¼¼°èÀÇ ¿¬ÇÕ ÇнÀ ¼Ö·ç¼Ç ½ÃÀå ±Ô¸ð Á¶»ç ¹× ¿¹Ãø : ¿ëµµº°, ¾÷°èº°, Áö¿ªº° ºÐ¼®(2023-2030³â)
Global Federated Learning Solutions Market Size study & Forecast, by Application, by Verticals and Regional Analysis, 2023-2030
»óǰÄÚµå
:
1355715
¸®¼Ä¡»ç
:
Bizwit Research & Consulting LLP
¹ßÇàÀÏ
:
2023³â 09¿ù
ÆäÀÌÁö Á¤º¸
:
¿µ¹®
¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
¤± Add-on °¡´É: °í°´ÀÇ ¿äû¿¡ µû¶ó ÀÏÁ¤ÇÑ ¹üÀ§ ³»¿¡¼ CustomizationÀÌ °¡´ÉÇÕ´Ï´Ù. ÀÚ¼¼ÇÑ »çÇ×Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.
¼¼°èÀÇ ¿¬ÇÕ ÇнÀ ¼Ö·ç¼Ç ½ÃÀåÀº 2022³â¿¡ ¾à 1¾ï 1,480¸¸ ´Þ·¯·Î Æò°¡µÇ¸ç, ¿¹Ãø ±â°£ÀÎ 2023-2030³â 10.6% ÀÌ»óÀÇ °ÇÀüÇÑ ¼ºÀå·ü·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù.
¿¬ÇÕ ÇнÀÀº ½Å·ÚÇÒ ¼ö ¾ø°í ´À¸° ³×Æ®¿öÅ© Á¢¼ÓÀ» °¡Áø ´Ù¼öÀÇ Å¬¶óÀÌ¾ðÆ®¿¡ ºÐ»êµÈ µ¥ÀÌÅ͸¦ »ç¿ëÇÏ¿© Áß¾ÓÁýÁᫎ ¸ðµ¨À» ÇнÀÇÏ´Â ¸Ó½Å·¯´× Á¢±Ù¹ýÀÔ´Ï´Ù. ¿¬ÇÕ ÇнÀ ¼Ö·ç¼Ç ½ÃÀåÀº »ç¹°ÀÎÅͳÝ(IoT) µµÀÔ Áõ°¡, ¿§Áö ÄÄÇ»ÆÃ ¼ö¿ä Áõ°¡ µîÀÇ ¿äÀÎÀ¸·Î ÀÎÇØ ¼ºÀå¼¼¸¦ º¸À̰í ÀÖ½À´Ï´Ù. È®´ëµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¿§Áö ÄÄÇ»ÆÃÀÇ Ã¤Åà Áõ°¡´Â ½Ç½Ã°£ ÀÇ»ç°áÁ¤À» °¡´ÉÇÏ°Ô Çϰí, µ¥ÀÌÅÍ Àü¼ÛÀÇ Çʿ伺À» ÁÙÀ̸ç, ÇÁ¶óÀ̹ö½Ã¿Í º¸¾ÈÀ» °ÈÇÔÀ¸·Î½á Federated Learning Solutions ½ÃÀå¿¡ ±àÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.
Statista¿¡ µû¸£¸é 2022³â ¼¼°è ¿§Áö ÄÄÇ»ÆÃÀº 2025³â±îÁö ¾à 274¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, IoT µð¹ÙÀ̽ºÀÇ º¸±ÞÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ¹æ´ëÇÑ ¾çÀÇ ºÐ»êÇü µ¥ÀÌÅͰ¡ »ý¼ºµÇ°í, ÀÌ·¯ÇÑ µð¹ÙÀ̽º °£ÀÇ ¾ÈÀüÇϰí È¿À²ÀûÀÎ ¸ðµ¨ ÇнÀÀ» °¡´ÉÇÏ°Ô ÇÏ´Â ¿¬°è ÇнÀ ¼Ö·ç¼ÇÀÇ Çʿ伺ÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â ¿¬ÇÕ ÇнÀ ¼Ö·ç¼Ç ½ÃÀåÀÇ ¼ºÀå°ú È®´ë¿¡ ±â¿©Çϰí ÀÖÀ¸¸ç, 2022³â Statista¿¡ µû¸£¸é ¼¼°è »ç¹°ÀÎÅͳÝ(IoT) ±â±â ¼ö´Â 2020³â 97¾ï ´Þ·¯¿¡¼ 2030³â¿¡´Â 3¹è °¡±îÀÌ Áõ°¡ÇÑ 290¾ï ´Þ·¯ ÀÌ»óÀÌ µÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. 2030³â±îÁö IoT ±â±â ¼ö°¡ °¡Àå ¸¹Àº ±¹°¡´Â Áß±¹À¸·Î, ¼ÒºñÀÚ°¡ »ç¿ëÇÏ´Â ±â±â ¼ö°¡ ¾à 50¾ï °³¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¶ÇÇÑ ¾ÈÀüÇϰí È¿À²ÀûÀÎ µ¥ÀÌÅÍ ºÐ¼®¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿Í ¿¬°è ÇнÀ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ±â¼ú ¹ßÀüÀº À¯¸®ÇÑ ¼ºÀå ±âȸ¸¦ âÃâÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. ±×·¯³ª ¼÷·ÃµÈ ±â¼ú Àü¹®°¡ÀÇ ºÎÁ·°ú µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ¹× º¸¾È ¹®Á¦´Â 2023-2030³âÀÇ ¿¹Ãø ±â°£ Áß ½ÃÀå ¼ºÀåÀ» ÀúÇØÇÏ´Â ¿äÀÎÀ¸·Î ÀÛ¿ëÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.
¼¼°èÀÇ ¿¬ÇÕ ÇнÀ ¼Ö·ç¼Ç ½ÃÀå Á¶»ç¿¡¼ °í·ÁµÈ ÁÖ¿ä Áö¿ªÀº ¾Æ½Ã¾ÆÅÂÆò¾ç, ºÏ¹Ì, À¯·´, ¶óƾ¾Æ¸Þ¸®Ä«, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«Áö¿ªÀÔ´Ï´Ù. ºÏ¹Ì´Â ¾ö°ÝÇÑ µ¥ÀÌÅÍ ±ÔÁ¦, °³ÀÎ Á¤º¸ º¸È£ ¹®Á¦, ±â¼ú ¹ßÀü, ÀΰøÁö´É ¹× ºòµ¥ÀÌÅÍ ºÐ¼®°ú °°Àº Çõ½ÅÀûÀÎ ±â¼úÀÇ »ç¿ë Áõ°¡·Î ÀÎÇØ ¿¬ÇÕ ÇнÀ ¼Ö·ç¼Ç äÅÃÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ¿¹Ãø ±â°£ Áß ½ÃÀåÀ» ÁÖµµÇß½À´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾çÀº ¸ð¹ÙÀÏ ±â±â ¹× IoT »ç¿ë Áõ°¡, ÷´Ü ±â¼ú äÅà Áõ°¡ µîÀÇ ¿äÀÎÀ¸·Î ÀÎÇØ ¿¹Ãø ±â°£ Áß °¡Àå ºü¸£°Ô ¼ºÀåÇÏ´Â Áö¿ªÀÔ´Ï´Ù.
ÀÌ ¿¬±¸ÀÇ ¸ñÀûÀº ÃÖ±Ù ¸î ³â°£ ´Ù¾çÇÑ ºÎ¹®°ú ±¹°¡ ½ÃÀå ±Ô¸ð¸¦ ÆÄ¾ÇÇϰí ÇâÈÄ ¸î ³â°£ ½ÃÀå ±Ô¸ð¸¦ ¿¹ÃøÇÏ´Â °ÍÀÔ´Ï´Ù. ÀÌ º¸°í¼´Â Á¶»ç ´ë»ó ±¹°¡ÀÇ »ê¾÷ÀÇ ÁúÀû/¾çÀû Ãø¸éÀ» ¸ðµÎ Æ÷ÇÔÇϵµ·Ï ¼³°èµÇ¾ú½À´Ï´Ù.
¶ÇÇÑ ½ÃÀåÀÇ ¹Ì·¡ ¼ºÀåÀ» ±ÔÁ¤ÇÏ´Â ÃËÁø¿äÀΰú °úÁ¦¿Í °°Àº Áß¿äÇÑ Ãø¸é¿¡ ´ëÇÑ ÀÚ¼¼ÇÑ Á¤º¸µµ Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ ÁÖ¿ä ±â¾÷ÀÇ °æÀï ±¸µµ¿Í Á¦Ç° Á¦°ø¿¡ ´ëÇÑ »ó¼¼ÇÑ ºÐ¼®°ú ÇÔ²² ÀÌÇØ°ü°èÀÚµéÀÌ ÅõÀÚÇÒ ¼ö ÀÖ´Â ¹Ì½ÃÀû ½ÃÀå¿¡¼ÀÇ ÀáÀçÀû ±âȸµµ Æ÷ÇÔÇÕ´Ï´Ù.
¸ñÂ÷
Á¦1Àå ÁÖ¿ä ¿ä¾à
Á¦2Àå ¼¼°èÀÇ ¿¬ÇÕ ÇнÀ ¼Ö·ç¼Ç ½ÃÀåÀÇ Á¤ÀÇ¿Í ¹üÀ§
- Á¶»ç ¸ñÀû
- ½ÃÀåÀÇ Á¤ÀÇ¿Í ¹üÀ§
- Á¶»ç ´ë»ó³â
- ÅëÈ È¯»êÀ²
Á¦3Àå ¼¼°èÀÇ ¿¬ÇÕ ÇнÀ ¼Ö·ç¼Ç ½ÃÀå ¿ªÇÐ
- ¿¬ÇÕ ÇнÀ ¼Ö·ç¼Ç ½ÃÀåÀÇ ¿µÇ⠺м®(2020-2030³â)
- ½ÃÀå ÃËÁø¿äÀÎ
- »ç¹°ÀÎÅͳÝ(IoT)ÀÇ Ã¤Åà Áõ°¡
- ¿§Áö ÄÄÇ»ÆÃÀÇ ¼ö¿ä Áõ°¡
- ½ÃÀåÀÌ ÇØ°áÇØ¾ß ÇÒ °úÁ¦
- ¼÷·Ã±â¼úÀÚÀÇ ºÎÁ·
- µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã¿Í º¸¾È¿¡ ´ëÇÑ ¿ì·Á
- ½ÃÀå ±âȸ
- ¾ÈÀüÇϰí È¿À²ÀûÀÎ µ¥ÀÌÅÍ ºÐ¼®¿¡ ´ëÇÑ ¼ö¿äÀÇ Áõ°¡
- ¿¬ÇÕ ÇнÀ ¼Ö·ç¼ÇÀÇ ±â¼úÀû Áøº¸
Á¦4Àå ¼¼°èÀÇ ¿¬ÇÕ ÇнÀ ¼Ö·ç¼Ç ½ÃÀå »ê¾÷ ºÐ¼®
- Porter's 5 Force ¸ðµ¨
- °ø±Þ ±â¾÷ÀÇ ±³¼··Â
- ±¸¸ÅÀÚÀÇ ±³¼··Â
- ½Å±Ô ÁøÃâ¾÷üÀÇ À§Çù
- ´ëüǰÀÇ À§Çù
- °æÀï ±â¾÷°£ °æÀï °ü°è
- Porter's 5 Force ¿µÇ⠺м®
- PEST ºÐ¼®
- Á¤Ä¡
- °æÁ¦
- »çȸ
- 񃬣
- ȯ°æ
- ¹ý·ü
- ÁÖ¿ä ÅõÀÚ ±âȸ
- ÁÖ¿ä ¼º°ø Àü·«
- COVID-19 ¿µÇ⠺м®
- ÆÄ±«Àû µ¿Çâ
- ¾÷°è Àü¹®°¡ÀÇ ½ÃÁ¡
- ¾Ö³Î¸®½ºÆ®ÀÇ °á·Ð¡¤Á¦¾È
Á¦5Àå ¼¼°èÀÇ ¿¬ÇÕ ÇнÀ ¼Ö·ç¼Ç ½ÃÀå : ¿ëµµº°
- ½ÃÀå ½º³À¼ô
- ¼¼°èÀÇ ¿¬ÇÕ ÇнÀ ¼Ö·ç¼Ç ½ÃÀå : ¿ëµµº°, ½ÇÀû - ÀáÀç·Â ºÐ¼®
- ¼¼°èÀÇ ¿¬ÇÕ ÇнÀ ¼Ö·ç¼Ç ½ÃÀå : ¿ëµµº° ÃßÁ¤¡¤¿¹Ãø 2020-2030³â
- ¿¬ÇÕ ÇнÀ ¼Ö·ç¼Ç ½ÃÀå, ÇÏÀ§ ºÎ¹®º° ºÐ¼®
- Drug Discovery
- ¼îÇΠüÇè ÆÛ½º³Î¶óÀÌÁ¦À̼Ç
- µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã¿Í º¸¾È °ü¸®
- ¸®½ºÅ© °ü¸®
- »ê¾÷¿ë »ç¹°ÀÎÅͳÝ
- ¿Â¶óÀÎ ½Ã°¢ ¹°Ã¼ ŽÁö
- Áõ°Çö½Ç/°¡»óÇö½Ç
- ±âŸ
Á¦6Àå ¼¼°èÀÇ ¿¬ÇÕ ÇнÀ ¼Ö·ç¼Ç ½ÃÀå : ¾÷°èº°
- ½ÃÀå ½º³À¼ô
- ¼¼°èÀÇ ¿¬ÇÕ ÇнÀ ¼Ö·ç¼Ç ½ÃÀå : ºÐ¾ßº°, ½ÇÀû - ÀáÀç·Â ºÐ¼®
- ¼¼°èÀÇ ¿¬ÇÕ ÇнÀ ¼Ö·ç¼Ç ½ÃÀå : ºÐ¾ßº° ÃßÁ¤¡¤¿¹Ãø 2020-2030³â
- ¿¬ÇÕ ÇнÀ ¼Ö·ç¼Ç ½ÃÀå, ÇÏÀ§ ºÎ¹®º° ºÐ¼®
- ÀºÇà, ±ÝÀ¶ ¼ºñ½º, º¸Çè
- ÇコÄɾî, »ý¸í°úÇÐ
- ¼Ò¸Å, E-Commerce
- Á¦Á¶¾÷
- ¿¡³ÊÁö¿Í À¯Æ¿¸®Æ¼
- ÀÚµ¿Â÷¡¤¿î¼Û
- IT¡¤Åë½Å
- ±âŸ
Á¦7Àå ¼¼°èÀÇ ¿¬ÇÕ ÇнÀ ¼Ö·ç¼Ç ½ÃÀå : Áö¿ªº° ºÐ¼®
- ÁÖ¿ä ±¹°¡
- ÁÖ¿ä ½ÅÈï ±¹°¡
- ¿¬ÇÕ ÇнÀ ¼Ö·ç¼Ç ½ÃÀå, Áö¿ªº° ½ÃÀå ½º³À¼ô
- ºÏ¹Ì
- ¹Ì±¹
- ¾ÖÇø®ÄÉÀÌ¼Ç ÃßÁ¤¡¤¿¹Ãø, 2020-2030³â
- ºÐ¾ßº° ÃßÁ¤¡¤¿¹Ãø, 2020-2030³â
- ij³ª´Ù
- À¯·´ÀÇ ¿¬ÇÕ ÇнÀ ¼Ö·ç¼Ç ½ÃÀå ½º³À¼ô
- ¿µ±¹
- µ¶ÀÏ
- ÇÁ¶û½º
- ½ºÆäÀÎ
- ÀÌÅ»¸®¾Æ
- ±âŸ À¯·´
- ¾Æ½Ã¾ÆÅÂÆò¾ç Federated Learning Solutions ½ÃÀå ½º³À¼ô
- Áß±¹
- Àεµ
- ÀϺ»
- È£ÁÖ
- Çѱ¹
- ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
- ¶óƾ¾Æ¸Þ¸®Ä«ÀÇ ¿¬ÇÕ ÇнÀ ¼Ö·ç¼Ç ½ÃÀå ½º³À¼ô
- Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
- »ç¿ìµð¾Æ¶óºñ¾Æ
- ³²¾ÆÇÁ¸®Ä«°øÈ±¹
- ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
Á¦8Àå °æÀï Á¤º¸
- ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®
- ÁÖ¿ä ½ÃÀå Àü·«
- ±â¾÷ °³¿ä
- Intellegens Ltd.
- ÁÖ¿ä Á¤º¸
- °³¿ä
- À繫(µ¥ÀÌÅÍÀÇ °¡¿ë¼º¿¡ µû¸§)
- Á¦Ç° °³¿ä
- ÃÖ±Ù µ¿Çâ
- Microsoft Corporation
- Intel Corporation
- Cloudera Inc
- Edge Delta Inc.
- International Business Machines Corporation
- Enveil Inc.
- DataFleets Ltd
- Alphabet Inc
- Nvidia Corporation
Á¦9Àå Á¶»ç ÇÁ·Î¼¼½º
- Á¶»ç ÇÁ·Î¼¼½º
- µ¥ÀÌÅÍ ¸¶ÀÌ´×
- ºÐ¼®
- ½ÃÀå ÃßÁ¤
- °ËÁõ
- ÃâÆÇ
- Á¶»ç ¼Ó¼º
- Á¶»ç ÀüÁ¦Á¶°Ç
KSA
¿µ¹® ¸ñÂ÷
Global Federated Learning Solutions Market is valued at approximately USD 114.8 million in 2022 and is anticipated to grow with a healthy growth rate of more than 10.6% over the forecast period 2023-2030. Federated Learning is a machine learning approach that trains a centralized model using data distributed across numerous clients with unreliable and slow network connections. It enables training algorithms on decentralized edge devices or servers without sharing the underlying data. The Federated Learning Solutions Market is expanding because of factors such as the rising adoption of the Internet of Things and rising demand of Edge Computing. Moreover, the rising adoption of edge computing positively impacts the Federated Learning Solutions market by enabling real-time decision-making and reducing the need for data transfer, enhancing privacy and security.
According to Statista in 2022, The global edge computing is expected to reach approximately USD 274 billion by the year 2025. The rising adoption of IoT devices generates huge amounts of distributed data, driving the need for federated learning solutions that enable secure and efficient model training across these devices. This trend contributes to the growth and expansion of the Federated Learning Solutions Market. According to Statista in 2022, the number of Internet of Things (IoT) devices worldwide is expected to nearly triple from USD 9.7 billion in 2020 to over USD 29 billion by 2030. By 2030, China is projected to have the largest number of IoT devices, with around 5 billion devices used by consumers. In addition, increasing demand for secure and efficient data analysis and technological advancements in federated learning solutions would create a lucrative growth opportunity. However, a lack of skilled technical expertise and data privacy and security concerns stifles market growth throughout the forecast period of 2023-2030.
The key regions considered for the Global Federated Learning Solutions Market study includes Asia Pacific, North America, Europe, Latin America, and Middle East & Africa. North America dominated the market during the forecast period owing to the, rising adoption of federated learning solutions driven by stringent data regulations, privacy concerns, and technological advancements and the growing use of innovative technologies such as Artificial intelligence and big data analytics increase market growth in the region. Asia Pacific is the fastest growing region during the forecast period owing to the factors such as the rising utilization of mobile devices and IoT, along with increase adoption of advanced technologies in this region.
Major market player included in this report are:
- Intellegens Ltd.
- Microsoft Corporation
- Intel Corporation
- Cloudera Inc,
- Edge Delta Inc.,
- International Business Machines Corporation,
- Enveil Inc.,
- DataFleets Ltd,
- Alphabet Inc,
- Nvidia Corporation
Recent Developments in the Market:
- In March 2022, The Communications Intelligence Platform, a Clara Holoscan solution created by NVIDIA, has now been upgraded to MGX. This one-of-a-kind system provides end-to-end capabilities for AI technologies, intelligent healthcare manufacturing, and implantable augmentation deployment.
- In June 2022 Intel Corporation collaborated with Aster Innovation and Research Centre and CARPL, to create a secure federated education platform. This alliance seeks to promote innovation in a variety of fields, including diagnosis, genomics, drug discovery, and predictive healthcare.
Global Federated Learning Solutions Market Report Scope:
- Historical Data: 2020 - 2021
- Base Year for Estimation: 2022
- Forecast period: 2023-2030
- Report Coverage: Revenue forecast, Company Ranking, Competitive Landscape, Growth factors, and Trends
- Segments Covered: Application, Verticals, Region
- Regional Scope: North America; Europe; Asia Pacific; Latin America; Middle East & Africa
- Customization Scope: Free report customization (equivalent up to 8 analyst's working hours) with purchase. Addition or alteration to country, regional & segment scope*
The objective of the study is to define market sizes of different segments & countries in recent years and to forecast the values to the coming years. The report is designed to incorporate both qualitative and quantitative aspects of the industry within countries involved in the study.
The report also caters detailed information about the crucial aspects such as driving factors & challenges which will define the future growth of the market. Additionally, it also incorporates potential opportunities in micro markets for stakeholders to invest along with the detailed analysis of competitive landscape and product offerings of key players. The detailed segments and sub-segment of the market are explained below:
By Application:
- Drug Discovery
- Shopping Experience Personalization
- Data Privacy and Security Management
- Risk Management
- Industrial Internet of Things
- Online Visual Object Detection
- Augmented Reality/Virtual Reality
- Other
By Verticals:
- Banking, Financial Services, and Insurance
- Healthcare and Life Sciences
- Retail and Ecommerce
- Manufacturing
- Energy and Utilities
- Automotive and Transportation
- IT and Telecommunication
- Other
By Region:
- Europe
- UK
- Germany
- France
- Spain
- Italy
- ROE
- Asia Pacific
- China
- India
- Japan
- Australia
- South Korea
- RoAPAC
- Middle East & Africa
- Saudi Arabia
- South Africa
- Rest of Middle East & Africa
Table of Contents
Chapter 1. Executive Summary
- 1.1. Market Snapshot
- 1.2. Global & Segmental Market Estimates & Forecasts, 2020-2030 (USD Million)
- 1.2.1. Federated Learning Solutions Market, by Region, 2020-2030 (USD Million)
- 1.2.2. Federated Learning Solutions Market, by Application, 2020-2030 (USD Million)
- 1.2.3. Federated Learning Solutions Market, by Verticals, 2020-2030 (USD Million)
- 1.3. Key Trends
- 1.4. Estimation Methodology
- 1.5. Research Assumption
Chapter 2. Global Federated Learning Solutions Market Definition and Scope
- 2.1. Objective of the Study
- 2.2. Market Definition & Scope
- 2.2.1. Industry Evolution
- 2.2.2. Scope of the Study
- 2.3. Years Considered for the Study
- 2.4. Currency Conversion Rates
Chapter 3. Global Federated Learning Solutions Market Dynamics
- 3.1. Federated Learning Solutions Market Impact Analysis (2020-2030)
- 3.1.1. Market Drivers
- 3.1.1.1. Rising adoption of Internet of Things (IoT)
- 3.1.1.2. Rising demand of Edge Computing
- 3.1.2. Market Challenges
- 3.1.2.1. Lack of skilled technical expertise
- 3.1.2.2. Data privacy and security concerns
- 3.1.3. Market Opportunities
- 3.1.3.1. Increasing demand for secure and efficient data analysis
- 3.1.3.2. Technological advancements in federated learning solutions
Chapter 4. Global Federated Learning Solutions Market Industry Analysis
- 4.1. Porter's 5 Force Model
- 4.1.1. Bargaining Power of Suppliers
- 4.1.2. Bargaining Power of Buyers
- 4.1.3. Threat of New Entrants
- 4.1.4. Threat of Substitutes
- 4.1.5. Competitive Rivalry
- 4.2. Porter's 5 Force Impact Analysis
- 4.3. PEST Analysis
- 4.3.1. Political
- 4.3.2. Economical
- 4.3.3. Social
- 4.3.4. Technological
- 4.3.5. Environmental
- 4.3.6. Legal
- 4.4. Top investment opportunity
- 4.5. Top winning strategies
- 4.6. COVID-19 Impact Analysis
- 4.7. Disruptive Trends
- 4.8. Industry Expert Perspective
- 4.9. Analyst Recommendation & Conclusion
Chapter 5. Global Federated Learning Solutions Market, by Application
- 5.1. Market Snapshot
- 5.2. Global Federated Learning Solutions Market by Application, Performance - Potential Analysis
- 5.3. Global Federated Learning Solutions Market Estimates & Forecasts by Application2020-2030 (USD Million)
- 5.4. Federated Learning Solutions Market, Sub Segment Analysis
- 5.5. Drug Discovery
- 5.6. Shopping Experience Personalization
- 5.7. Data Privacy and Security Management
- 5.8. Risk Management
- 5.9. Industrial Internet of Things
- 5.10. Online Visual Object Detection
- 5.11. Augmented Reality/Virtual Reality
- 5.12. Other
Chapter 6. Global Federated Learning Solutions Market, by Verticals
- 6.1. Market Snapshot
- 6.2. Global Federated Learning Solutions Market by Verticals, Performance - Potential Analysis
- 6.3. Global Federated Learning Solutions Market Estimates & Forecasts by Verticals2020-2030 (USD Million)
- 6.4. Federated Learning Solutions Market, Sub Segment Analysis
- 6.5. Banking, Financial Services, and Insurance
- 6.6. Healthcare and Life Sciences
- 6.7. Retail and Ecommerce
- 6.8. Manufacturing
- 6.9. Energy and Utilities
- 6.10. Automotive and Transportation
- 6.11. IT and Telecommunication
- 6.12. Other
Chapter 7. Global Federated Learning Solutions Market, Regional Analysis
- 7.1. Top Leading Countries
- 7.2. Top Emerging Countries
- 7.3. Federated Learning Solutions Market, Regional Market Snapshot
- 7.4. North America Federated Learning Solutions Market
- 7.4.1. U.S. Federated Learning Solutions Market
- 7.4.1.1. Application breakdown estimates & forecasts, 2020-2030
- 7.4.1.2. Verticals breakdown estimates & forecasts, 2020-2030
- 7.4.2. Canada Federated Learning Solutions Market
- 7.5. Europe Federated Learning Solutions Market Snapshot
- 7.5.1. U.K. Federated Learning Solutions Market
- 7.5.2. Germany Federated Learning Solutions Market
- 7.5.3. France Federated Learning Solutions Market
- 7.5.4. Spain Federated Learning Solutions Market
- 7.5.5. Italy Federated Learning Solutions Market
- 7.5.6. Rest of Europe Federated Learning Solutions Market
- 7.6. Asia-Pacific Federated Learning Solutions Market Snapshot
- 7.6.1. China Federated Learning Solutions Market
- 7.6.2. India Federated Learning Solutions Market
- 7.6.3. Japan Federated Learning Solutions Market
- 7.6.4. Australia Federated Learning Solutions Market
- 7.6.5. South Korea Federated Learning Solutions Market
- 7.6.6. Rest of Asia Pacific Federated Learning Solutions Market
- 7.7. Latin America Federated Learning Solutions Market Snapshot
- 7.7.1. Brazil Federated Learning Solutions Market
- 7.7.2. Mexico Federated Learning Solutions Market
- 7.8. Middle East & Africa Federated Learning Solutions Market
- 7.8.1. Saudi Arabia Federated Learning Solutions Market
- 7.8.2. South Africa Federated Learning Solutions Market
- 7.8.3. Rest of Middle East & Africa Federated Learning Solutions Market
Chapter 8. Competitive Intelligence
- 8.1. Key Company SWOT Analysis
- 8.1.1. Company 1
- 8.1.2. Company 2
- 8.1.3. Company 3
- 8.2. Top Market Strategies
- 8.3. Company Profiles
- 8.3.1. Intellegens Ltd.
- 8.3.1.1. Key Information
- 8.3.1.2. Overview
- 8.3.1.3. Financial (Subject to Data Availability)
- 8.3.1.4. Product Summary
- 8.3.1.5. Recent Developments
- 8.3.2. Microsoft Corporation
- 8.3.3. Intel Corporation
- 8.3.4. Cloudera Inc
- 8.3.5. Edge Delta Inc.
- 8.3.6. International Business Machines Corporation
- 8.3.7. Enveil Inc.
- 8.3.8. DataFleets Ltd
- 8.3.9. Alphabet Inc
- 8.3.10. Nvidia Corporation
Chapter 9. Research Process
- 9.1. Research Process
- 9.1.1. Data Mining
- 9.1.2. Analysis
- 9.1.3. Market Estimation
- 9.1.4. Validation
- 9.1.5. Publishing
- 9.2. Research Attributes
- 9.3. Research Assumption
°ü·ÃÀÚ·á