챔버 부품용 CVD, PVD 및 ALD 코팅 : 시장 점유율과 순위, 전체 판매량 및 수요 예측(2025-2031년)
CVD, PVD and ALD Coating for Chamber Components - Global Market Share and Ranking, Overall Sales and Demand Forecast 2025-2031
상품코드 : 1862397
리서치사 : QYResearch
발행일 : 2025년 10월
페이지 정보 : 영문
 라이선스 & 가격 (부가세 별도)
US $ 3,950 ₩ 5,727,000
PDF (Single User License) help
PDF 보고서를 1명만 이용할 수 있는 라이선스입니다. 텍스트 등을 Copy & Paste 할 수 있습니다. 인쇄 가능하며, 인쇄물의 이용 범위는 PDF 이용 범위와 동일합니다.
US $ 5,925 ₩ 8,590,000
PDF (Multi User License) help
PDF, Excel 보고서를 동일 기업내 10명까지 이용하실 수 있는 라이선스입니다. 텍스트 등을 Copy & Paste 할 수 있습니다. 인쇄 가능하며, 인쇄물의 이용 범위는 PDF, Excel, Word 이용 범위와 동일합니다.
US $ 7,900 ₩ 11,454,000
PDF (Enterprise User License) help
PDF, Excel, Word 보고서를 동일 기업내 모든 구성원이 이용하실 수 있는 라이선스입니다. 텍스트 등을 Copy & Paste 할 수 있습니다. 인쇄 가능하며, 인쇄물의 이용 범위는 PDF, Excel, Word 이용 범위와 동일합니다.


ㅁ Add-on 가능: 고객의 요청에 따라 일정한 범위 내에서 Customization이 가능합니다. 자세한 사항은 문의해 주시기 바랍니다.
ㅁ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송기일은 문의해 주시기 바랍니다.

한글목차

챔버 부품용 CVD, PVD 및 ALD 코팅 시장 규모는 2024년에 5,800만 달러로 평가되었고, 2025-2031년의 예측 기간 중 CAGR 9.7%로 성장하여 2031년까지 1억 1,300만 달러에 달할 것으로 예측됩니다.

챔버 부품용 PVD 및 ALD 코팅은 일반적으로 산화이트륨 또는 산화알루미늄을 기판으로 사용하거나 산화알루미늄(AlON)으로 제조될 수 있습니다. 정확한 화학 성분과 코팅 두께는 용도에 맞게 조정해야 합니다. 챔버 내 사용 온도, 처리 시간 및 가스는 장치 사양에 따라 크게 다르며, 이러한 변수를 사용하여 원하는 코팅 성능에 적합한 코팅 조합을 선택합니다. 맞춤형으로 설계된 정밀 코팅은 비용과 성능의 최적 균형을 실현합니다.

증착 챔버에는 디바이스 웨이퍼와 직접 접촉하는 부품, 웨이퍼에 도달하는 공정 화학물질에 노출되는 부품 등 다양한 구성요소가 포함되어 있습니다. 따라서 재료의 선택이 매우 중요합니다.

플라즈마 에칭 챔버에서 사용되는 부식성 화학물질은 장비 부품의 표면을 침식하고 코팅을 열화시킵니다. 3D 디바이스 가공에서 흔히 발생하는 고온 플라즈마에 장시간 노출되면 이러한 열화가 가속화됩니다. 부식된 표면에서 박리된 입자는 웨이퍼에 증착되어 소자 고장의 원인이 될 수 있습니다.

플라즈마 스프레이 코팅에 의한 이트륨 산화물 코팅 또는 알루마이트 처리된 알루미늄 부품은 수년 동안 업계 표준으로 채택되어 왔습니다. 이러한 솔루션은 오랫동안 유효했지만, 첨단 공정 노드의 나노 스케일 구조에서는 시스템 내 모든 부품에 대해 더 높은 청결도가 요구됩니다. 기존의 코팅 부품은 에칭 챔버나 증착 챔버 내의 가혹한 환경을 견딜 수 있는 내구성을 갖지 못하여 디바이스 수율에 영향을 미치지 못했습니다. 플라즈마 스프레이 코팅은 비교적 거칠고 다공성이며, 아노다이징 코팅은 국부적인 균열이 발생하기 쉽고, 열화가 너무 빠릅니다. 또한, 성막 챔버 내의 부품은 형상이 복잡하기 때문에 평면 표면에 코팅하는 데 적합한 용사 코팅으로는 대응이 어렵습니다.

정밀하게 설계된 특수 코팅은 반도체 웨이퍼 가공과 관련된 진공 박막 기술을 채택하여 기존 코팅을 저하시키는 부식 및 산화에 대한 내성이 우수한 코팅 부품을 제조합니다. 물리적 기상증착법(PVD)과 원자층 증착법(ALD)의 두 가지 선택이 있습니다.

모든 정밀 설계 코팅은 부식성 플라즈마/화학 환경에서 최소한의 내마모성 및 내식성을 나타내야 하며, 기판에 완벽하게 밀착되어 균일한 피막 표면을 형성해야 합니다. 코팅 대상 부품의 형상 및 재질, 챔버의 유형, 처리 조건, 최적의 코팅 화학 성분 및 방법을 추가로 결정합니다.

플라즈마 스프레이 코팅에 의한 이트륨 산화물 코팅 또는 알루마이트 처리된 알루미늄 부품은 수년 동안 업계 표준으로 채택되어 왔습니다. 이러한 솔루션은 오랫동안 유효했지만, 첨단 공정 노드의 나노 스케일 특성으로 인해 시스템 내 모든 부품에 대해 더 높은 청정도가 요구되고 있습니다. 기존 코팅된 부품은 에칭 챔버나 증착 챔버 내의 가혹한 환경을 견딜 수 있는 내구성이 부족하여 디바이스 수율에 영향을 미칠 수 있습니다. 플라즈마 스프레이 코팅은 비교적 거칠고 다공성이며, 아노다이징 코팅은 현장에서의 균열 발생으로 인해 너무 빨리 열화됩니다. 또한, 성막 챔버 내의 부품은 형상이 복잡하기 때문에 평면 표면에 코팅하는 데 최적의 용사 코팅에 대한 과제가 발생합니다.

챔버 부품용 CVD, PVD 및 ALD 코팅은 일반적으로 이트륨 산화물 또는 알루미늄 산화물을 기판으로 사용하거나 알루미늄 산화물(AlON)로 제작됩니다. 정확한 화학 성분과 코팅 두께는 용도에 맞게 조정해야 합니다. 챔버 내 사용 온도, 처리 시간 및 가스는 장치 사양에 따라 크게 다르며, 이러한 변수를 사용하여 원하는 코팅 성능에 가장 적합한 코팅 조합을 선택합니다. 맞춤형으로 설계된 정밀 코팅은 비용과 성능의 최적 균형을 실현합니다.

세계 챔버 부품용 CVD, PVD 및 ALD 코팅 시장은 미국, 일본, 한국, 유럽 기업들이 주도하고 있습니다. 주요 기업으로는 엔테그리스, 코미코, 인피콘, 시노스, 토카로 주식회사, 에리콘 발자스 등이 있습니다. 2024년에는 상위 5개 기업이 67% 이상 시장 점유율을 차지할 것으로 예측됩니다.

본 보고서는 챔버 부품용 CVD, PVD 및 ALD 코팅 세계 시장에 대해 총 매출액, 주요 기업의 시장 점유율 및 순위를 중심으로 지역별, 국가별, 코팅 방법별, 용도별 분석을 종합적으로 제시하는 것을 목적으로 합니다.

챔버 부품용 CVD, PVD 및 ALD 코팅 시장 규모, 추정 및 예측은 2024년을 기준 연도로 하여 2020년에서 2031년까지의 과거 데이터와 예측 데이터를 포함하는 매출액으로 제시되었습니다. 정량적, 정성적 분석을 통해 독자들이 CVD, PVD 및 ALD에 의한 챔버 부품용 코팅에 대한 사업 전략 및 성장 전략 수립, 시장 경쟁 평가, 현재 시장에서의 자사 포지셔닝 분석, 정보에 입각한 비즈니스 의사결정을 할 수 있도록 돕습니다.

시장 세분화

기업별

코팅 방법별 부문

용도별 부문

지역별

LSH
영문 목차

영문목차

The global market for CVD, PVD and ALD Coating for Chamber Components was estimated to be worth US$ 58.00 million in 2024 and is forecast to a readjusted size of US$ 113 million by 2031 with a CAGR of 9.7% during the forecast period 2025-2031.

PVD and ALD coatings for chamber components are typically based on yttrium or aluminum oxides or may be made from aluminum oxynitride (AlON). The exact chemistry and coating thickness must be tailored to the application. The use of temperature in the chamber, processing time, and gases vary considerably depending on the device specifications, and these variables are used to select the right combination of coatings for their desired coating performance. Custom precision-engineered coatings provide the optimal balance between cost and performance.

Deposition chambers contain various parts and components that either contact the device wafer directly or are exposed to process chemicals that subsequently reach the wafer. As such, material selection is critical.

The corrosive chemicals used in plasma-etch chambers attack the tool component surfaces and degrade coatings. Longer exposure to hotter plasmas, which is common for 3D device processing, accelerates degradation. Particles shed from the corroded surfaces then deposit on the wafers, potentially causing device failure.

Components protected with yttrium oxide deposited by plasma spray-coating or made from anodized aluminum have long been the industry norm. Although such solutions have worked for many years, the nano-scale features of advanced process nodes demand an increased level of cleanliness for every part in the system. Conventionally coated components are not rugged enough to withstand the aggressive environments inside etch and deposition chambers without impacting device yield. Plasma spray coatings are relatively rough and porous, while anodized coatings exhibit in-situ cracking that makes them degrade too readily. The complex shapes of parts inside deposition chambers also pose a challenge for spray coating, which works best when coating planar surfaces.

Precision engineered, specialized coatings borrow vacuum thin film technologies associated with semiconductor wafer processing to produce coated components that can better resist the corrosion and oxidation that degrade conventional coatings. Two options are available: physical vapor deposition (PVD) and atomic layer deposition (ALD).

Every precision engineered coating must exhibit a minimum level of wear and corrosion resistance in the presence of corrosive plasma/chemistry and adhere fully to the underlying substrate to create a uniformly coated surface. The geometry and material of the part being coated, the type of chamber, and the processing conditions further dictate the optimal coating chemistry and method.

Components protected with yttrium oxide deposited by plasma spray-coating or made from anodized aluminum have long been the industry norm. Although such solutions have worked for many years, the nano-scale features of advanced process nodes demand an increased level of cleanliness for every part in the system. Conventionally coated components are not rugged enough to withstand the aggressive environments inside etch and deposition chambers without impacting device yield. Plasma spray coatings are relatively rough and porous, while anodized coatings exhibit in-situ cracking that makes them degrade too readily. The complex shapes of parts inside deposition chambers also pose a challenge for spray coating, which works best when coating planar surfaces.

CVD, PVD and ALD coatings for chamber components are typically based on yttrium or aluminum oxides or may be made from aluminum oxynitride (AlON). The exact chemistry and coating thickness must be tailored to the application. The use of temperature in the chamber, processing time, and gases vary considerably depending on the device specifications, and these variables are used to select the right combination of coatings for their desired coating performance. Custom precision-engineered coatings provide the optimal balance between cost and performance.

The global CVD, PVD and ALD coating for chamber components market is dominated by companies from USA, Japan, South Korea, and Europe. Key companies include Entegris, KoMiCo, Inficon, Cinos, TOCALO Co., Ltd. and Oerlikon Balzers, etc.. Top five players occupy for over 67% market share in 2024.

This report aims to provide a comprehensive presentation of the global market for CVD, PVD and ALD Coating for Chamber Components, focusing on the total sales revenue, key companies market share and ranking, together with an analysis of CVD, PVD and ALD Coating for Chamber Components by region & country, by Coating Method, and by Application.

The CVD, PVD and ALD Coating for Chamber Components market size, estimations, and forecasts are provided in terms of sales revenue ($ millions), considering 2024 as the base year, with history and forecast data for the period from 2020 to 2031. With both quantitative and qualitative analysis, to help readers develop business/growth strategies, assess the market competitive situation, analyze their position in the current marketplace, and make informed business decisions regarding CVD, PVD and ALD Coating for Chamber Components.

Market Segmentation

By Company

Segment by Coating Method

Segment by Application

By Region

Chapter Outline

Chapter 1: Introduces the report scope of the report, global total market size. This chapter also provides the market dynamics, latest developments of the market, the driving factors and restrictive factors of the market, the challenges and risks faced by manufacturers in the industry, and the analysis of relevant policies in the industry.

Chapter 2: Detailed analysis of CVD, PVD and ALD Coating for Chamber Components company competitive landscape, revenue market share, latest development plan, merger, and acquisition information, etc.

Chapter 3: Provides the analysis of various market segments by Coating Method, covering the market size and development potential of each market segment, to help readers find the blue ocean market in different market segments.

Chapter 4: Provides the analysis of various market segments by Application, covering the market size and development potential of each market segment, to help readers find the blue ocean market in different downstream markets.

Chapter 5: Revenue of CVD, PVD and ALD Coating for Chamber Components in regional level. It provides a quantitative analysis of the market size and development potential of each region and introduces the market development, future development prospects, market space, and market size of each country in the world.

Chapter 6: Revenue of CVD, PVD and ALD Coating for Chamber Components in country level. It provides sigmate data by Coating Method, and by Application for each country/region.

Chapter 7: Provides profiles of key players, introducing the basic situation of the main companies in the market in detail, including product revenue, gross margin, product introduction, recent development, etc.

Chapter 8: Analysis of industrial chain, including the upstream and downstream of the industry.

Chapter 9: Conclusion.

Table of Contents

1 Market Overview

2 Competitive Analysis by Company

3 Segmentation by Coating Method

4 Segmentation by Application

5 Segmentation by Region

6 Segmentation by Key Countries/Regions

7 Company Profiles

8 Industry Chain Analysis

9 Research Findings and Conclusion

10 Appendix

(주)글로벌인포메이션 02-2025-2992 kr-info@giikorea.co.kr
ⓒ Copyright Global Information, Inc. All rights reserved.
PC버전 보기