Stratistics MRC¿¡ µû¸£¸é, ¼¼°è ÀÚµ¿ ¾ç¸é ³ë±¤±â ½ÃÀåÀº ¿¹Ãø ±â°£ µ¿¾È CAGR 7.5%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
ÀÚµ¿ ¾ç¸é ³ë±¤±â´Â ¹ÝµµÃ¼ Á¦Á¶ ¹× PCB Á¦Á¶¿Í °°Àº »ê¾÷¿¡¼ Á¤¹Ð Æ÷Å丮¼Ò±×·¡ÇÇ °øÁ¤À» À§ÇØ ¼³°èµÈ Ư¼ö Á¦Á¶ µµ±¸ÀÔ´Ï´Ù. ÀÌ Àåºñ´Â ¿þÀÌÆÛ ¹× PCB¿Í °°Àº ±âÆÇÀ» ó¸®ÇÏ°í ¾ç¸éÀ» Á¤¹ÐÇÏ°Ô ³ë±¤ÇÕ´Ï´Ù. ±âÆÇ Ãë±Þ, Á¤·Ä ¹× ³ë±¤À» ÀÚµ¿ÈÇÏ¿© ¼öÀÛ¾÷ÀÇ Çʿ伺À» ÁÙÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº Á¤È®ÇÑ Á¤·Ä, ¾ö°ÝÇÑ °øÂ÷, È¿À²ÀûÀÎ Á¦Á¶¸¦ º¸ÀåÇÏ°í ±âÆÇ ¾ç¸é¿¡ º¹ÀâÇϰí Á¤È®ÇÑ ÆÐÅÏ, ȸ·Î ¹× ÇÇó¸¦ »ý¼ºÇÒ ¼ö ÀÖ½À´Ï´Ù.
¹Ì±¹ ÄÉÀÌºí ¹× Åë½ÅÇùȸ¿¡ µû¸£¸é 2020³â¿¡´Â Àü ¼¼°èÀûÀ¸·Î ¾à 501¾ï °³ÀÇ Ä¿³ØÆ¼µå µð¹ÙÀ̽º°¡ Á¸ÀçÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¹ÝµµÃ¼»ê¾÷Çùȸ(SIA)¿¡ µû¸£¸é ¹Ì±¹ »ê¾÷ÀÇ ¿¬±¸°³¹ßºñ´Â 1999³âºÎÅÍ 2019³â±îÁö ¿¬Æò±Õ ¾à 6.6%ÀÇ Áõ°¡À²À» º¸¿´½À´Ï´Ù.
Àμâ ȸ·Î ±âÆÇ(PCB)ÀÇ º¹À⼺Àº ÀÚµ¿ ¾ç¸é ³ë±¤±â ½ÃÀåÀÇ Áß¿äÇÑ ÃËÁø¿äÀÎÀÔ´Ï´Ù. PCB´Â º¹ÀâÇÑ È¸·Î ¼³°è, ¼ÒÇüÈµÈ ºÎǰ, °í¹Ðµµ·Î ä¿öÁø »óÈ£ ¿¬°á¿¡ ´ëÀÀÇØ¾ß ÇÒ Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ¿¡ µû¶ó ÀÚµ¿ ¾ç¸é ³ë±¤±â¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. ÀÌ ±â°è´Â PCB ¾ç¸é¿¡ ¹Ì¼¼ÇÑ °íÇØ»óµµ ÆÐÅÏÀ» Çü¼ºÇÏ´Â µ¥ ÇʼöÀûÀÎ Á¤¹Ðµµ¿Í ÀÚµ¿È¸¦ Á¦°øÇÏ¿© ÃֽŠÀüÀÚ Á¦Ç°ÀÇ ¿ä±¸ »çÇ×À» ÃæÁ·ÇÕ´Ï´Ù. ¶ÇÇÑ, ´ÙÃþ ¼³°è¸¦ ÅëÇØ °íǰÁúÀÇ °í¼º´É PCB¸¦ È¿À²ÀûÀ¸·Î »ý»êÇÒ ¼ö Àֱ⠶§¹®¿¡ ÇöÀç ÀüÀÚÁ¦Ç° ½ÃÀå¿¡¼ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ¾Ò½À´Ï´Ù.
ÀÚµ¿ ¾ç¸é ³ë±¤±â´Â Á¶´Þ, ¼³Ä¡ ¹× À¯Áöº¸¼ö¸¦ À§ÇØ ¸¹Àº ÀÚº» ÅõÀÚ°¡ ÇÊ¿äÇÕ´Ï´Ù. ÀÌ ºñ¿ë¿¡´Â ÷´Ü ±â¼ú, Á¤¹Ð ¿£Áö´Ï¾î¸µ ¹× º¹ÀâÇÑ ÀÚµ¿È ½Ã½ºÅÛÀÌ Æ÷ÇԵ˴ϴÙ. ¶ÇÇÑ, Ŭ¸°·ë ȯ°æ°ú ¼÷·ÃµÈ ÀηÂÀÌ ÇÊ¿äÇϱ⠶§¹®¿¡ ¿î¿µ ºñ¿ëÀÌ ¸¹ÀÌ µì´Ï´Ù. ÀÌ·¯ÇÑ ¸·´ëÇÑ ÃÊ±â ¹× Áö¼ÓÀûÀÎ ÅõÀÚ´Â Áß¼Ò Á¦Á¶¾÷ü¿Í ½ºÅ¸Æ®¾÷ÀÇ ½ÃÀå ÁøÀÔÀ» ¹æÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.
ÀüÀÚ »ê¾÷ÀÇ ±Þ¼ÓÇÑ ¹ßÀü°ú ÇÔ²² °í¼º´É, ¼ÒÇüÈ ºÎǰ¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÚµ¿ ¾ç¸é ³ë±¤±â´Â ¹ÝµµÃ¼ ¿þÀÌÆÛ³ª PCB¿Í °°Àº ±âÆÇÀÇ ¾ç¸é¿¡ º¹ÀâÇÑ È¸·Î¿Í ÆÐÅÏÀ» Á¤¹ÐÇÏ°Ô Á¦ÀÛÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ±â¼úÀº 5G Åë½Å, ÀΰøÁö´É, IoT ±â±â, ½ÅÈï ±â¼ú µî Çö´ë ¸¶ÀÌÅ©·Î ÀÏ·ºÆ®·Î´Ð½ºÀÇ ±î´Ù·Î¿î ¿ä±¸ »çÇ×À» ÃæÁ·ÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. »ê¾÷°è°¡ ´õ °·ÂÇϰí ÄÄÆÑÆ®ÇÑ ÀüÀÚ ½Ã½ºÅÛ »ý»êÀ» ¿ä±¸ÇÔ¿¡ µû¶ó ÀÌ·¯ÇÑ ±â°è¿¡ ´ëÇÑ ¼ö¿ä´Â Áõ°¡ÇÏ´Â Ãß¼¼ÀÔ´Ï´Ù.
¹ÝµµÃ¼ Á¦Á¶ ¹× ÀüÀÚ »ê¾÷ÀÇ ±Þ¼ÓÇÑ ¹ßÀüÀº ³ë±¤ ±â¼úÀÇ ²÷ÀÓ¾ø´Â Çõ½ÅÀ» ÃËÁøÇÕ´Ï´Ù. º¸´Ù È¿À²ÀûÀÎ ½ÅÇü Àåºñ°¡ µîÀåÇÔ¿¡ µû¶ó ±¸½Ä Àåºñ´Â ±¸½ÄÀÌ µÇ¾î ¼º´É ÀúÇÏ, Á¤È®µµ ÀúÇÏ, ¿î¿µ ºñ¿ë »ó½ÂÀ» ÃÊ·¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ´Â Á¦Á¶¾÷üÀÇ °æÀï·Â°ú Á¡Á¡ ´õ º¹ÀâÇÏ°í ¼ÒÇüȵǴ ÀüÀÚ ºÎǰ¿¡ ´ëÇÑ ½ÃÀå ¿ä±¸¿¡ ´ëÀÀÇÏ´Â ´É·Â¿¡ ºÎÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù.
COVID-19 ÆÒµ¥¹ÍÀº ÀÚµ¿ ¾ç¸é ³ë±¤±â ½ÃÀå¿¡ »ó¹ÝµÈ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ÆÒµ¥¹ÍÀº °ø±Þ¸Á¿¡ È¥¶õÀ» ÀÏÀ¸ÄÑ ÀåºñÀÇ »ý»ê°ú ³³Ç°ÀÌ Áö¿¬µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ Á¦Á¶¾÷üµéÀÌ °æÁ¦ÀÇ ºÒÈ®½Ç¼º¿¡ ´ëÀÀÇÏ¸é¼ Æ¯Á¤ Á¦Ç°¿¡ ´ëÇÑ ¼ö¿ä°¡ ÀϽÃÀûÀ¸·Î °¨¼ÒÇß½À´Ï´Ù. ±×·¯³ª ÆÒµ¥¹ÍÀº µðÁöÅÐ ÀüȯÀ» °¡¼ÓÈÇϰí ÷´Ü ¹ÝµµÃ¼ ¹× ÀüÀÚ±â±â Á¦Á¶ÀÇ Çʿ伺À» °Á¶Çß½À´Ï´Ù. ÀÌ·Î ÀÎÇØ ¹ÝµµÃ¼ Á¦Á¶¿¡ »ç¿ëµÇ´Â °íÁ¤¹Ð ³ë±¤±â¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí äÅÃÀÌ Áõ°¡Çß½À´Ï´Ù. ±× °á°ú, Æ÷½ºÆ® ÆÒµ¥¹Í ȯ°æ¿¡¼ ±â¼ú°ú ÀüÀÚÁ¦Ç°ÀÇ Á߿伺ÀÌ ³ô¾ÆÁö¸é¼ ½ÃÀå¿¡ »õ·Î¿î ±âȸ¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù.
¿ÏÀü ÀÚµ¿È ºÎ¹®Àº È¿À²¼º, Á¤È®¼º ¹× ´ë·® »ý»ê¿¡ ´ëÇÑ ÀûÇÕ¼ºÀ¸·Î ÀÎÇØ ½ÃÀåÀ» Áö¹èÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀüÀÚµ¿ ±â°è´Â ¼öÀÛ¾÷ÀÇ Çʿ伺À» ÁÙÀ̰í ÀϰüµÈ ¿À·ù ¾ø´Â °¡°øÀ» º¸ÀåÇÕ´Ï´Ù. ¹ÝµµÃ¼ Á¦Á¶, PCB Á¦Á¶¿Í °°ÀÌ Á¤¹Ðµµ¿Í 󸮷®ÀÌ ÃÖ¿ì¼±ÀÎ »ê¾÷¿¡¼´Â ÀüÀÚµ¿ ±â°è°¡ ¼±È£µË´Ï´Ù. ¶ÇÇÑ, ±â¼úÀÌ ¹ßÀüÇÏ°í ¼ÒÇüÈ ¹× °í¼º´É ºÎǰ¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó ¾ç¸é ³ë±¤ °øÁ¤ÀÇ ÀÚµ¿È°¡ ÇʼöÀûÀÔ´Ï´Ù.
¹ÝµµÃ¼ ¼ÒÀÚ Á¦Á¶ ºÎ¹®Àº ¹ÝµµÃ¼ ±â¼úÀÇ ±Þ¼ÓÇÑ ¹ßÀüÀ¸·Î ÀÎÇØ °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. 3D ÆÐŰ¡, MEMS µð¹ÙÀ̽º, ÷´Ü ¸Þ¸ð¸® ±â¼ú µî ¹ÝµµÃ¼ ¼³°èÀÇ º¹À⼺ Áõ°¡·Î ÀÎÇØ Á¤¹ÐÇÑ ¾ç¸é ³ë±¤ÀÌ ÇÊ¿äÇØÁü¿¡ µû¶ó ÀÌ ºÎ¹®ÀÇ ¼ºÀåÀÌ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¹ÝµµÃ¼ »ý»ê ´É·ÂÀÇ Áõ°¡´Â ÀÚµ¿ ¾ç¸é ³ë±¤±â¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì´Â ÀÚµ¿ ¾ç¸é ³ë±¤±â ½ÃÀåÀ» ÁÖµµÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ Áö¿ªÀº ¹ÝµµÃ¼ »ê¾÷ÀÌ ¹ß´ÞÇØ ÀÖ¾î ÀÚµ¿ ¾ç¸é ³ë±¤±â°¡ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ºÏ¹Ì¿¡´Â ±â¼ú Çõ½ÅÀÇ Áß½ÉÁö, ¿¬±¸ ±â°ü ¹× ±â¼ú Çãºê°¡ ÀÖ¾î ±â¼ú ¹ßÀüÀÌ È°¹ßÈ÷ ÀÌ·ç¾îÁö°í ÀÖÀ¸¸ç, ÷´Ü ±â°è¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¿¬±¸°³¹ß¿¡ ´ëÇÑ Á¤ºÎ ÁöÃâ°ú µðÁöÅÐ Çõ½Å¿¡ ´ëÇÑ °ÇÑ °Á¶´Â ºÏ¹Ì ½ÃÀåÀÇ ¾ÈÁ¤ÀûÀÎ ¼ºÀå ±Ëµµ¸¦ º¸ÀåÇϰí ÀÖ½À´Ï´Ù.
¾Æ½Ã¾ÆÅÂÆò¾çÀº ÀÚµ¿ ¾ç¸é ³ë±¤±â ½ÃÀå¿¡¼ Å« ¼ºÀåÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÷´Ü ÀüÀÚ Àåºñ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ÀÚµ¿È ¹× IoT ±â¼ú äÅÃÀÌ Áõ°¡ÇÏ¸é¼ °íÁ¤¹Ð ³ë±¤±â¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Á¤ºÎÀÇ ³ë·Â, R&D ÅõÀÚ, ÁÖ¿ä ¹ÝµµÃ¼ Á¦Á¶¾÷üÀÇ Á¸Àç´Â ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ½ÃÀå È®´ë¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Automated Double-Sided Exposure Machine Market is growing at a CAGR of 7.5% during the forecast period. Automated double-sided exposure machines are specialized manufacturing tools designed for precision photolithography processes in industries like semiconductor manufacturing and PCB fabrication. These machines handle substrates, such as wafers or PCBs, exposing both sides with high precision. They offer automated substrate handling, alignment, and exposure, reducing the need for manual intervention. These systems ensure accurate registration, tight tolerances, and efficient manufacturing, enabling the creation of intricate and precise patterns, circuits, and features on both sides of the substrate.
According to the National Cable and Telecommunications Association, there were around 50.1 billion connected devices in 2020 across the globe. According to the Semiconductor Industry Association (SIA), the U.S. industry's expenditures in R&D increased at a compound annual growth rate of about 6.6 percent from 1999 to 2019.
The growing complexity of printed circuit boards (PCBs) is a significant driver in the automated double-sided exposure machine market. PCBs are increasingly required to accommodate intricate circuit designs, miniaturized components, and densely packed interconnects. As a result, the demand for automated double-sided exposure machines has surged. These machines provide the essential precision and automation needed to create fine, high-resolution patterns on both sides of the PCBs, meeting the requirements of modern electronic devices. Additionally, multi-layered designs efficiently ensure the production of high-quality, high-performance PCBs, making them indispensable in the current electronics market.
Automated double-sided exposure machines require substantial capital investments for procurement, installation, and maintenance. The costs involve advanced technologies, precision engineering, and complex automation systems. Additionally, the need for cleanroom environments and skilled personnel adds to operational expenses. These substantial initial and ongoing investments can deter smaller manufacturers and startups from entering the market.
As the electronics industry continues to advance rapidly, there is a growing need for higher-performance, miniaturized components. Automated double-sided exposure machines enable the precise fabrication of intricate circuits and patterns on both sides of substrates, such as semiconductor wafers and PCBs. This technology is integral to meeting the stringent requirements of modern microelectronics, including those in 5G communications, artificial intelligence, IoT devices, and emerging technologies. The demand for these machines is set to rise as industries seek to produce more powerful and compact electronic systems.
Rapid advancements in the semiconductor manufacturing and electronics industries drive constant innovation in exposure technology. As newer, more efficient machines emerge, older models may become outdated, leading to reduced performance, lower precision, and higher operational costs. This can negatively impact manufacturers' competitiveness and ability to meet market demands for increasingly complex and smaller electronic components.
The COVID-19 pandemic had a conflicting impact on the automated double-sided exposure machine market. The pandemic disrupted supply chains, leading to delays in equipment production and delivery. It also temporarily reduced demand for certain products as manufacturers adjusted to the economic uncertainties. However, the pandemic accelerated the digital transformation, emphasizing the need for advanced semiconductor and electronics manufacturing. This drove demand for high-precision exposure equipment used in semiconductor fabrication, which witnessed increased adoption. As a result, the growing importance of technology and electronics in a post-pandemic environment has generated new opportunities for the market.
The fully automatic segment is anticipated to dominate the market due to its efficiency, precision, and suitability for high-volume manufacturing. Fully automatic machines reduce the need for manual intervention, ensuring consistent and error-free processing. Industries such as semiconductor manufacturing and PCB fabrication, where precision and throughput are paramount, fully automatic machines are favored. Additionally, as technology advances and demands for miniaturization and high-performance components increase, the automation of double-sided exposure processes becomes indispensable.
The semiconductor device manufacturing segment is projected to experience the highest CAGR owing to the rapid evolution of semiconductor technologies, driven by demand for smaller, more powerful, and energy-efficient electronic devices, which has fueled the need for advanced exposure equipment. This segment's growth is propelled by the rising complexity of semiconductor designs, including 3D packaging, MEMS devices, and advanced memory technologies, all requiring precise double-sided exposure. Additionally, increasing semiconductor production capacity is contributing to the demand for automated double-sided exposure machines.
North America is anticipated to lead the market for automated double-sided exposure machines during the forecast period. The area is dwelling to a thriving semiconductor industry, which uses these machines extensively. Along with this, North America is home to significant innovation hubs, research institutes, and technology hubs, which fuel ongoing technological advancements and the need for state-of-the-art machinery. In addition, government spending on R&D and a strong emphasis on digital transformation guarantee a stable growth trajectory for the North American market.
Asia Pacific is poised to witness substantial growth in the automated double-sided exposure machine market. With increasing demand for advanced electronic devices, coupled with the growing adoption of automation and IoT technologies, the need for high-precision exposure machines is on the rise. Furthermore, government initiatives, investments in research and development, and the presence of leading semiconductor manufacturers contribute to the market's expansion in Asia Pacific.
Some of the key players in Automated Double-Sided Exposure Machine Market include: Adtec Engineering Co., Ltd., Altix, Ambala Electronic Instruments, ASML, Beijing Golden Eagle Electronic Equipments, Dalesway Print Technology, Giga Solutions, Guangdong KST Optical, Idonus Sarl, Kexin Electronics Co., Ltd, M&R Nano Technology Co., Ltd., Mega Electronics INC., Orbotech Ltd., ORC Manufacturing Vertriebs GmbH, San-Ei Giken, Taiyo Nippon Sanso Corp., Toray Engineering Co.,Ltd., Ushio Lighting, Inc. and Xudian Technology.
In October 2022, KLA Corporation introduced the new Orbotech Corus™ 8M direct imaging (DI) solution, the first system built on the all-in-one revolutionary Orbotech Corus platform, combining the functionality and automation of an entire direct imaging production line in a closed, clean and compact unit. Providing increased resolution with high accuracy to pattern finer lines, the extendable Orbotech Corus™ DI platform is unique in its ability to support highly efficient double-sided imaging in a fully automated solution optimized for high throughput and capacity.