çâ»ó½Ãŵ´Ï´Ù. »óÈ£ ÀÛ¿ëÇÒ ¼ö ÀÖ´Â ÀÌ ·Îº¿Àº ÇöÀç º´·Â, °Ë»ç °á°ú, Åõ¾à ±â·Ï ¹× ±âŸ °ü·Ã Á¤º¸¸¦ EHR ½Ã½ºÅÛ¿¡¼­ Á÷Á¢ ²ø¾î³¾ ¼ö ÀÖ½À´Ï´Ù. À̸¦ ÅëÇØ °¡»ó °ËÁø ½Ã ·Îº¿ÀÌ Á¤È®ÇÏ°í °³º°È­µÈ Äɾ Á¦°øÇÒ ¼ö ÀÖ´Â ´É·ÂÀ» °­È­ÇÒ ¼ö ÀÖ½À´Ï´Ù. È¿À²¼ºÀ» ³ôÀÌ°í ½Ç¼ö¸¦ ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ Àü¹®ÀÇ, °Ç°­ °ü¸® ÆÀ, ȯÀÚ °£ÀÇ ´õ ³ªÀº Çù·ÂÀÌ °¡´ÉÇÏ¸ç ¿ø°Ý ÀÇ·á »óÈ£ ÀÛ¿ë Áß¿¡ ÇÊ¿äÇÑ ¸ðµç Á¤º¸¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

µ¥ÀÌÅÍ º¸¾È ¹× °³ÀÎ Á¤º¸ º¸È£ ¹®Á¦

ÀÇ·á¿ë ÅÚ·¹ÇÁ·¹Á𽺠·Îº¿ÀÇ µµÀÔÀº µ¥ÀÌÅÍÀÇ º¸¾È°ú ÇÁ¶óÀ̹ö½Ã¸¦ µÑ·¯½Ñ Áß´ëÇÑ ¿ì·Á¿¡ ÀÇÇØ ¹æÇصǰí ÀÖ½À´Ï´Ù. ³ôÀº ȯÀÚ µ¥ÀÌÅÍÀÇ Àü¼Û¿¡ Å©°Ô ÀÇÁ¸ÇÕ´Ï´Ù. ¾ÇÀÇÀû ÀÎ ¾×¼¼½º¿Í »çÀ̹ö °ø°ÝÀ¸·Î ÀÎÇØ µ¥ÀÌÅÍ À¯ÃâÀÌ ¹ß»ýÇϰí ȯÀÚÀÇ ¼öºñ Àǹ«°¡ À§Çè¿¡ óÇÒ ¼öÀÖ´Â ÀáÀçÀû Ãë¾àÁ¡ÀÌ ÀÖ½À´Ï´Ù. µ¥ÀÌÅ͸¦ º¸È£Çϱâ À§ÇÑ ¾Ïȣȭ³ª º¸¾È ÇÁ·ÎÅäÄÝÀÌ ÀûÀýÇÑÁö ¿ì·ÁµÇ°í ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ:

COVID-19ÀÇ ´ëÀ¯ÇàÀº ÀÇ·á¿ë ÅÚ·¹ÇÁ·¹Á𽺠·Îº¿ÀÇ Ã¤¿ë°ú °³¹ßÀ» Å©°Ô °¡¼Ó½ÃÄ×½À´Ï´Ù. Áö¿øÀ» Á¦°øÇÏ´Â Áß¿äÇÑ µµ±¸·Î¼­ ÅÚ·¹ÇÁ·¹Á𽺠·Îº¸ ÀÌ ·Îº¿Àº ÇコÄɾî Àü¹®°¡°¡ ȯÀÚ¿Í °¡»ó°ú »óÈ£ ÀÛ¿ëÇÒ ¼ö ÀÖ°Ô Çϰí, ³ôÀº ¼öÁØÀÇ Äɾ À¯ÁöÇϸ鼭 Á÷Á¢ÀûÀÎ Á¢ÃËÀ» ÁÙÀÏ ¼ö ÀÖ¾ú½À´Ï´Ù. Àǻ簡 ¿ø°ÝÀ¸·Î »ýü ½ÅÈ£¸¦ ¸ð´ÏÅ͸µÇϰí Áø´ÜÀ» ³»¸± ¼öµµ ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È Ä«¸Þ¶ó ºÐ¾ß°¡ ÃÖ´ëÈ­µÉ Àü¸Á

Ä«¸Þ¶ó ºÐ¾ß´Â ¿ø°Ý ÇコÄɾ¼­ Çõ½ÅÀ» ÃßÁøÇÏ°í ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ëÀÇ Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Áø´Ü Æò°¡¸¦ ÇÒ ¼ö ÀÖ½À´Ï´Ù. °íÇØ»óµµ(HD) Ä«¸Þ¶ó¿Í 4K Ä«¸Þ¶ó¿Í 360µµ ºñµð¿À ±â´ÉÀ» ÅëÇÕÇÏ¿© Á¤È®ÇÑ Áø´Ü°ú ÀÇ»ç°áÁ¤¿¡ ÇʼöÀûÀÎ ¼¼ºÎ»çÇ×À¸·Î ½Ç½Ã°£ ¿µ»óÀÌ °¡´ÉÇÕ´Ï´Ù. °ú ¼­¸ð±×·¡ÇÇ¿Í °°Àº Ư¼ö Ä«¸Þ¶óÀÇ »ç¿ëÀº ƯÈ÷ Á¶Á÷ÀÇ ¿°Áõ°ú Ç÷·ù ÀÌ»ó°ú °°Àº ¹®Á¦¸¦ °¨ÁöÇÏ´Â °í±Þ Áø´ÜÀ» ¿ëÀÌÇϰÔÇÕ´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)ÀÌ °¡Àå ³ôÀº °ÍÀº ÀÀ±Þ ÀÇ·á ¼­ºñ½º ºÐ¾ßÀÔ´Ï´Ù.

ÀÀ±Þ ÀÇ·á ¼­ºñ½º ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È ±Þ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÅÚ·¹ÇÁ·¹Á𽺠·Îº¿À» ÅëÇÕÇϰí ÀÖ½À´Ï´Ù.ÀÌ ·Îº¿Àº °íÇØ»óµµ Ä«¸Þ¶ó, ¸¶ÀÌÅ©, Áø´Ü Àåºñ µî ÷´Ü Ä¿¹Â´ÏÄÉÀÌ¼Ç µµ±¸¸¦ °®Ãß°í ÀÖ¾î ÀÇ·á Àü¹®°¡°¡ ¸Ö¸® ¶³¾îÁø °÷¿¡¼­ ÇöÀå ÆÀÀ» ¾È³»Çϰí, ȯÀÚ¸¦ Æò°¡Çϰí, Áß¿äÇÑ °áÁ¤À» ³»¸± ¼ö ÀÖ½À´Ï´Ù. ¼­ºñ½º¸¦ ¹ÞÁö ¾Ê´Â Áö¿ª¿¡¼­ Áö¸®Àû À庮À» ±Øº¹Çϰí ÀÇ·á Àü¹®°¡¿¡°Ô ½Å¼ÓÇÏ°Ô ¾×¼¼½ºÇÒ ¼ö ÀÖµµ·Ï µµ¿ÍÁÝ´Ï´Ù.

ÃÖ´ë Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª:

ºÏ¹Ì°¡ ¿¹Ãø ±â°£À» ÅëÇØ ½ÃÀå¿¡¼­ °¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. ·Îº¿Àº °Ç°­ °ü¸® Àü¹®°¡°¡ ȯÀÚ¿Í ¿ø°ÝÀ¸·Î »óÈ£ ÀÛ¿ëÇÒ ¼ö ÀÖ°Ô ÇØÁÖ¸ç, ÀÏ»óÀûÀÎ ÁøÂû°ú ÈÄ¼Ó Äɾ ´ëÇÑ ¹°¸®Àû ÀÎ Âü¿©ÀÇ Çʿ伺À» ÁÙÀÔ´Ï´Ù. °¡»ó °ËÁø°ú »ýü ½ÅÈ£ ¸ð´ÏÅ͸µ, ½Ç½Ã°£ ¿ø°Ý Áö¿øÀ¸·Î ÅÚ·¹ÇÁ·¹Á𽺠·Îº¿Àº ÀÇ»ç¿Í °£È£»ç°¡ ÁúÀ» ¶³¾î¶ß¸®Áö ¾Ê°í ´õ ¸¹Àº ȯÀÚ¸¦ °ü¸®ÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÇÏ´Â °ÍÀ¸·Î, Àü¹®ÀÇ´Â ³óÃ̳ª ÀÇ·á°¡ ¹ÌÄ¡Áö ¸øÇÑ Áö¿ªÀÇ È¯ÀÚ¿¡°Ôµµ ÁøÂûÀ» ½Ç½ÃÇÒ ¼ö ÀÖ¾î ÇコÄɾîÀÇ °ÝÂ÷¸¦ ¸Þ¿ï ¼ö ÀÖ½À´Ï´Ù.

º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)ÀÌ °¡Àå ³ôÀº Áö¿ª:

¿¹Ãø ±â°£ µ¿¾È º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)ÀÌ °¡Àå ³ôÀº °ÍÀº À¯·´À¸·Î ÃßÁ¤µË´Ï´Ù. ¸¹Àº À¯·´ ±¹°¡¿¡¼­´Â ¿ø°Ý ÀÇ·á ¼­ºñ½º¸¦ ´Ù·ç´Â »óȯ Á¤Ã¥À» Áö¿øÇÕ´Ï´Ù. °øÀû ÇコÄɾî ÀÎÇÁ¶ó¿¡ ¿ø°Ý ÇÁ·¹Á𽺠·Îº¿À» ÅëÇÕÇϰí ÀÖ½À´Ï´Ù. ºÎ´ã ¾øÀÌ ÅÚ·¹ÇÁ·¹Á𽺠±â¼úÀ» ÀÌ¿ëÇÒ ¼ö ÀÖ°Ô µÇ¾î ÀÖ½À´Ï´Ù.

¹«·á ÁÖ¹®À» ¹Þ¾Æ¼­ ¸¸µå´Â ¼­ºñ½º:

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃã¼³Á¤ ¿É¼Ç Áß Çϳª¸¦ Á¦°øÇÕ´Ï´Ù.

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

Á¦4Àå Porter's Five Forces ºÐ¼®

Á¦5Àå ¼¼°èÀÇ ÀÇ·á¿ë ÅÚ·¹ÇÁ·¹Á𽺠·Îº¿ ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

Á¦6Àå ¼¼°èÀÇ ÀÇ·á¿ë ÅÚ·¹ÇÁ·¹Á𽺠·Îº¿ ½ÃÀå : À¯Çüº°

Á¦7Àå ¼¼°èÀÇ ÀÇ·á¿ë ÅÚ·¹ÇÁ·¹Á𽺠·Îº¿ ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

Á¦8Àå ¼¼°èÀÇ ÀÇ·á¿ë ÅÚ·¹ÇÁ·¹Á𽺠·Îº¿ ½ÃÀå : Áö¿ªº°

Á¦9Àå ÁÖ¿ä ¹ßÀü

Á¦10Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

BJH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

According to Stratistics MRC, the Global Medical Telepresence Robots Market is accounted for $394.78 million in 2024 and is expected to reach $1251.32 million by 2030 growing at a CAGR of 21.2% during the forecast period. Medical telepresence robots are advanced robotic systems designed to facilitate remote healthcare delivery, allowing healthcare professionals to interact with patients in real-time from a distance. These robots typically feature a combination of video conferencing, high-definition cameras, microphones, and mobility functions, enabling doctors to conduct virtual consultations, monitor patient conditions, and perform diagnostics remotely. Telepresence robots can be equipped with specialized medical tools, such as stethoscopes or vital sign monitors, to further enhance the remote examination process. They offer significant benefits, particularly in underserved or rural areas, where access to healthcare professionals may be limited.

According to America's Health Rankings 2023 Annual Report, in the U.S., over 29 million adults are registered for three or more chronic conditions in 2022.

Market Dynamics:

Driver:

Rising demand for remote healthcare services

The rising demand for remote healthcare services is substantially driving advancements in Medical Telepresence Robots, revolutionizing healthcare delivery. These robots allow healthcare professionals to remotely diagnose, monitor, and even interact with patients in real-time, bridging the gap for individuals in remote or underserved areas. As telemedicine continues to grow, Medical Telepresence Robots are becoming essential tools in providing high-quality care without the need for physical presence. Equipped with features like high-definition cameras, microphones, and robotic arms, these robots enable doctors to conduct virtual consultations, perform remote examinations, and even assist in surgical procedures.

Restraint:

Operational challenges

Medical telepresence robots are facing several operational challenges that hinder their widespread adoption and effectiveness. One key issue is the high cost of these robots, making them inaccessible to many healthcare facilities, especially in resource-limited settings. These robots require sophisticated technology, including reliable internet connections, advanced sensors, and software, which can lead to technical difficulties, such as connectivity issues or system malfunctions. Another challenge is the need for specialized training for healthcare professionals to operate these robots effectively.

Opportunity:

Integration with electronic health records

Integration with electronic health records (EHRs) is enhancing the functionality of medical telepresence robots by enabling seamless access to patient data in real time. These robots, which allow healthcare professionals to remotely diagnose and interact with patients, can now pull up medical histories, test results, medication records, and other relevant information directly from EHR systems. This integration enhances the robot's ability to provide accurate, personalized care during virtual consultations. Doctors can make informed decisions quickly, even when they are not physically present, improving efficiency and reducing errors. Additionally, it allows for better coordination between specialists, healthcare teams, and patients, ensuring that all necessary information is available during telehealth interactions.

Threat:

Data security and privacy concerns

The adoption of medical telepresence robots is hindered by significant concerns surrounding data security and privacy. These robots, which enable remote consultations and surgeries, rely heavily on the transmission of sensitive patient data, such as medical records, images, and personal health information. This creates potential vulnerabilities, as unauthorized access or cyberattacks could lead to data breaches, putting patient confidentiality at risk. There are concerns about the adequacy of encryption and security protocols to protect the vast amounts of data being shared between medical professionals, patients, and robotic systems.

Covid-19 Impact:

The COVID-19 pandemic significantly accelerated the adoption and development of medical telepresence robots. As hospitals faced overwhelming patient volumes and the risk of virus transmission, telepresence robots emerged as a vital tool in providing remote medical consultations, patient monitoring, and support. These robots allowed healthcare professionals to interact with patients virtually, reducing direct contact while maintaining high levels of care. They also enabled doctors to remotely monitor vital signs and provide diagnoses, even from a distance, which was crucial during lockdowns and social distancing measures.

The Cameras segment is expected to be the largest during the forecast period

Cameras segment is expected to dominate the largest share over the estimated period, driving innovations in remote healthcare. These robots, equipped with advanced cameras, enable healthcare professionals to conduct virtual consultations, surgeries, and diagnostic assessments from distant locations. The integration of high-definition (HD) and 4K cameras, along with 360-degree video capabilities, allows for detailed, real-time visuals crucial for accurate diagnosis and decision-making. Cameras with enhanced zoom and optical clarity enable surgeons to perform remote operations with precision. Furthermore, the use of specialized cameras such as infrared and thermal imaging is facilitating advanced diagnostics, particularly in detecting issues like tissue inflammation or blood flow irregularities.

The Emergency Medical Services segment is expected to have the highest CAGR during the forecast period

Emergency Medical Services segment is estimated to grow at a rapid pace during the forecast period. EMS organizations are integrating telepresence robots to enhance their response times and provide real-time consultation between paramedics in the field and specialists in hospitals. These robots are equipped with advanced communication tools, including high-definition cameras, microphones, and diagnostic equipment, enabling medical professionals to guide on-site teams, assess patients, and make critical decisions from a distance. This innovation helps overcome geographical barriers, especially in rural or underserved areas, ensuring quicker access to medical expertise.

Region with largest share:

North America region is poised to hold the largest share of the market throughout the extrapolated period. The rapid growth of medical telepresence robots in North America is significantly enhancing healthcare worker efficiency. These advanced robots enable healthcare professionals to remotely interact with patients, reducing the need for physical presence in routine consultations or follow-up care. By facilitating virtual check-ups, monitoring vital signs, and providing real-time remote assistance, telepresence robots help doctors and nurses to manage a larger volume of patients without compromising quality. Additionally, these robots allow specialists to offer consultations to patients in rural or underserved areas, bridging the healthcare gap.

Region with highest CAGR:

Europe region is estimated to witness the highest CAGR during the projected time frame. Governments and healthcare systems across the region are increasingly recognizing the benefits of telemedicine, particularly in enhancing access to specialized care and reducing healthcare costs. Many European countries are integrating telepresence robots into their public healthcare infrastructure, supported by reimbursement policies that cover telemedicine services. These policies often include provisions for remote consultations, diagnostics, and follow-ups, enabling hospitals and clinics to use telepresence technology without bearing the full financial burden.

Key players in the market

Some of the key players in Medical Telepresence Robots market include Ava Robotics Inc, Blue Ocean Robotics, Cisco Systems, Inc, Furhat Robotics, OhmniLabs, Inc, Samsung Electronics, Teladoc Health, Inc, Vicarious Surgical, Xandex Inc, Xenex Disinfection Services, Transcend Robotics, Yaskawa Electric Corporation, Omron Adept Technologies, Stryker Corporation and Tivic Health Systems.

Key Developments:

In April 2022, OhmniLabs collaborated with Lovell Government Services, a Service-Disabled Veteran-Owned Small Business (SDVOSB), to add Ohmni Telepresence and OhmniClean Robot to government contract vehicles.

In May 2021, OhmniLabs announces the availability of a new Ohmni Modular Robotics Platform that will help speed the development of new mobile robotic solutions. The OhmniLabs platform enables customers to design their own robots from a predefined set of components.

Components Covered:

Types Covered:

End Users Covered:

Regions Covered:

What our report offers:

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

Table of Contents

1 Executive Summary

2 Preface

3 Market Trend Analysis

4 Porters Five Force Analysis

5 Global Medical Telepresence Robots Market, By Component

6 Global Medical Telepresence Robots Market, By Type

7 Global Medical Telepresence Robots Market, By End User

8 Global Medical Telepresence Robots Market, By Geography

9 Key Developments

10 Company Profiling

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â