¼¼°èÀÇ Ç³·Â ºí·¹À̵å¿ë º¹ÇÕÀç·á ½ÃÀå ¿¹Ãø(-2030³â) : ¼¶À¯ À¯Çüº°, ¼öÁö À¯Çüº°, ºí·¹ÀÌµå »çÀÌÁ, ¿ëµµº°, Áö¿ªº°
Wind Blade Composites Market by Fiber Type, Resin Type, Blade Size, Application, and Region - Global Forecast to 2030
»óǰÄÚµå : 1755997
¸®¼­Ä¡»ç : MarketsandMarkets
¹ßÇàÀÏ : 2025³â 06¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 250 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 4,950 £Ü 6,767,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,650 £Ü 9,091,000
PDF (5-user License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷Àå¿¡¼­ 5¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 8,150 £Ü 11,141,000
PDF (Corporate License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÀÌ¿ë Àοø¿¡ Á¦ÇÑÀº ¾øÀ¸³ª, ±¹³»¿¡ ÀÖ´Â »ç¾÷À常 ÇØ´çµÇ¸ç, ÇØ¿Ü ÁöÁ¡ µîÀº Æ÷ÇÔµÇÁö ¾Ê½À´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 10,000 £Ü 13,671,000
PDF (Global License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. (100% ÀÚȸ»ç´Â µ¿ÀÏ ±â¾÷À¸·Î °£Áֵ˴ϴÙ.) Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


¤± Add-on °¡´É: °í°´ÀÇ ¿äû¿¡ µû¶ó ÀÏÁ¤ÇÑ ¹üÀ§ ³»¿¡¼­ CustomizationÀÌ °¡´ÉÇÕ´Ï´Ù. ÀÚ¼¼ÇÑ »çÇ×Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

Çѱ۸ñÂ÷

dz·Â ºí·¹À̵å¿ë º¹ÇÕÀç·á ½ÃÀå ±Ô¸ð´Â 2025³â¿¡ 132¾ï 8,000¸¸ ´Þ·¯, 2030³â¿¡´Â 218¾ï 7,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ÃßÁ¤µÇ¸ç, 2025-2030³âÀÇ CAGRÀº 10.5%¿¡ ´ÞÇÒ °ÍÀ¸·Î º¸À̰í ÀÖ½À´Ï´Ù.

dz·Â ºí·¹À̵å¿ë º¹ÇÕÀç·á ºÐ¾ß¿¡¼­ ź¼Ò¼¶À¯¿¡ ´ëÇÑ ¼ö¿ä´Â dz·Â ÅͺóÀÇ ´ëÇüÈ­, °íÈ¿À²È­¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó Å©°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ź¼Ò¼¶À¯´Â ±âÁ¸ ¼ÒÀç¿¡ ºñÇØ ¿ì¼öÇÑ °­µµ ´ë Áß·®ºñ¸¦ Á¦°øÇÏ¿© ´õ ±æ°í, ´õ °¡º±°í, ´õ °ß°íÇÑ ºí·¹À̵带 ½±°Ô Á¦Á¶ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Æ¯¼ºÀº ÅͺóÀÇ ¿¡³ÊÁö Ãâ·ÂÀ» ÃÖÀûÈ­ÇÏ´Â µ¥ ÇʼöÀûÀ̸ç, ƯÈ÷ ³ôÀº ÀÎÇÁ¶ó ºñ¿ëÀ» ÁÙÀ̱â À§ÇØ ¼º´ÉÀ» ±Ø´ëÈ­ÇÏ´Â °ÍÀÌ ÇʼöÀûÀÎ ÇØ¾ç ¿ëµµ¿¡¼­ Áß¿äÇÕ´Ï´Ù. ¶ÇÇÑ Åº¼Ò¼¶À¯´Â ºí·¹À̵åÀÇ ÇÇ·Î ÀúÇ×°ú ¼ö¸íÀ» Çâ»ó½ÃÄÑ À¯Áöº¸¼öÀÇ Çʿ伺À» ÁÙÀ̰í ÀÛµ¿ ¼ö¸íÀ» ¿¬Àå½Ãŵ´Ï´Ù. Àç»ý¿¡³ÊÁö¸¦ ÃËÁøÇϰí ÀÌ»êȭź¼Ò ¹èÃâ·®À» ÁÙÀ̱â À§ÇÑ Àü ¼¼°èÀûÀÎ ³ë·ÂÀÌ °¡¼ÓÈ­µÊ¿¡ µû¶ó dz·Â¿¡³ÊÁö ¼³ºñÀÇ È®´ë°¡ °¡¼ÓÈ­µÇ°í ÀÖÀ¸¸ç, ºí·¹À̵å Á¦Á¶¿¡ ź¼Ò¼¶À¯¿Í °°Àº ÷´Ü ¼ÒÀçÀÇ Ã¤ÅÃÀÌ ´õ¿í °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù.

Á¶»ç ¹üÀ§
Á¶»ç ´ë»ó¿¬µµ 2023-2030³â
±âÁØ¿¬µµ 2024³â
¿¹Ãø ±â°£ 2025-2030³â
°ËÅä ´ÜÀ§ ±Ý¾×(100¸¸ ´Þ·¯) ¹× ų·ÎÅæ
ºÎ¹® ¼¶À¯ À¯Çüº°, ¼öÁö À¯Çüº°, ºí·¹ÀÌµå »çÀÌÁ, ¿ëµµº°, Áö¿ª
´ë»ó Áö¿ª À¯·´, ºÏ¹Ì, ¾Æ½Ã¾ÆÅÂÆò¾ç, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«, ³²¹Ì

Æú¸®¿ì·¹Åº ¼öÁö¿¡ ´ëÇÑ ¼ö¿ä´Â ÁÖ·Î ¶Ù¾î³­ ±â°èÀû Ư¼º, ºñ¿ë È¿À²¼º ¹× Á¦Á¶ »ý»ê¼º Çâ»óÀ¸·Î ÀÎÇØ ¹ß»ýÇÕ´Ï´Ù. ±âÁ¸ ¼öÁö¿¡ ºñÇØ Æú¸®¿ì·¹Åº ¼öÁö´Â ¿ì¼öÇÑ ±â°èÀû °­µµ¿Í °­È­µÈ ³»ÇǷμºÀ» Á¦°øÇÏ¿© ³»±¸¼ºÀÌ ¶Ù¾î³ª¸é¼­µµ °¡º­¿î dz·Â Åͺó ºí·¹À̵å Á¦Á¶¿¡ ÃÖÀûÀÇ ¼±ÅÃÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ Á¡µµ°¡ ³·±â ¶§¹®¿¡ Á¦Á¶ °øÁ¤¿¡¼­ »çÃâ ¼Óµµ°¡ »¡¶ó Á¦Á¶ »çÀÌŬ ½Ã°£À» Å©°Ô ´ÜÃàÇϰí Àü¹ÝÀûÀÎ »ý»ê¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÌ ¼öÁöÀÇ ºñ¿ë È¿À²¼ºÀ¸·Î ÀÎÇØ Á¦Á¶¾÷ü´Â Àú·ÅÇÑ ºñ¿ëÀ¸·Î °íǰÁú ºí·¹À̵带 »ý»êÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ´Â ±âÁ¸ ¿¡³ÊÁö¿ø°ú µ¿µîÇÑ ºñ¿ëÀ¸·Î dz·Â¿¡³ÊÁö ºÎ¹®¿¡ ÇʼöÀûÀÎ ¿ä¼ÒÀÔ´Ï´Ù.

ÃÖ´ë 50m ±æÀÌÀÇ Ç³·Â ºí·¹À̵å´Â dz·Â ºí·¹À̵å¿ë º¹ÇÕÀç·á ½ÃÀå¿¡¼­ µÎ ¹øÂ°·Î ºü¸£°Ô ¼ºÀåÇÏ´Â ºÎ¹®ÀÌ µÉ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ´Â À°»ó dz·Â¹ßÀü¼Ò, ƯÈ÷ ½ÅÈï ½ÃÀå°ú dz·Â¹ßÀü ¿ë·®ÀÌ ÀÛÀº Áö¿ª¿¡¼­ ³Î¸® »ç¿ëµÇ°í Àֱ⠶§¹®ÀÔ´Ï´Ù. ÀÌ ÂªÀº ºí·¹À̵å´Â Á¦Á¶, ¿î¼Û ¹× ¼³Ä¡¿¡ ÀÖÀ¸¸ç, ºñ¿ë È¿À²ÀûÀ̸ç, ÀÎÇÁ¶ó°¡ Á¦ÇÑÀûÀÎ ½ÃÀå°ú ¼Ò±Ô¸ð dz·Â¹ßÀü ÇÁ·ÎÁ§Æ®¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. ¶ÇÇÑ ÇöÀç °¡µ¿ ÁßÀ̰ųª ±³Ã¼ ¹× ¾÷±×·¹À̵å ÁßÀÎ »ó´ç¼öÀÇ ±¸Çü dz·Â ÅͺóÀº ¿ø·¡ ÀÌ Å©±âÀÇ ºí·¹À̵带 »ç¿ëÇϵµ·Ï ¼³°èµÇ¾ú½À´Ï´Ù. ƯÈ÷ ¾Æ½Ã¾ÆÅÂÆò¾ç°ú °°Àº ½ÅÈï ½ÃÀå¿¡¼­´Â Àç»ý¿¡³ÊÁö¿¡ ´ëÇÑ Á¤Ã¥ ÇÁ·¹ÀÓ¿öÅ©¿Í ÅõÀÚ°¡ ¼ÒÇü ÅͺóÀÇ µµÀÔÀ» ´õ¿í ÃËÁøÇÏ°í ºí·¹À̵åÀÇ º¸±ÞÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

À°»ó dz·Â ÅͺóÀº ÇØ»ó dz·Â ÅÍºó¿¡ ºñÇØ ±¤¹üÀ§ÇÏ°Ô Ã¤ÅÃµÇ°í ºñ¿ë È¿À²ÀÌ ³ôÀ¸¸ç ¼³Ä¡ °úÁ¤ÀÌ °£´ÜÇϹǷΠÀüü dz·Â ºí·¹À̵å¿ë º¹ÇÕÀç·á ½ÃÀå Áß µÎ ¹øÂ°·Î ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À°»ó dz·Â¹ßÀü ÇÁ·ÎÁ§Æ®´Â ÀϹÝÀûÀ¸·Î °³¹ß ±â°£ÀÌ Âª°í ºñ¿ëÀÌ ³·±â ¶§¹®¿¡ ƯÈ÷ ÅäÁö ÀÚ¿øÀÌ Ç³ºÎÇϰí Àç»ý¿¡³ÊÁö Á¤Ã¥¿¡ Àû±ØÀûÀÎ ±¹°¡¿¡¼­´Â ´Ù¾çÇÑ Áö¿ª¿¡¼­ ´ë±Ô¸ð·Î ½±°Ô °³¹ßÇÒ ¼ö ÀÖ½À´Ï´Ù. ±× °á°ú, dz·Â ºí·¹À̵å Á¦Á¶¿¡ Ȱ¿ëµÇ´Â º¹ÇÕÀç·á ¼ö¿ä´Â À°»ó¿ëµµ¿¡¼­ Å©°Ô Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÃÖ±Ù º¹ÇÕÀç ±â¼úÀÇ ¹ßÀüÀ¸·Î À°»ó ÅͺóÀÇ ¿ä±¸ »çÇ×À» ÃæÁ·Çϵµ·Ï Ưº°È÷ ¼³°èµÈ ´õ ±æ°í, ´õ °¡º±°í, ´õ ź·ÂÀûÀÎ ºí·¹À̵带 »ý»êÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.

À¯·´Àº ¿¹Ãø ±â°£ Áß Ç³·Â ºí·¹À̵å¿ë º¹ÇÕÀç·á ½ÃÀå¿¡¼­ µÎ ¹øÂ°·Î ºü¸£°Ô ¼ºÀåÇÏ´Â Áö¿ªÀ¸·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ·¯ÇÑ ¼ºÀåÀº Àç»ý¿¡³ÊÁö¿¡ ´ëÇÑ È®°íÇÑ ÀÇÁö, ¾ß½ÉÂù ±âÈÄ ¸ñÇ¥, Àß ±¸ÃàµÈ dz·Â¿¡³ÊÁö ÀÎÇÁ¶ó¿¡ ±âÀÎÇÕ´Ï´Ù. À¯·´¿¬ÇÕ(EU)Àº ÀÌ»êȭź¼Ò ¹èÃâ·®À» ÁÙÀÌ°í ¿¡³ÊÁö Æ÷Æ®Æú¸®¿À¿¡¼­ Àç»ý¿¡³ÊÁöÀÇ ºñÀ²À» ³ôÀ̱â À§ÇÑ ¾ö°ÝÇÑ ¸ñÇ¥¸¦ ¼³Á¤Çϰí ÀÖÀ¸¸ç, dz·Â¹ßÀüÀº ¸Å¿ì Áß¿äÇÑ ¿ä¼ÒÀÔ´Ï´Ù. µ¶ÀÏ, µ§¸¶Å©, ³×´ú¶õµå¸¦ ºñ·ÔÇÑ ÁÖ¿ä ±â¾÷Àº À°»ó ¹× ÇØ»ó dz·Â ¸ðµÎ¿¡ ´ë±Ô¸ð ÅõÀÚ¸¦ Çϰí ÀÖÀ¸¸ç, ÀÌ´Â Åͺó ºí·¹À̵å¿ë °í¼º´É, °æ·®, ³»±¸¼ºÀÌ ¶Ù¾î³­ º¹ÇÕ¼ÒÀç¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÌ Áö¿ªÀÇ ³ôÀº Á¦Á¶ ´É·ÂÀº Àç·á °úÇÐÀÇ Áö¼ÓÀûÀÎ Çõ½Å°ú À¯¸®ÇÑ ±ÔÁ¦ ȯ°æ°ú °áÇÕÇÏ¿© dz·Â ºí·¹À̵å¿ë º¹ÇÕÀç·á ½ÃÀåÀÇ ºü¸¥ ¼ºÀåÀ» °¡¼ÓÇÏ´Â Áß¿äÇÑ ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ Ã·´Ü º¹ÇÕÀç·á·Î ¸¸µç ÷´Ü º¹ÇÕÀç·á·Î ¸¸µç º¸´Ù È¿À²ÀûÀÎ ºí·¹À̵åÀÇ ÅëÇÕÀ» ÅëÇÑ ³ëÈÄÈ­µÈ dz·Â¹ßÀü¼ÒÀÇ Çö´ëÈ­´Â ÀÌ Áö¿ª ½ÃÀå ¼ºÀåÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

¼¼°èÀÇ Ç³·Â ºí·¹À̵å¿ë º¹ÇÕÀç·á ½ÃÀå¿¡ ´ëÇØ Á¶»çÇßÀ¸¸ç, ¼¶À¯ À¯Çüº°, ¼öÁö À¯Çüº°, ºí·¹ÀÌµå »çÀÌÁ, ¿ëµµº°, Áö¿ªº° µ¿Çâ ¹× ½ÃÀå¿¡ Âü¿©ÇÏ´Â ±â¾÷ÀÇ °³¿ä µîÀ» Á¤¸®ÇÏ¿© ÀüÇØµå¸³´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­·Ð

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå °³¿ä

Á¦4Àå ÁÖ¿ä ÀλçÀÌÆ®

Á¦5Àå ½ÃÀå °³¿ä

Á¦6Àå dz·Â ºí·¹À̵å¿ë º¹ÇÕÀç·á ½ÃÀå(¼¶À¯ À¯Çüº°)

Á¦7Àå dz·Â ºí·¹À̵å¿ë º¹ÇÕÀç·á ½ÃÀå(¼öÁö À¯Çüº°)

Á¦8Àå dz·Â ºí·¹À̵å¿ë º¹ÇÕÀç·á ½ÃÀå(ºí·¹ÀÌµå »çÀÌÁ)

Á¦9Àå dz·Â ºí·¹À̵å¿ë º¹ÇÕÀç·á ½ÃÀå(¿ëµµº°)

Á¦10Àå dz·Â ºí·¹À̵å¿ë º¹ÇÕÀç·á ½ÃÀå(Áö¿ªº°)

Á¦11Àå °æÀï ±¸µµ

Á¦12Àå ±â¾÷ °³¿ä

Á¦13Àå ºÎ·Ï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

The wind blade composites market is estimated to be valued at USD 13.28 billion in 2025 and reach USD 21.87 billion by 2030, at a CAGR of 10.5% from 2025 to 2030. The demand for carbon fiber within the wind blade composites sector is experiencing significant growth, primarily driven by the increasing requirements for larger, more efficient wind turbines. Carbon fiber provides a superior strength-to-weight ratio compared to conventional materials, facilitating the production of longer, lighter, and stiffer blades. These attributes are critical for optimizing the energy output of turbines, particularly in offshore applications where maximizing performance is essential to mitigate high infrastructure costs. Additionally, carbon fiber enhances the fatigue resistance and longevity of blades, reducing maintenance requirements and extending their operational life. As global initiatives to promote renewable energy and decrease carbon emissions gain momentum, the expansion of wind energy installations is accelerating, further propelling the adoption of advanced materials, such as carbon fiber, in blade manufacturing.

Scope of the Report
Years Considered for the Study2023-2030
Base Year2024
Forecast Period2025-2030
Units ConsideredValue (USD Million) and Volume (Kiloton)
SegmentsFiber type, resin type, blade size, application, and region
Regions coveredEurope, North America, Asia Pacific, Middle East & Africa, and South America

"Polyurethane resin to be second fastest-growing resin type segment during forecast period"

The demand for polyurethane resin is primarily driven by its exceptional mechanical properties, cost efficiency, and improved manufacturing productivity. Compared to conventional resins, polyurethane resin offers superior mechanical strength and enhanced fatigue resistance, making it an optimal choice for the production of durable yet lightweight wind turbine blades. Its low viscosity facilitates accelerated infusion rates during the manufacturing process, leading to a significant reduction in production cycle times and an overall increase in productivity. Additionally, the cost-effectiveness of these resins allows manufacturers to produce high-quality blades at reduced costs, which is essential for the wind energy sector as it moves towards achieving cost parity with traditional energy sources.

"Wind blades up to 50 meters length to be second-fastest-growing blade size segment during forecast period"

Wind blades measuring up to 50 meters are projected to be the second-fastest growing segment in the wind blade composites market, largely attributed to their prevalent application in onshore wind farms, particularly in developing regions and areas with lower wind capacity. These shorter blades offer a more cost-efficient for manufacturing, transportation, and installation, rendering them ideal for markets characterized by limited infrastructure or smaller-scale wind energy initiatives. Furthermore, a significant proportion of older wind turbines, still operational and undergoing replacement or upgrades, were originally engineered to support blades of this size. Policy frameworks and investments in renewable energy-especially within emerging markets such as the Asia-Pacific region-further bolster the deployment of smaller turbines, thereby enhancing the uptake of these blades.

"Onshore wind turbines to be second-fastest growing application segment during forecast period"

Onshore wind turbines are anticipated to exhibit the second-highest growth rate within the overall wind blade composites market, driven by their extensive adoption, cost efficiency, and simpler installation processes compared to offshore counterparts. Onshore wind projects typically have shorter development timelines and lower costs, facilitating large-scale deployments across various regions, particularly in nations with abundant land resources and proactive renewable energy policies. Consequently, the demand for composite materials utilized in wind blade manufacturing has markedly increased for onshore applications. Recent advancements in composite technology have led to the production of longer, lighter, and more resilient blades specifically designed to meet the requirements of onshore turbines.

"Europe to register second-highest growth rate in wind blade composites market during forecast period"

Europe is anticipated to rank as the second-fastest-growing region in the wind blade composites market throughout the forecast period. This growth can be attributed to a robust commitment to renewable energy, ambitious climate objectives, and a well-established wind energy infrastructure. The European Union has instituted stringent targets to reduce carbon emissions and enhance the share of renewables in its energy portfolio, with wind power as a pivotal component. Key players, including Germany, Denmark, and the Netherlands, are making significant investments in both onshore and offshore wind initiatives, thereby driving the demand for high-performance, lightweight, and durable composite materials for turbine blades. Furthermore, the region's advanced manufacturing capabilities, coupled with ongoing technological innovations in materials science and favorable regulatory environments, are essential factors propelling the swift expansion of the wind blade composites market. Additionally, the modernization of older wind farms through the integration of cutting-edge, more efficient blades crafted from advanced composites further stimulates market growth in the region.

This study has been validated through interviews with industry experts globally. The primary sources have been divided into the following three categories:

Report provides a comprehensive analysis of the following companies:

China Jushi Co., Ltd. (China), DowAksa (Turkey), Teijin Limited (Japan), SGL Carbon (Germany), Hexcel Corporation (US), Gurit Services AG (Switzerland), China National Building Material Group Corporation (China), Toray Industries, Inc. (Japan), Rochling (Germany), Exel Composites (Finland), Evonik (Germany), Arkema (France), Owens Corning (US), Exxon Mobil (US), and Huntsman (US).

Research Coverage

This research report categorizes the wind blade composites market based on fiber type (glass fiber, carbon fiber, and other fiber types), resin type (epoxy, polyurethane, and other resin types), blade size (up to 50 meters and over 50 meters), application (onshore wind turbines and offshore wind turbines), and region (North America, Europe, Asia Pacific, Middle East & Africa, and South America). The scope of the report includes detailed information about the major factors influencing the growth of the wind blade composites market, such as drivers, restraints, challenges, and opportunities. A thorough examination of the key industry players has been conducted to provide insights into their business overviews, solutions and services, key strategies, and recent developments in the wind blade composites market are all covered. This report includes a competitive analysis of the upcoming startups in the wind blade composites market ecosystem.

Reasons to Buy this Report

The report will help the market leaders/new entrants in this market with information on the closest approximations of the revenue numbers for the overall wind blade composites market and the subsegments. This report will help stakeholders understand the competitive landscape and gain more insights to position their businesses better and plan suitable go-to-market strategies. The report also helps stakeholders understand the market pulse and provides information on key market drivers, restraints, challenges, and opportunities.

The report provides insights on the following pointers:

TABLE OF CONTENTS

1 INTRODUCTION

2 RESEARCH METHODOLOGY

3 EXECUTIVE SUMMARY

4 PREMIUM INSIGHTS

5 MARKET OVERVIEW

6 WIND BLADE COMPOSITES MARKET, BY FIBER TYPE

7 WIND BLADE COMPOSITES MARKET, BY RESIN TYPE

8 WIND BLADE COMPOSITES MARKET, BY BLADE SIZE

9 WIND BLADE COMPOSITES MARKET, BY APPLICATION

10 WIND BLADE COMPOSITES MARKET, BY REGION

11 COMPETITIVE LANDSCAPE

12 COMPANY PROFILES

13 APPENDIX

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â