¼¼°èÀÇ ¿¬ÇÕ ÇнÀ ½ÃÀå
Federated Learning
»óǰÄÚµå : 1780789
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 384 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,180,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,541,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¿¬ÇÕ ÇнÀ ¼¼°è ½ÃÀåÀº 2030³â±îÁö 2¾ï 7,660¸¸ ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 1¾ï 4,710¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â ¿¬ÇÕ ÇнÀ ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 11.1%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 2¾ï 7,660¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®Çϰí ÀÖ´Â ºÎ¹® Áß ÇϳªÀÎ ´ë±â¾÷Àº CAGR 9.4%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 1¾ï 5,660¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Áß¼Ò±â¾÷ ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ CAGR·Î 13.7%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 4,010¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 14.7%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ¿¬ÇÕ ÇнÀ ½ÃÀåÀº 2024³â¿¡ 4,010¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ 2024³âºÎÅÍ 2030³â±îÁö CAGR 14.7%¸¦ ´õµë¾î, 2030³â¿¡´Â ¿¹Ãø ½ÃÀå ±Ô¸ð 5,640¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 8.2%¿Í 9.7%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 8.7%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ¿¬ÇÕ ÇнÀ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

¿¬ÇÕ ÇнÀÀÌ ºÐ»êÇü AIÀÇ ÁøÈ­¸¦ ÁÖµµÇÏ´Â ÀÌÀ¯

¿¬ÇÕ ÇнÀÀº ¿ø½Ã µ¥ÀÌÅ͸¦ Àü¼ÛÇÏÁö ¾Ê°íµµ ÇÁ¶óÀ̹ö½Ã¸¦ º¸È£ÇÏ´Â ¸Ó½Å·¯´×(ML) ¸ðµ¨À» °¡´ÉÇÏ°Ô Çϴ ȹ±âÀûÀÎ AI ÇнÀ ¹æ¹ýÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Å»Áß¾ÓÈ­ Á¢±Ù ¹æ½ÄÀº ÇコÄɾî, ±ÝÀ¶, »çÀ̹ö º¸¾È, IoT µî µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã, º¸¾È, ÄÄÇöóÀ̾𽺰¡ Áß¿äÇÑ °ü½É»çÀÎ »ê¾÷¿¡ º¯È­¸¦ ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù.

¿§Áö ÄÄÇ»ÆÃ°ú 5GÀÇ ¹ßÀüÀº ¾î¶»°Ô ¿¬ÇÕ ÇнÀÀÇ µµÀÔÀ» °¡¼ÓÈ­Çϰí Àִ°¡?

¿§Áö ÄÄÇ»ÆÃ, ºÐ»êÇü AI ³×Æ®¿öÅ©, °í¼Ó 5G ¿¬°áÀÇ µîÀåÀº ºÐ»êµÈ ÀåÄ¡¿¡¼­ ½Ç½Ã°£ ÀúÁö¿¬ ¸ðµ¨ ÇнÀÀ» °¡´ÉÇϰÔÇÔÀ¸·Î½á ¿¬ÇÕ ÇнÀÀÇ ±â´ÉÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ¿¬ÇÕ ÇнÀÀº ÇöÀç ÀÚÀ²ÁÖÇàÂ÷, ÀÇ·á AI ¾ÖÇø®ÄÉÀ̼Ç, ½º¸¶Æ®È¨ »ýŰè, ¿¹Ãø ºÐ¼®¿¡ »ç¿ëµÇ¾î Áß¾Ó ÁýÁß½Ä Å¬¶ó¿ìµå 󸮿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³·Ãß°í ÀÖ½À´Ï´Ù.

µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ±ÔÁ¦¿Í »çÀ̹ö º¸¾È À̽´°¡ ½ÃÀå ¼ºÀå¿¡ ¾î¶² ¿ªÇÒÀ» ÇÒ °ÍÀΰ¡?

GDPR(À¯·´), HIPAA(¹Ì±¹), Áß±¹ °³ÀÎÁ¤º¸º¸È£¹ý(PIPL)°ú °°Àº ¼¼°è µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ¹ý±Ô´Â ±â¾÷µéÀÌ AI ±â¹Ý ÀλçÀÌÆ®¸¦ Ȱ¿ëÇϸ鼭 µ¥ÀÌÅÍ º¸¾È ±ÔÁ¤À» ÁؼöÇϱâ À§ÇØ ¿¬ÇÕ ÇнÀ ¼Ö·ç¼ÇÀ» µµÀÔÇϵµ·Ï À¯µµÇϰí ÀÖ½À´Ï´Ù. µµÀÔÇϰí ÀÖ½À´Ï´Ù. ÇコÄɾî(ȯÀÚ ±â·Ï), ÀºÇà(»ç±â ŽÁö), Á¤ºÎ ±â°ü µî ¹Î°¨ÇÑ µ¥ÀÌÅ͸¦ ´Ù·ç´Â ¾÷°è¿¡¼­´Â µ¥ÀÌÅÍÀÇ À¯¿ë¼º°ú ÇÁ¶óÀ̹ö½Ã º¸È£ÀÇ ±ÕÇüÀ» ¸ÂÃß±â À§ÇØ ¿¬ÇÕ ÇнÀ ÇÁ·¹ÀÓ¿öÅ©¸¦ µµÀÔÇϰí ÀÖ½À´Ï´Ù.

¿¬ÇÕ ÇнÀ ½ÃÀåÀÇ ¼ºÀå ¿øµ¿·ÂÀº?

¿¬ÇÕ ÇнÀ ½ÃÀåÀÇ ¼ºÀåÀº AI ±â¹Ý Çõ½Å, »çÀ̹ö º¸¾È¿¡ ´ëÇÑ °ü½É Áõ°¡, ¾ö°ÝÇÑ µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ±ÔÁ¦ÀÇ ¼ö·Å¿¡ ÀÇÇØ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. ±â¾÷µéÀÌ ÇÁ¶óÀ̹ö½Ã¸¦ Áß½ÃÇÏ´Â AI ¼Ö·ç¼ÇÀ» ã´Â °¡¿îµ¥, ¿¬ÇÕ ÇнÀÀº ±â¹Ð µ¥ÀÌÅ͸¦ ¿ÜºÎ ¼­¹ö¿¡ ³ëÃâÇÏÁö ¾Ê°íµµ ºÐ»êÇü ¸ðµ¨ ÇнÀÀ» ½ÇÇöÇÏ´Â °ÔÀÓ Ã¼ÀÎÀú·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ƯÈ÷ ÇコÄÉ¾î ºÐ¾ß¿¡¼­ÀÇ AI µµÀÔ Áõ°¡´Â ½ÃÀå È®´ë¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖÀ¸¸ç, ¿¬ÇÕ ÇнÀ ¸ðµ¨Àº ½Å¾à °³¹ß, °³ÀÎÈ­µÈ Ä¡·á¹ý Ãßõ, ÀÇ·á ¿µ»ó ºÐ¼®¿¡ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ±ÝÀ¶±â°ü¿¡¼­´Â ¿¬ÇÕ ÇнÀÀ» ºÎÁ¤ÇàÀ§ ŽÁö, ¸®½ºÅ© Æò°¡, °³ÀÎÈ­µÈ ±ÝÀ¶ ¼­ºñ½º¿¡ Ȱ¿ëÇÏ¿© µ¥ÀÌÅÍ °øÀ¯ ¸®½ºÅ©¸¦ ÁÙÀ̰í ÀÖ½À´Ï´Ù. ½º¸¶Æ® IoT ±â±â, AI¸¦ Ȱ¿ëÇÑ »çÀ̹ö º¸¾È ÇÁ·¹ÀÓ¿öÅ©, ºÐ»êÇü ¸Ó½Å·¯´× »ýŰèÀÇ ºÎ»óÀº ±× ¼ö¿ä¸¦ ´õ¿í °¡¼ÓÈ­½Ã۰í ÀÖ½À´Ï´Ù. ÇÁ¶óÀ̹ö½Ã¿¡ ´ëÇÑ ¿ì·Á¿Í AI À±¸® ±ÔÁ¤ÀÌ °è¼Ó ÁøÈ­ÇÏ´Â °¡¿îµ¥, ¿¬ÇÕ ÇнÀÀº ¹Ì·¡ÀÇ AI ¾ÖÇø®ÄÉÀ̼ÇÀ» À§ÇÑ ±â¹ÝÀÌ µÉ °ÍÀ̸ç, ¿©·¯ »ê¾÷¿¡¼­ ¾ÈÀüÇϰí È¿À²ÀûÀÎ ´ë±Ô¸ð ¸Ó½Å·¯´×À» °¡´ÉÇÏ°Ô ÇÒ Å¼¼¸¦ °®Ãß°í ÀÖ½À´Ï´Ù.

ºÎ¹®

Á¶Á÷(´ë±â¾÷, Áß¼Ò±â¾÷), ¿ëµµ(»ê¾÷ »ç¹°ÀÎÅÍ³Ý ¿ëµµ, Drug Discovery ¿ëµµ, ¸®½ºÅ© °ü¸® ¿ëµµ, Áõ°­Çö½Ç¡¤°¡»óÇö½Ç ¿ëµµ, µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã °ü¸® ¿ëµµ, ±âŸ ¿ëµµ), ÃÖÁ¾ ¿ëµµ(IT¡¤Åë½Å ÃÖÁ¾ ¿ëµµ, ÇコÄɾ»ý¸í°úÇÐ ÃÖÁ¾ ¿ëµµ, BFSI ÃÖÁ¾ ¿ëµµ, ¼Ò¸Å¡¤E-Commerce ÃÖÁ¾ ¿ëµµ, ÀÚµ¿Â÷ ÃÖÁ¾ ¿ëµµ, ±âŸ ÃÖÁ¾ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM ¹× ¾÷°èº° SLM Äõ¸®¸¦ µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Federated Learning Market to Reach US$276.6 Million by 2030

The global market for Federated Learning estimated at US$147.1 Million in the year 2024, is expected to reach US$276.6 Million by 2030, growing at a CAGR of 11.1% over the analysis period 2024-2030. Large Enterprises, one of the segments analyzed in the report, is expected to record a 9.4% CAGR and reach US$156.6 Million by the end of the analysis period. Growth in the SMEs segment is estimated at 13.7% CAGR over the analysis period.

The U.S. Market is Estimated at US$40.1 Million While China is Forecast to Grow at 14.7% CAGR

The Federated Learning market in the U.S. is estimated at US$40.1 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$56.4 Million by the year 2030 trailing a CAGR of 14.7% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 8.2% and 9.7% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 8.7% CAGR.

Global Federated Learning Market - Key Trends & Drivers Summarized

Why Is Federated Learning Gaining Traction? The Evolution of Decentralized AI

Federated learning is emerging as a revolutionary AI training methodology, enabling privacy-preserving machine learning (ML) models without transferring raw data. This decentralized approach is transforming industries such as healthcare, finance, cybersecurity, and IoT, where data privacy, security, and compliance are critical concerns.

How Are Advancements in Edge Computing & 5G Accelerating Federated Learning Adoption?

The rise of edge computing, distributed AI networks, and high-speed 5G connectivity is enhancing federated learning capabilities by enabling real-time, low-latency model training on distributed devices. Federated learning is now being used in autonomous vehicles, medical AI applications, smart home ecosystems, and predictive analytics, reducing reliance on centralized cloud processing.

What Role Do Data Privacy Regulations & Cybersecurity Challenges Play in Market Growth?

Global data privacy laws, including GDPR (Europe), HIPAA (U.S.), and China's Personal Information Protection Law (PIPL), are pushing organizations to adopt federated learning solutions to ensure compliance with data security regulations while leveraging AI-driven insights. Industries dealing with sensitive data, such as healthcare (patient records), banking (fraud detection), and government agencies, are increasingly implementing federated learning frameworks to balance data utility with privacy protection.

What’s Driving the Growth of the Federated Learning Market?

The growth in the federated learning market is driven by a convergence of AI-driven innovation, rising cybersecurity concerns, and stringent data privacy regulations. As businesses seek privacy-centric AI solutions, federated learning is emerging as a game-changer in distributed model training without exposing sensitive data to external servers. The increasing adoption of AI in healthcare is particularly fueling market expansion, with federated learning models being used for drug discovery, personalized treatment recommendations, and medical image analysis-all while maintaining compliance with data protection laws. Additionally, financial institutions are leveraging federated learning for fraud detection, risk assessment, and personalized financial services, reducing data-sharing risks. The rise of smart IoT devices, AI-powered cybersecurity frameworks, and decentralized machine learning ecosystems is further accelerating demand. As privacy concerns and AI ethics regulations continue to evolve, federated learning is poised to become the foundation of future AI applications, enabling secure, efficient, and large-scale machine learning across multiple industries.

SCOPE OF STUDY:

The report analyzes the Federated Learning market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Organization (Large Enterprises, SMEs); Application (Industrial Internet of Things Application, Drug Discovery Application, Risk Management Application, Augmented & Virtual Reality Application, Data Privacy Management Application, Other Applications); End-Use (IT & Telecom End-Use, Healthcare & Life Sciences End-Use, BFSI End-Use, Retail & E-Commerce End-Use, Automotive End-Use, Other End-Uses)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 36 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â