반도체 시장 평가 : 유형별, 구성 요소별, 노드 사이즈별, 용도별, 지역별, 기회, 예측(2018-2032년)
Semiconductor Market Assessment, By Type, By Components, By Node Size, By Applications, By Region, Opportunities, & Forecasts, 2018-2032F
상품코드:1661605
리서치사:Markets & Data
발행일:2025년 02월
페이지 정보:영문 225 Pages
라이선스 & 가격 (부가세 별도)
ㅁ Add-on 가능: 고객의 요청에 따라 일정한 범위 내에서 Customization이 가능합니다. 자세한 사항은 문의해 주시기 바랍니다.
ㅁ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송기일은 문의해 주시기 바랍니다.
한글목차
세계의 반도체 시장은 2024년에 8,231억 달러 규모에 이르렀습니다. 2024년부터 2032년까지의 예측 기간을 통해 11.55%의 연평균 복합 성장률(CAGR)로 2032년에는 1조 9,734억 달러에 달할 것으로 예측되고 있습니다.
세계 소비자 전자 제품의 지속적인 사용 증가는 시장 성장을 가속하는 주요 요인 중 하나로 간주됩니다. 게다가 사물인터넷(IoT), 인공지능(AI), 머신러닝(ML) 기술 등장도 시장 성장을 크게 뒷받침하고 있습니다. 이러한 기술 혁신을 통해 메모리 칩은 대량의 데이터를 보다 신속하게 처리할 수 있게 되었습니다. 또한 예측기간을 통해 산업용으로 고속으로 고기능 메모리 칩의 요구가 높아지고 있는 것도 시장 확대의 원동력이 되고 있습니다.
목차
제1장 조사 방법
제2장 제품 개요
제3장 주요 요약
제4장 고객의 목소리
용도분야
구매 결정 시 고려되는 요소
품질
가격
목적
주문 수량
수명
업계에서의 경험
운영 비용
공급망 관리
수요 및 공급의 메커니즘
구매 채널
제5장 세계 반도체 시장 전망(2018-2032년)
시장 규모와 예측
금액별
수량별
시장 점유율과 예측
유형별
내재적 {Si(실리콘), Ge(게르마늄)}
외인성(순수한 Si와 Ge)
구성 요소별
메모리 디바이스
로직 디바이스
아날로그 IC
MPU
개별 전력 장치
MCU 센서
기타
노드 사이즈별
180 nm
130 nm
90 nm
65 nm
45/40 nm
32/28 nm
22/20nm
16/14 nm
10/7nm
7/5nm
5nm
용도별
네트워크와 통신
가전
자동차
데이터 처리
항공우주
의학
군사 및 방위
기타
지역별
북미
유럽
라틴아메리카
아시아태평양
중동 및 아프리카
기업별 시장 점유율(%, 2024년)
제6장 북미 반도체 시장 전망(2018-2032년)
시장 규모와 예측
금액별
수량별
시장 점유율과 예측
유형별
내재적 {Si(실리콘), Ge(게르마늄)}
외인성(순수한 Si와 Ge)
구성 요소별
메모리 디바이스
로직 디바이스
아날로그 IC
MPU
개별 전력 장치
MCU 센서
기타
노드 사이즈별
180 nm
130 nm
90 nm
65 nm
45/40 nm
32/28 nm
22/20nm
16/14 nm
10/7nm
7/5nm
5nm
용도별
네트워크와 통신
가전
자동차
데이터 처리
항공우주
의학
군사 및 방위
기타
지역별
미국의 반도체 시장 전망(2018-2032년)
캐나다의 반도체 시장 전망(2018-2032년)
멕시코의 반도체 시장 전망(2018-2032년)
북미의 기타 지역의 반도체 시장 전망(2018-2032년)
제7장 유럽 반도체 시장 전망(2018-2032년)
시장 규모와 예측
금액별
수량별
시장 점유율과 예측
유형별
내재적 {Si(실리콘), Ge(게르마늄)}
외인성(순수한 Si와 Ge)
구성 요소별
메모리 디바이스
로직 디바이스
아날로그 IC
MPU
개별 전력 장치
MCU 센서
기타
노드 사이즈별
180 nm
130 nm
90 nm
65 nm
45/40 nm
32/28 nm
22/20nm
16/14 nm
10/7nm
7/5nm
5nm
용도별
네트워크와 통신
가전
자동차
데이터 처리
항공우주
의학
군사 및 방위
기타
지역별
독일 반도체 시장 전망(2018-2032년)
오스트리아의 반도체 시장 전망(2018-2032년)
벨기에의 반도체 시장 전망(2018-2032년)
러시아의 반도체 시장 전망(2018-2032년)
네덜란드의 반도체 시장 전망(2018-2032년)
기타 유럽의 반도체 시장 전망(2018-2032년)
제8장 라틴아메리카 반도체 시장 전망(2018-2032년)
시장 규모와 예측
금액별
수량별
시장 점유율과 예측
유형별
내재적 {Si(실리콘), Ge(게르마늄)}
외인성(순수한 Si와 Ge)
구성 요소별
메모리 디바이스
로직 디바이스
아날로그 IC
MPU
개별 전력 장치
MCU 센서
기타
노드 사이즈별
180 nm
130 nm
90 nm
65 nm
45/40 nm
32/28 nm
22/20nm
16/14 nm
10/7나노미터
7/5nm
5nm
용도별
네트워크와 통신
가전
자동차
데이터 처리
항공우주
의학
군사 및 방위
기타
지역별
브라질 반도체 시장 전망(2018-2032년)
아르헨티나의 반도체 시장 전망(2018-2032년)
콜롬비아의 반도체 시장 전망(2018-2032년)
페루의 반도체 시장 전망(2018-2032년)
기타 라틴아메리카의 반도체 시장 전망(2018-2032년)
제9장 아시아태평양의 반도체 시장 전망(2018-2032년)
시장 규모와 예측
금액별
수량별
시장 점유율과 예측
유형별
내재적 {Si(실리콘), Ge(게르마늄)}
외인성(순수한 Si와 Ge)
구성 요소별
메모리 디바이스
로직 디바이스
아날로그 IC
MPU
개별 전력 장치
MCU 센서
기타
노드 사이즈별
180 nm
130 nm
90 nm
65 nm
45/40 nm
32/28 nm
22/20nm
16/14 nm
10/7nm
7/5nm
5nm
용도별
네트워크와 통신
가전
자동차
데이터 처리
항공우주
의학
군사 및 방위
기타
지역별
중국 반도체 시장 전망(2018-2032년)
인도의 반도체 시장 전망(2018-2032년)
일본의 반도체 시장 전망(2018-2032년)
한국의 반도체 시장 전망(2018-2032년)
대만의 반도체 시장 전망(2018-2032년)
호주의 반도체 시장 전망(2018-2032년)
기타 아시아태평양의 반도체 시장 전망(2018-2032년)
제10장 중동 및 아프리카 반도체 시장 전망(2018-2032년)
시장 규모와 예측
금액별
수량별
시장 점유율과 예측
유형별
내재적 {Si(실리콘), Ge(게르마늄)}
외인성(순수한 Si와 Ge)
구성 요소별
메모리 디바이스
로직 디바이스
아날로그 IC
MPU
개별 전력 장치
MCU 센서
기타
노드 사이즈별
180 nm
130 nm
90 nm
65 nm
45/40 nm
32/28 nm
22/20nm
16/14 nm
10/7nm
7/5nm
5nm
용도별
네트워크와 통신
가전
자동차
데이터 처리
항공우주
의학
군사 및 방위
기타
지역별
이집트·아라비아의 반도체 시장 전망(2018-2032년)
이란의 반도체 시장 전망(2018-2032년)
이라크의 반도체 시장 전망(2018-2032년)
사우디아라비아의 반도체 시장 전망(2018-2032년)
남아프리카의 반도체 시장 전망(2018-2032년)
알제리의 반도체 시장 전망(2018-2032년)
KTH
영문 목차
영문목차
The Global Semiconductor Market was worth USD 823.1 billion in 2024 and is anticipated to reach up to USD 1973.4 billion in 2032 with an adequate CAGR of 11.55% throughout the forecasted period of 2024 to 2032.
The continuous rise in the usage of consumer electronics products worldwide is regarded as one of the main factors driving the market growth. Additionally, the advent of the Internet of Things (IoT), artificial intelligence (AI), & machine learning (ML) technologies are also boosting the market growth significantly. Because of these innovations, memory chips can process huge volumes of data more quickly. Also, throughout the projected period, the market expansion will be driven by the rising need for faster and more sophisticated memory chips for industrial use.
Significant Advancements in Artificial Intelligence & The Internet of Things (IoT)
The rapid advancement in artificial intelligence (AI) & the Internet of Things (IoT) has resulted in the development of chips integrated with more powerful computing capabilities and high-quality, purpose-built chips for specific applications.
The combination of AI and IoT has also enabled semiconductor manufacturers to develop solutions for specific use cases and applications rapidly. AI-enabled chips can optimize the performance of autonomous robots, while IoT-enabled chips can power connected devices. One example of AI and IoT-enabled semiconductors in robotics is the NVIDIA Jetson platform, which consists of a family of embedded systems-on-module (SoMs) and developer kits designed to provide high-performance computing for AI and computer vision applications in robotics.
Growth of the Related Industries driving Market Growth
Dependent industries such as automotive (EVs), data storage, wireless telecom etc. rely heavily on semiconductor technology. The batteries and other components need to be powered to operate efficiently, leading to an increase in demand for reliable and efficient semiconductor technology, which has, in turn, driven the development of better and more advanced semiconductor components. Similarly, the amount of data being created and stored has grown exponentially, and the need for semiconductors for storing and processing this data has also surged. This has led to the development of more advanced memory chips, processors, and other semiconductor components that can store and process vast amounts of data in a short timeframe.
Collaboration Between Market Players Drives Market Growth
Collaboration between market players is a key driver of the global semiconductor market, and through strategic partnerships and alliances, companies can strengthen their technological advancements and innovations. Collaborations allow a huge number of resources for research and development, introducing more high-performance and more efficient semiconductor solutions. Working collaboratively, companies can lessen risks linked with supply chain disruptions, fluctuating demand patterns, and geopolitical tensions. In addition, joint ventures, partnerships, and other collaborations allow companies to navigate dynamics more effectively and bring together experts from different fields to solve complex problems and develop innovative products, further propelling global semiconductor market growth in the forecast period. Companies in the market are collaborating to introduce technologies including smart cards to emerging countries and bring expertise to address the growing demand.
For instance, in January 2025, Bartronics India Ltd partnered with PTW Group to transform the semiconductor industry and advance India's ambition of becoming a global semiconductor hub by surging manufacturing, innovation, R&D, and others.
Government Schemes and Initiatives
Government expenditures on the technological advancements of the semiconductor industry have been increasing steadily, allowing for more research and development in the field. The emergence of new schemes and policies aimed at boosting the semiconductor market has also been a contributing factor. In January 2025, a Fiscal Support Agreement was signed between the India Semiconductor Mission, CG Power and Industrial Solutions Ltd., and CG Semi Pvt. Ltd. This agreement facilitates the establishment of a semiconductor Outsourced Semiconductor Assembly and Test (OSAT) unit in Sanand, Gujarat, with an investment of approximately ₹7,600 crore (equivalent to around USD 880 million. The project is set to produce 15 million chips per day, significantly enhancing India's semiconductor manufacturing capabilities.
Covid-19 Impact on Global Semiconductor Market
The pandemic has led to a sudden and unexpected increase in the demand for consumer electronic devices, which has caused a surge in global semiconductor revenues. The COVID-19 pandemic, with its global impact, endangered production in the entire supply chain industry. After a steep decline in global semiconductor revenues, a shortage of chip production caused extensive disruptions in the automotive industry, with huge revenue losses. These losses are expected to continue throughout the years to come, making the industry a low priority among global fabricators.
Looking ahead, the semiconductor market's post-COVID-19 situation is expected to remain stable. The adoption of digital technologies is likely to continue, thereby driving the demand for semiconductors across various industries, including automotive and healthcare. However, the industry is facing challenges such as supply chain disruptions, rising costs, and geopolitical tensions.
Impact of The Russia-Ukraine War on the Global Semiconductor Market
The conflict between Russia and Ukraine has had a significant impact on the Global Semiconductor Market. The war has caused an increase in the prices of semiconductors, leading to a decrease in their demand. The rise in prices of semiconductors has been driven by the political uncertainty between the two countries, as well as the sanctions imposed on Russia by NATO. This has resulted in a decrease in the supply of Russian semiconductors, causing prices to surge significantly. The war has also influenced the value of Russian currency, increasing the cost of semiconductors imported from Russia.
Key Players' Landscape and Outlook (Competitive Landscape Analysis)
The Global Semiconductor Market offers a 360-degree competitive landscape analysis based on some significant choices made by the leading market players of the industry. To expedite the overall share of the market, several businesses are sheer focusing on various collaboration projects. However, the SMEs are leveraging their respective expansion abilities to gain new contracts and deep dive into brand-new markets due to various product innovation opportunities and technological improvisations. For instance, in January 2025, Indichip Semiconductors Limited, in partnership with Japan's Yitoa Micro Technology Limited, signed a Memorandum of Understanding with the Andhra Pradesh government to set up India's first private semiconductor manufacturing facility. With an investment of over INR 14,000 crore (approximately USD 1.62 billion, this facility focuses on manufacturing Silicon Carbide (SiC) chips, aligning with India's technological advancement and sustainability goals. The facility is expected to begin with a production capacity of 10,000 wafers per month, ramping up to 50,000 wafers per month within two to three years.
Table of Contents
1. Research Methodology
2. Product Overview
3. Executive Summary
4. Voice of Customer
4.1. Application Sector
4.2. Factors Considered to Make Purchase Decisions
4.2.1. Quality
4.2.2. Price
4.2.3. Purpose
4.2.4. Order Quantity
4.2.5. Lifespan
4.2.6. Experience in the Industry
4.2.7. Operational Costs
4.3. Supply Chain Management
4.4. Demand and Supply Mechanism
4.5. Channel of Purchase
5. Global Semiconductors Market Outlook, 2018-2032F
5.1. Market Size & Forecast
5.1.1. By Value
5.1.2. By Volume
5.2. Market Share & Forecast
5.2.1. By Type
5.2.1.1. Intrinsic {Si (Silicon), and Ge (Germanium)}
5.2.1.2. Extrinsic (pure Si & Ge)
5.2.2. By Components
5.2.2.1. Memory Devices
5.2.2.2. Logic Devices
5.2.2.3. Analog IC
5.2.2.4. MPU
5.2.2.5. Discrete Power Devices
5.2.2.6. MCU Sensors
5.2.2.7. Others
5.2.3. By Node Size
5.2.3.1. 180 nm
5.2.3.2. 130 nm
5.2.3.3. 90 nm
5.2.3.4. 65 nm
5.2.3.5. 45/40 nm
5.2.3.6. 32/28 nm
5.2.3.7. 22/20 nm
5.2.3.8. 16/14 nm
5.2.3.9. 10/7 nm
5.2.3.10. 7/5 nm
5.2.3.11. 5 nm
5.2.4. By Applications
5.2.4.1. Networking and Communications
5.2.4.2. Consumer Electronics
5.2.4.3. Automotive
5.2.4.4. Data Processing
5.2.4.5. Aerospace
5.2.4.6. Medical
5.2.4.7. Military & Defence
5.2.4.8. Others
5.2.5. By Region
5.2.5.1. North America
5.2.5.2. Europe
5.2.5.3. Latin America
5.2.5.4. Asia-Pacific
5.2.5.5. Middle East and Africa
5.2.6. By Company Market Share (%), 2024
6. North America Semiconductors Market Outlook, 2018-2032F
6.1. Market Size & Forecast
6.1.1. By Value
6.1.2. By Volume
6.2. Market Share & Forecast
6.2.1. By Type
6.2.1.1. Intrinsic {Si (Silicon), and Ge (Germanium)}
6.2.1.2. Extrinsic (pure Si & Ge)
6.2.2. By Components
6.2.2.1. Memory Devices
6.2.2.2. Logic Devices
6.2.2.3. Analog IC
6.2.2.4. MPU
6.2.2.5. Discrete Power Devices
6.2.2.6. MCU Sensors
6.2.2.7. Others
6.2.3. By Node Size
6.2.3.1. 180 nm
6.2.3.2. 130 nm
6.2.3.3. 90 nm
6.2.3.4. 65 nm
6.2.3.5. 45/40 nm
6.2.3.6. 32/28 nm
6.2.3.7. 22/20 nm
6.2.3.8. 16/14 nm
6.2.3.9. 10/7 nm
6.2.3.10. 7/5 nm
6.2.3.11. 5 nm
6.2.4. By Applications
6.2.4.1. Networking and Communications
6.2.4.2. Consumer Electronics
6.2.4.3. Automotive
6.2.4.4. Data Processing
6.2.4.5. Aerospace
6.2.4.6. Medical
6.2.4.7. Military & Defence
6.2.4.8. Others
6.2.5. By Region
6.2.5.1. United States Semiconductors Market Outlook, 2018-2032F
6.2.5.1.1. Market Size & Forecast
6.2.5.1.1.1. By Value
6.2.5.1.1.2. By Volume
6.2.5.1.2. Market Share & Forecast
6.2.5.1.2.1. By Type
6.2.5.1.2.1.1. Intrinsic {Si (Silicon), and Ge (Germanium)}