¿¬ÇÕ ÇнÀ ¼Ö·ç¼Ç ½ÃÀå ¿¹Ãø(-2030³â) : ¹èÆ÷ ¸ðµ¨, Á¶Á÷ ±Ô¸ð, ¿ëµµ, ÃÖÁ¾ »ç¿ëÀÚ ¹× Áö¿ªº° ºÐ¼®
Federated Learning Solutions Market Forecasts to 2030 - Global Analysis By Deployment Model, Organization Size (Small and Medium-sized Enterprises and Large Enterprises), Application, End User and By Geography
»óǰÄÚµå : 1503319
¸®¼­Ä¡»ç : Stratistics Market Research Consulting
¹ßÇàÀÏ : 2024³â 06¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 200+ Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 4,150 £Ü 6,021,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 5,250 £Ü 7,617,000
PDF (2-5 User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷Àå¿¡¼­ 5¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,350 £Ü 9,213,000
PDF & Excel (Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷ÀåÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇÕ´Ï´Ù. Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ¹× Excel ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 7,500 £Ü 10,881,000
PDF & Excel (Global Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 10ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Stratistics MRC¿¡ µû¸£¸é, ¼¼°èÀÇ ¿¬ÇÕ ÇнÀ ¼Ö·ç¼Ç ½ÃÀåÀº 2024³â 1¾ï 3,749¸¸ ´Þ·¯ ±Ô¸ð¿¡¼­ 2030³â¿¡´Â 2¾ï 9,237¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ¿¹Ãø ±â°£ µ¿¾È 13.4%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù.

µ¥ÀÌÅÍÀÇ ÇÁ¶óÀ̹ö½Ã¿Í º¸¾ÈÀ» º¸ÀåÇϸ鼭 ºÐ»êµÈ ±â±â¿Í ¼­¹öµé °£¿¡ Çù·ÂÀûÀ¸·Î ¸ðµ¨À» ÈÆ·ÃÇÒ ¼ö ÀÖ´Â ¼ö´ÜÀ» Á¦°øÇÏ´Â ¿¬ÇÕ ÇнÀ ¼Ö·ç¼ÇÀº ¸Ó½Å·¯´× ºÐ¾ßÀÇ ÆÐ·¯´ÙÀÓ ÀüȯÀ» »ó¡ÇÕ´Ï´Ù. ¿¬ÇÕ ÇнÀÀº ´Ù¾çÇÑ ¼Ò½ºÀÇ ¿ø½Ã µ¥ÀÌÅ͸¦ ´ÜÀÏ ¼­¹ö¿¡ ÅëÇÕÇÏ´Â ´ë½Å, ¸ðµ¨À» ·ÎÄÃ ÈÆ·ÃÀÌ ÀÌ·ç¾îÁö´Â µ¥ÀÌÅÍ À§Ä¡·Î Àü¼ÛÇÕ´Ï´Ù. ±âÃÊ µ¥ÀÌÅÍ´Â Àý´ë °øÀ¯µÇÁö ¾Ê½À´Ï´Ù. ´ë½Å, ·ÎÄÿ¡¼­ ÈÆ·ÃµÈ ¸ðµ¨µéÀÌ °áÇÕµÇ¾î ¼¼°è ¸ðµ¨À» »ý¼ºÇÕ´Ï´Ù. ¶ÇÇÑ, ÀÌ Àü·«Àº º¸¾È ¹®Á¦³ª °³ÀÎÁ¤º¸ º¸È£¹ýÀ¸·Î ÀÎÇØ ¹Î°¨ÇÑ µ¥ÀÌÅ͸¦ °øÀ¯Çϱ⠾î·Á¿î ÀÇ·á, IT, Åë½Å µîÀÇ »ê¾÷¿¡¼­ ƯÈ÷ À¯¿ëÇÏ°Ô È°¿ëµÉ ¼ö ÀÖ½À´Ï´Ù.

¼¼°èº¸°Ç±â±¸(WHO)¿¡ µû¸£¸é, °Ç°­ÀÇ »çȸÀû °áÁ¤ ¿äÀÎÀ» ´Ù·ç´Â °ÍÀº Àüü Àα¸ÀÇ °Ç°­ ÇüÆò¼º°ú °á°ú¸¦ °³¼±ÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÕ´Ï´Ù.

iot ±â±â »ç¿ë Áõ°¡

»ç¹°ÀÎÅͳÝ(IoT)ÀÇ °á°ú·Î ¿¬°áµÈ ±â±âÀÇ ¼ö°¡ ±âÇϱ޼öÀûÀ¸·Î Áõ°¡Çϸ鼭 ³×Æ®¿öÅ© ¿§Áö¿¡¼­ ´ë·®ÀÇ µ¥ÀÌÅ͸¦ »ý¼ºÇϰí ÀÖ½À´Ï´Ù. »ê¾÷¿ë ¼¾¼­ºÎÅÍ ½º¸¶Æ® °¡ÀüÁ¦Ç°¿¡ À̸£±â±îÁö, ÀÌ·¯ÇÑ ±â±âµéÀº »õ·Î¿î °üÁ¡À» ¾ò°í »ý»ê¼ºÀ» Çâ»ó½ÃŰ´Â µ¥ Ȱ¿ëÇÒ ¼ö ÀÖ´Â À¯¿ëÇÑ µ¥ÀÌÅ͸¦ »ý¼ºÇÕ´Ï´Ù. ¿¬ÇÕ ÇнÀÀº ³×Æ®¿öÅ© ¿ë·®¿¡ ºÎ´ãÀ» ÁÖÁö ¾ÊÀ¸¸é¼­ ÀÌ µ¥ÀÌÅ͸¦ ¸Ó½Å·¯´×¿¡ Ȱ¿ëÇÒ ¼ö ÀÖ´Â È®Àå °¡´ÉÇÑ ¹æ¹ýÀ» Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ, ¿¬ÇÕ ÇнÀÀº IoT ±â±â¿¡¼­ ·ÎÄ÷Πµ¥ÀÌÅ͸¦ ó¸®ÇÔÀ¸·Î½á Áß¾Ó ÀúÀå¼Ò³ª ´ë±Ô¸ð µ¥ÀÌÅÍ Àü¼ÛÀÇ Çʿ伺À» ÁÙ¿© ¿§Áö¿¡¼­ÀÇ ½Ç½Ã°£ ºÐ¼®°ú ÀÇ»ç°áÁ¤À» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.

°è»ê°ú Åë½Å¿¡ µå´Â ¾öû³­ ºñ¿ë

¿¬ÇÕ ÇнÀÀº Åë½Å ºñ¿ëÀÌ ³ô°í ¸¹Àº ó¸® ´É·ÂÀ» ÇÊ¿ä·Î ÇÕ´Ï´Ù. ·ÎÄà ÇнÀÀº Âü¿©ÇÏ´Â ¸ðµç ÀåÄ¡¿¡ ÇÊ¿äÇϸç, ƯÈ÷ º¹ÀâÇÑ ¸ðµ¨ÀÇ °æ¿ì ¸®¼Ò½º¸¦ ¸¹ÀÌ ¼ÒºñÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ »ç¾çÀº ±¸½Ä ½º¸¶Æ®ÆùÀ̳ª IoT ¼¾¼­¿Í °°ÀÌ Ã³¸® ´É·ÂÀÌ ³·Àº ÀåÄ¡¿¡´Â ¾î·Æ°í, ¼º´ÉÀÌ ¾ÈÁ¤ÀûÀÌÁö ¾Ê°í Áö¿¬ÀÌ ¹ß»ýÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¼öõ ¶Ç´Â ¼ö¹é¸¸ °³ÀÇ µð¹ÙÀ̽º¸¦ »ç¿ëÇÏ´Â ´ë±Ô¸ð ¹èÆ÷ÀÇ °æ¿ì, ¸ðµ¨ ¾÷µ¥ÀÌÆ®¸¦ ÅëÇÕÇϱâ À§ÇØ µð¹ÙÀ̽º¿Í Áß¾Ó ¼­¹ö °£ÀÇ ºó¹øÇÑ Åë½ÅÀº ¸¹Àº ´ë¿ªÆøÀ» ¼ÒºñÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÇÁ¶óÀ̹ö½Ã¸¦ Áß½ÃÇÏ´Â ºÐ¾ß¿¡¼­ÀÇ ¼ºÀå

¿¬ÇÕÇнÀÀº ÇコÄɾî, ±ÝÀ¶, ¹ý·ü µî µ¥ÀÌÅÍ º¸¾È°ú ÇÁ¶óÀ̹ö½Ã°¡ Áß¿äÇÑ °ü½É»çÀÎ ºÐ¾ß¿¡ Å« °¡´É¼ºÀ» Á¦½ÃÇÕ´Ï´Ù. ÀÇ·á ºÐ¾ß¿¡¼­ ¿¬ÇÕ ÇнÀÀº ȯÀÚÀÇ ÇÁ¶óÀ̹ö½Ã¸¦ º¸È£Çϸ鼭 ¿©·¯ Ŭ¸®´Ð°ú º´¿øÀÇ µ¥ÀÌÅ͸¦ Ȱ¿ëÇÔÀ¸·Î½á Áúº´ ¹ß°ß°ú ȯÀÚ Ä¡·á¸¦ À§ÇÑ ¿¹Ãø ¸ðµ¨ °³¹ßÀ» ÃËÁøÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ±ÝÀ¶ ºÐ¾ß¿¡¼­´Â ¿©·¯ ±ÝÀ¶±â°üÀÇ °³ÀÎ ±ÝÀ¶ µ¥ÀÌÅ͸¦ Ȱ¿ëÇÏ¿© ½Å¿ë Á¡¼ö ¹× ºÎÁ¤ÇàÀ§ ŽÁö¸¦ °³¼±ÇÒ ¼ö ÀÖ½À´Ï´Ù. ·ÎÆßÀº °í°´ÀÇ ±â¹ÐÀ» À¯ÁöÇϸ鼭 ¿¬ÇÕ ÇнÀÀ» ÅëÇØ ¹Î°¨ÇÑ ¹ý·ü ¹®¼­¿Í »ç°Ç ±â·ÏÀ» Á¶»çÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÇÁ¶óÀ̹ö½Ã ¹× º¸¾È¿¡ ´ëÇÑ ¸®½ºÅ©

¿¬ÇÕ ÇнÀÀº µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã¸¦ °³¼±Çϱâ À§ÇÑ °ÍÀÌÁö¸¸, º¸¾È À§ÇèÀº ¿©ÀüÈ÷ Á¸ÀçÇÕ´Ï´Ù. ÀûµéÀº ¸â¹ö½Ê Ãß·Ð ¹× ¸ðµ¨ ¿ªº¯È¯À» Æ÷ÇÔÇÑ ´Ù¾çÇÑ °ø°ÝÀ» ÅëÇØ °øÀ¯µÈ ¸ðµ¨ ¾÷µ¥ÀÌÆ®¿¡¼­ »çÀûÀÎ µ¥ÀÌÅ͸¦ ȹµæÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¾ÇÀÇÀûÀÎ Âü¿©ÀÚ´Â ¿À¿°µÈ µ¥ÀÌÅͳª °áÇÔÀÌ ÀÖ´Â ¸ðµ¨ ¾÷µ¥ÀÌÆ®¸¦ ÈÆ·Ã ÇÁ·Î¼¼½º¿¡ µµÀÔÇÒ ¼ö ÀÖÀ¸¸ç, ÀÌ·Î ÀÎÇØ °á°ú°¡ À§Çè¿¡ óÇϰųª ¸ðµ¨ ¼º´ÉÀÌ ÀúÇ쵃 ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¾ÈÀüÇÑ Áý°è, ÀÌ»ó ¡ÈÄ Å½Áö, Â÷µî ÇÁ¶óÀ̹ö½Ã¿Í °°Àº °­·ÂÇÑ ¹æ¾îÃ¥À» ¸¸µé°í ¹èÆ÷ÇÏ´Â °ÍÀº Áß¿äÇÏÁö¸¸ ¾î·Á¿î ÀÏÀÔ´Ï´Ù.

COVID-19ÀÇ ¿µÇâ

Äڷγª19 »çÅ·ΠÀÎÇØ Çù¾÷ ÇнÀ ¼Ö·ç¼ÇÀÇ µµÀÔÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ´Ù¾çÇÑ ºÐ¾ßÀÇ ±â°üµéÀÌ µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ¹× º¸¾È¿¡ ´ëÇÑ ¾ö°ÝÇÑ ±âÁØÀ» ÁؼöÇϸ鼭 Áß¿äÇÑ ÅëÂû·ÂÀ» ¾ò±â À§ÇØ µ¥ÀÌÅ͸¦ Ȱ¿ëÇϰíÀÚ Çϱ⠶§¹®ÀÔ´Ï´Ù. ºÐ»êÇü µ¥ÀÌÅÍ Ã³¸® ±â¼úÀÇ Çʿ伺Àº ¿ø°Ý ±Ù¹« Æ®·»µå¿Í µðÁöÅÐ ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁü¿¡ µû¶ó ´õ¿í ºÎ°¢µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, °³ÀÎÁ¤º¸º¸È£¹ý¿¡ ÀúÃ˵ÇÁö ¾ÊÀ¸¸é¼­µµ ȯÀÚ °á°ú¿Í ¹ÙÀÌ·¯½º È®»ê ¿¹Ãø ¸ðµ¨À» ¸¸µå´Â °ÍÀÌ ±Þ¼±¹«À̱⠶§¹®¿¡ ÇコÄÉ¾î ¾÷°è¿¡¼­ Çùµ¿ ÇнÀÀº Å« °ü½ÉÀ» ¹Þ°í ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È Ŭ¶ó¿ìµå ±â¹Ý ºÎ¹®ÀÌ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¿¬ÇÕ ÇнÀ ¼Ö·ç¼Ç ½ÃÀå¿¡¼­ Ŭ¶ó¿ìµå ±â¹Ý ºÎ¹®ÀÌ °¡Àå Å« Á¡À¯À²À» Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. Ŭ¶ó¿ìµå ±â¹Ý ¿¬ÇÕ ÇнÀ ¼Ö·ç¼ÇÀº ºñ¿ë È¿À²¼º, È®À强, À¯¿¬¼º Ãø¸é¿¡¼­ ¸î °¡Áö ÀåÁ¡ÀÌ ÀÖ½À´Ï´Ù. Ŭ¶ó¿ìµå ÀÎÇÁ¶óÀÇ ±¤¹üÀ§ÇÑ Ã³¸® ´É·Â°ú ÀúÀå ¿ë·®À» Ȱ¿ëÇÔÀ¸·Î½á ÀÌ·¯ÇÑ ¼Ö·ç¼ÇÀº ±â¾÷ÀÌ ´ë·®ÀÇ ¿¬ÇÕ ÇнÀ °úÁ¦¸¦ È¿°úÀûÀ¸·Î ó¸®Çϰí ó¸®ÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ¶ÇÇÑ, Ŭ¶ó¿ìµå´Â ºÐ»êµÈ ³×Æ®¿öÅ© °£ ¿øÈ°ÇÑ Çù¾÷°ú µ¥ÀÌÅÍ °øÀ¯¸¦ °¡´ÉÇÏ°Ô ÇÏ´Â ±â´ÉÀ» °®Ãß°í ÀÖ¾î Æ¯È÷ ¿©·¯ ÁöÁ¡À» º¸À¯ÇÑ ±â¾÷µé¿¡°Ô ¿¬ÇÕ ÇнÀÀ» À§ÇÑ ÃÖÀûÀÇ È¯°æÀÔ´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµÇ´Â Áß¼Ò±â¾÷(SME) ºÎ¹®

¿¬ÇÕ ÇнÀ ¼Ö·ç¼Ç ½ÃÀåÀÇ Áß¼Ò±â¾÷(SME) ºÎ¹®Àº °¡Àå ³ôÀº CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. º¸¾È°ú ÇÁ¶óÀ̹ö½Ã¸¦ Èñ»ýÇÏÁö ¾Ê°í µ¥ÀÌÅÍ ±â¹Ý ÀλçÀÌÆ®¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó Áß¼Ò±â¾÷Àº ¿¬ÇÕ ÇнÀ ¼Ö·ç¼ÇÀ» äÅÃÇÏ´Â ºñÀ²ÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Áß¼Ò±â¾÷Àº ´ë±â¾÷°ú ´Þ¸® ÀüÅëÀûÀÎ Áß¾ÓÁýÁᫎ µ¥ÀÌÅÍ Ã³¸®¿¡ ÇÊ¿äÇÑ ÀÎÇÁ¶ó³ª ¸®¼Ò½º°¡ ÃæºÐÇÏÁö ¾ÊÀº °æ¿ì°¡ ¸¹½À´Ï´Ù. Çùµ¿ÇнÀÀº Áß¼Ò±â¾÷ÀÌ ºÐ»êµÈ µ¥ÀÌÅÍ·Î ¸Ó½Å·¯´×ÀÇ ÀáÀç·ÂÀ» Ȱ¿ëÇÒ ¼ö ÀÖ´Â Àú·ÅÇϰí È®Àå °¡´ÉÇÑ ´ë¾ÈÀ» Á¦°øÇÕ´Ï´Ù.

ÃÖ´ë ½ÃÀå Á¡À¯À²À» °¡Áø Áö¿ª

ºÏ¹Ì°¡ ¿¬ÇÕ ÇнÀ ¼Ö·ç¼Ç ½ÃÀå¿¡¼­ °¡Àå Å« Á¡À¯À²À» Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. ÁÖ¿ä ½ÃÀå ±â¾÷ÀÇ °­·ÂÇÑ Á¸Àç°¨, ±â¼ú ½ÅÈï±¹ ½ÃÀå, ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼­ ÷´Ü ±â¼úÀÇ ºü¸¥ äÅÃÀÌ ÀÌ·¯ÇÑ ¿ìÀ§¸¦ Á¡ÇÏ´Â ÀÌÀ¯ÀÔ´Ï´Ù. ¿¬ÇÕ ÇнÀ ¼Ö·ç¼ÇÀº ºÏ¹ÌÀÇ ÅºÅºÇÑ IT ÀÎÇÁ¶ó, ¾çÈ£ÇÑ ±ÔÁ¦ ȯ°æ, R&D¿¡ ´ëÇÑ ´ë±Ô¸ð ÅõÀÚ·Î ÀÎÇØ ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÇコÄɾî, ±ÝÀ¶, ¼Ò¸Å, Åë½Å µîÀÇ »ê¾÷¿¡¼­ ¿¬ÇÕ ÇнÀÀ» äÅÃÇÏ´Â °ÍÀº ÀÌ Áö¿ªÀÇ µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ¹× º¸¾È¿¡ ´ëÇÑ Á߿伺°ú °³ÀÎÈ­µÈ ¼­ºñ½º ¹× ¿¹Ãø ºÐ¼®¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ±âÀÎÇϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª

¿¬ÇÕ ÇнÀ ¼Ö·ç¼Ç ½ÃÀåÀº ¾Æ½Ã¾ÆÅÂÆò¾ç¿¡¼­ °¡Àå ³ôÀº CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±Þ¼ÓÇÑ µðÁöÅÐ Çõ½Å, Ŭ¶ó¿ìµå ±â¹Ý ±â¼ú äÅà Ȯ´ë, ´Ù¾çÇÑ »ê¾÷ ºÐ¾ßÀÇ AI ¹× ¸Ó½Å·¯´×¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡°¡ ÀÌ·¯ÇÑ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎ Áß ÀϺÎÀÔ´Ï´Ù. Áß±¹, Àεµ, ÀϺ», Çѱ¹ µîÀÇ ±¹°¡¿¡¼­´Â µ¥ÀÌÅÍ ºÐ¼®, IoT, ¿§Áö ÄÄÇ»ÆÃÀÌ Å©°Ô ¹ßÀüÇϰí ÀÖ¾î, Çù¾÷ ÇнÀ°ú °°Àº ÇÁ¶óÀ̹ö½Ã¸¦ º¸È£ÇÏ´Â ¸Ó½Å·¯´× ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ¹× º¸¾È¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁö°í, Çõ½Å°ú µðÁöÅÐÈ­¸¦ Àå·ÁÇÏ´Â Á¤ºÎÀÇ ÀÌ´Ï¼ÅÆ¼ºê´Â ¾Æ½Ã¾ÆÅÂÆò¾ç ½ÃÀå ±âȸ¸¦ È®´ëÇÏ´Â µ¥ ±â¿©Çϰí ÀÖ½À´Ï´Ù.

¹«·á Ä¿½ºÅ͸¶ÀÌ¡ ¼­ºñ½º

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.
  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀûÀÎ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(ÃÖ´ë 3°³»ç)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡º° ½ÃÀå ÃßÁ¤Ä¡, ¿¹Ãø, CAGR(ÁÖ: Ÿ´ç¼º È®Àο¡ µû¶ó ´Ù¸§)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû ÀÔÁö, Àü·«Àû Á¦ÈÞ¸¦ ±â¹ÝÀ¸·Î ÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

Á¦4Àå PorterÀÇ Five Forces ºÐ¼®

Á¦5Àå ¼¼°èÀÇ ¿¬ÇÕ ÇнÀ ¼Ö·ç¼Ç ½ÃÀå : Àü°³ ¸ðµ¨º°

Á¦6Àå ¼¼°èÀÇ ¿¬ÇÕ ÇнÀ ¼Ö·ç¼Ç ½ÃÀå : Á¶Á÷ ±Ô¸ðº°

Á¦7Àå ¼¼°èÀÇ ¿¬ÇÕ ÇнÀ ¼Ö·ç¼Ç ½ÃÀå : ¿ëµµº°

Á¦8Àå ¼¼°èÀÇ ¿¬ÇÕ ÇнÀ ¼Ö·ç¼Ç ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

Á¦9Àå ¼¼°èÀÇ ¿¬ÇÕ ÇнÀ ¼Ö·ç¼Ç ½ÃÀå : Áö¿ªº°

Á¦10Àå ÁÖ¿ä ¹ßÀü

Á¦11Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

According to Stratistics MRC, the Global Federated Learning Solutions Market is accounted for $137.49 million in 2024 and is expected to reach $292.37 million by 2030 growing at a CAGR of 13.4% during the forecast period. Federated learning solutions, which provide a means of training models cooperatively across decentralized devices or servers while guaranteeing data privacy and security, represent a paradigm shift in the field of machine learning. Federated learning sends models to the data locations, where local training takes place, as an alternative to combining raw data from various sources into a single server. The underlying data is never shared; instead, the locally trained models are combined to produce a global model. Moreover, this strategy is especially helpful in industries like healthcare, finance, and telecommunications, where security concerns and privacy laws make it difficult to share sensitive data.

According to the World Health Organization (WHO), addressing social determinants of health is crucial for improving health equity and outcomes across populations.

Market Dynamics:

Driver:

Increasing use of iot devices

The number of connected devices has increased exponentially as a result of the Internet of Things (IoT), producing massive amounts of data at the network's edge. These gadgets, which range from industrial sensors to smart home appliances, generate useful data that can be utilized to gain new perspectives and boost productivity. Without taxing network capacity, federated learning provides a scalable way to use this data for machine learning. Additionally, federated learning enables real-time analytics and decision-making at the edge by reducing the need for central storage and large-scale data transmission by processing data locally on IoT devices.

Restraint:

Exorbitant costs of computation and communication

Federated learning is expensive to communicate with and requires a lot of processing power. Local training is required for every participating device, and it can be resource-intensive, particularly for complex models. These specifications may be difficult for devices with low processing power, like outdated smartphones or IoT sensors, which could result in inconsistent performance and possible delays. Furthermore, in large-scale deployments with thousands or millions of devices, frequent communication between the devices and the central server to aggregate model updates can consume a large amount of bandwidth.

Opportunity:

Growth in privacy-concerned sectors

Federated learning presents a great deal of potential for sectors like healthcare, finance, and law, where data security and privacy are critical concerns. By utilizing data from several clinics and hospitals while protecting patient privacy, federated learning in healthcare can facilitate the creation of predictive models for illness detection and patient care. Moreover, in the financial sector, it can improve credit scoring and fraud detection by leveraging private financial data from multiple institutions. While preserving client confidentiality, legal firms can use federated learning to examine delicate legal documents and case histories.

Threat:

Risks to privacy and security

Federated learning is intended to improve data privacy, but security risks still exist. A variety of attacks, including membership inference and model inversion, can be launched by adversaries to obtain private data from the shared model updates. Malicious participants may also introduce tainted data or faulty model updates into the training process, which could result in compromised results or worse model performance. Additionally, it's important but difficult to create and deploy strong defenses like secure aggregation, anomaly detection, and differential privacy.

Covid-19 Impact:

The COVID-19 pandemic has expedited the implementation of federated learning solutions, as institutions from diverse sectors aim to utilize data for crucial insights while upholding strict standards for data privacy and security. The necessity for decentralized data processing technologies was brought to light by the trend toward remote work and the growing reliance on digital infrastructure. Furthermore, federated learning has attracted a lot of interest in the healthcare industry because of the pressing need to create predictive models for patient outcomes and virus spread without breaking privacy laws.

The Cloud-based segment is expected to be the largest during the forecast period

In the market for federated learning solutions, the cloud-based segment commands the largest share. Solutions for cloud-based federated learning have several benefits in terms of cost-effectiveness, scalability, and flexibility. By utilizing the extensive processing power and storage capacity of cloud infrastructure, these solutions help enterprises effectively handle and process massive federated learning assignments. Moreover, the cloud is a perfect environment for federated learning because of its built-in capacity to enable smooth collaboration and data sharing across dispersed networks, especially for businesses with multiple locations.

The Small and Medium-sized Enterprises (SMEs) segment is expected to have the highest CAGR during the forecast period

The Small and Medium-sized Enterprises (SMEs) segment of the Federated Learning Solutions Market is anticipated to grow at the highest CAGR. Due to the increasing demand for data-driven insights without sacrificing security and privacy, SMEs are adopting federated learning solutions at a rate that is increasing. SMEs frequently lack the substantial infrastructure and resources needed for conventional centralized data processing, in contrast to large corporations. Federated learning offers SMEs an affordable and expandable substitute that lets them leverage the potential of machine learning on decentralized data.

Region with largest share:

North America holds the largest market share in the Federated Learning Solutions market. The strong presence of important market players, technological developments, and the rapid adoption of cutting-edge technologies across a wide range of industries are all credited with this dominance. Federated learning solutions are growing due to North America's robust IT infrastructure, favorable regulatory environment, and large investments in research and development. Moreover, the adoption of federated learning in industries like healthcare, finance, retail, and telecommunications is fueled by the region's emphasis on data privacy and security, as well as the rising demand for personalized services and predictive analytics.

Region with highest CAGR:

The market for Federated Learning Solutions is anticipated to grow at the highest CAGR in Asia-Pacific. Rapid digital transformation, growing cloud-based technology adoption, and rising investments in AI and machine learning across a range of industry verticals are some of the factors driving this growth. Significant progress in data analytics, IoT, and edge computing is being made in countries like China, India, Japan, and South Korea, which is increasing demand for privacy-preserving machine learning solutions like federated learning. Additionally, the growing awareness of data privacy and security concerns, along with government initiatives to encourage innovation and digitalization, all contribute to the expanding market opportunities in the Asia-Pacific region.

Key players in the market

Some of the key players in Federated Learning Solutions market include Microsoft Corporation, DataFleets Ltd, IBM Corporation, Alphabet Inc, Nvidia Corporation, Enveil Inc, Owkin Inc., Edge Delta Inc, Intellegens Ltd, Secure AI Labs, Cloudera Inc and Sherpa.ai.

Key Developments:

In June 2024, Multinational technology company IBM and Rapidus Corporation, a manufacturer of advanced logic semiconductors, announced a joint development partnership aimed at establishing mass production technologies for chiplet packages. Through this agreement, Rapidus will receive packaging technology from IBM for high-performance semiconductors, and the two companies will collaborate with the aim to further innovate in this space.

In May 2024, Microsoft Corp and Brookfield Asset Management's renewable energy arm has signed a record-breaking clean energy agreement, according to a statement released Wednesday. The partnership comes as Microsoft ramps up its investment in artificial intelligence, Bloomberg reported. Tech companies are increasingly seeking clean energy solutions to meet their own sustainability goals while grappling with rising overall energy demands.

In February 2024, Google announced a series of Power Purchase Agreements (PPAs) across Europe for more than 700 MW of clean energy, enabling the company to reach more than 90% carbon-free energy in areas including the Netherlands, Italy and Poland, and close to 85% in Belgium in the next two years.

Deployment Models Covered:

Organization Sizes Covered:

Applications Covered:

End Users Covered:

Regions Covered:

What our report offers:

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

Table of Contents

1 Executive Summary

2 Preface

3 Market Trend Analysis

4 Porters Five Force Analysis

5 Global Federated Learning Solutions Market, By Deployment Model

6 Global Federated Learning Solutions Market, By Organization Size

7 Global Federated Learning Solutions Market, By Application

8 Global Federated Learning Solutions Market, By End User

9 Global Federated Learning Solutions Market, By Geography

10 Key Developments

11 Company Profiling

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â