¼¼°èÀÇ AI ÀÎÇÁ¶ó ½ÃÀå : Á¦°ø, ±â´É, ¹èÆ÷º° - ¿¹Ãø(-2030³â)
AI Infrastructure Market by Offerings (Compute (GPU, CPU, FPGA), Memory (DDR, HBM), Network (NIC/Network Adapters, Interconnect), Storage, Software), Function (Training, Inference), Deployment (On-premises, Cloud, Hybrid) - Global Forecast to 2030
»óǰÄÚµå : 1606236
¸®¼­Ä¡»ç : MarketsandMarkets
¹ßÇàÀÏ : 2024³â 12¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 338 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 4,950 £Ü 7,181,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,650 £Ü 9,648,000
PDF (5-user License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷Àå¿¡¼­ 5¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 8,150 £Ü 11,824,000
PDF (Corporate License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÀÌ¿ë Àοø¿¡ Á¦ÇÑÀº ¾øÀ¸³ª, ±¹³»¿¡ ÀÖ´Â »ç¾÷À常 ÇØ´çµÇ¸ç, ÇØ¿Ü ÁöÁ¡ µîÀº Æ÷ÇÔµÇÁö ¾Ê½À´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 10,000 £Ü 14,509,000
PDF (Global License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. (100% ÀÚȸ»ç´Â µ¿ÀÏ ±â¾÷À¸·Î °£Áֵ˴ϴÙ.) Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


¤± Add-on °¡´É: °í°´ÀÇ ¿äû¿¡ µû¶ó ÀÏÁ¤ÇÑ ¹üÀ§ ³»¿¡¼­ CustomizationÀÌ °¡´ÉÇÕ´Ï´Ù. ÀÚ¼¼ÇÑ »çÇ×Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

Çѱ۸ñÂ÷

¼¼°è AI ÀÎÇÁ¶ó ½ÃÀå ±Ô¸ð´Â 2024³â 1,358¾ï 1,000¸¸ ´Þ·¯, 2030³â±îÁö 3,944¾ï 6,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, 2024-2030³â°£ ¿¬Æò±Õ 19.4% ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

µðÁöÅÐ Àüȯ, IoT, ¼Ò¼È ¹Ìµð¾î, ÀüÀÚ»ó°Å·¡·Î ÀÎÇÑ µ¥ÀÌÅÍ »ý¼ºÀÇ ±ÞÁõÀ¸·Î ÀÎÇØ AI ¹× ¸Ó½Å·¯´× ¸ðµ¨À» À§ÇÑ ¹æ´ëÇÑ µ¥ÀÌÅÍ ¼¼Æ®¸¦ °ü¸®ÇÒ ¼ö ÀÖ´Â °í±Þ ÄÄÇ»ÆÃ ¹× ½ºÅ丮Áö°¡ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, µ¥ÀÌÅͼ¾ÅÍ ³» Ŭ¶ó¿ìµå ±â¹Ý AI ÀÎÇÁ¶ó¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ±â¾÷µéÀÌ º¹ÀâÇÑ AI ¿öÅ©·Îµå¸¦ °ü¸®ÇÏ´Â ¹æ½ÄÀÌ ÀçÆíµÇ°í ÀÖÀ¸¸ç, ÁÖ¿ä Ŭ¶ó¿ìµå Á¦°ø¾÷üµéÀº Áõ°¡ÇÏ´Â ¼¼°è ¼ö¿ä¿Í »ê¾÷º° ¼ö¿ä¿¡ ´ëÀÀÇϱâ À§ÇØ AI Áö¿ø ÀÎÇÁ¶ó¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀÌ Á¾ÇÕÀûÀ¸·Î AI ÀÎÇÁ¶ó ½ÃÀåÀÇ ÁÖ¿ä ¼ºÀå µ¿·ÂÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù.

Á¶»ç ¹üÀ§
Á¶»ç ´ë»ó³âµµ 2020³â-2030³â
±âÁØ ¿¬µµ 2023³â
¿¹Ãø ±â°£ 2024³â-2030³â
´ÜÀ§ 10¾ï ´Þ·¯
ºÎ¹® Á¦°ø, ¸Þ¸ð¸®, ³×Æ®¿öÅ©, ±â´É, ¹èÆ÷, Áö¿ª
´ë»ó Áö¿ª ºÏ¹Ì, À¯·´, ¾Æ½Ã¾ÆÅÂÆò¾ç ¹× ±âŸ Áö¿ª

"»ý¼ºÇü AI ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» À¯ÁöÇÒ °ÍÀÔ´Ï´Ù."

»ý¼ºÇü AI´Â »ê¾÷ Àü¹Ý¿¡ °ÉÃÄ °í±Þ AI ¿ëµµ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. »ý¼ºÇü AI´Â ÄÁÅÙÃ÷ Á¦ÀÛ, ¾ð¾î ¸ðµ¨, À̹ÌÁö ÇÕ¼º µîÀÇ ±â´ÉÀ» Çâ»ó½Ã۸ç, ÀÌ´Â ¸ðµÎ ´ë±Ô¸ð ½Å°æ¸ÁÀ» ÈÆ·ÃÇÏ°í ½ÇÇàÇϱâ À§ÇÑ ¹æ´ëÇÑ ¿¬»ê ´É·Â¿¡ Å©°Ô ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼ö¿ä´Â ÁýÁßÀûÀΠó¸® ¿ä±¸¸¦ Áö¿øÇÒ ¼ö ÀÖ´Â °í¼º´É GPU¿Í DPUÀÇ ´É·Â¿¡ ÁßÁ¡À» µÐ °í°¡ÀÇ ÀÎÇÁ¶ó ÅõÀÚ¸¦ ÇÊ¿ä·Î ÇÕ´Ï´Ù. 2024³â 11¿ù, GMO Internet Group, Inc.(ÀϺ»)Àº NVIDIA Corporation(¹Ì±¹)ÀÇ H200 Tensor Core GPU, Spectrum-X Ethernet, Blueprints, Blueprints, H200 Tensor Core GPU¸¦ µµÀÔÇÏ¿© AI ÀÎÇÁ¶ó ½ÃÀåÀ» È®´ëÇÒ °ÍÀ¸·Î ¿¹»óµÈ´Ù, Dell PowerEdge ¼­¹ö¿¡¼­ °³¹ßµÈ ÀÌ ÀÎÇÁ¶ó´Â ³·Àº ´ë±â½Ã°£°ú ³ÐÀº ´ë¿ªÆøÀ» ÅëÇØ »ý»ê±Þ AI »ý¼º ¹× ó¸® ¼Óµµ¸¦ Çâ»ó½ÃÄÑÁÖ´Â 'GMO GPU Ŭ¶ó¿ìµå'¸¦ Á¦°øÇÕ´Ï´Ù. ±â´ÉÀ» ÅëÇØ ÇÁ·Î´ö¼Ç±Þ »ý¼ºÇü AI ¿ëµµÀÇ ¿ä±¸ »çÇ×À» Áö¿øÇϵµ·Ï Á¶Á¤µÆ½À´Ï´Ù. ÀÌ·¯ÇÑ Çõ½ÅÀº »ý¼ºÇü AI ¿öÅ©·Îµå¿¡ ÃÖÀûÈ­µÈ ÀÎÇÁ¶ó¸¦ ´ë±Ô¸ð·Î ±¸ÃàÇÏ´Â µ¥ ÀÖ¾î ¾÷°èÀÇ ÃßÁø·ÂÀ» º¸¿©ÁÝ´Ï´Ù. ¶ÇÇÑ, ÀÌ·¯ÇÑ Çõ½Å ±â¼úÀº °í¼º´É Ŭ¶ó¿ìµå ¼Ö·ç¼ÇÀÌ ÀÌ ºÎ¹®ÀÇ ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù.

"¿¹Ãø ±â°£ µ¿¾È AI ÀÎÇÁ¶ó ½ÃÀå¿¡¼­ ³ôÀº CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù."

±â¾÷ ºÎ¹®ÀÌ AI ÀÎÇÁ¶ó ½ÃÀå¿¡¼­ ³ôÀº ¼ºÀå¼¼¸¦ ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±â¾÷µéÀº AI¸¦ Ȱ¿ëÇÏ¿© µðÁöÅÐ ÀüȯÀ» ÃËÁøÇϰí, ¾÷¹« È¿À²¼ºÀ» ³ôÀ̰í, °í°´ °æÇèÀ» °³¼±Çϱâ À§ÇØ AI ÀÎÇÁ¶ó¸¦ µµÀÔÇϰí ÀÖ½À´Ï´Ù. Á¦Á¶, ±ÝÀ¶, À¯Åë ±â¾÷µéÀº AI ±â¹Ý ¿¹Ãø ºÐ¼®, ÇÁ·Î¼¼½º ÀÚµ¿È­, °í°´ ÀλçÀÌÆ® Åø¿¡ ´ëÇÑ ÅõÀÚ¸¦ ´Ã¸®°í ÀÖÀ¸¸ç, À̸¦ À§Çؼ­´Â °­·ÂÇϰí È®À强ÀÌ ³ôÀº AI ÀÎÇÁ¶ó°¡ ÇÊ¿äÇÕ´Ï´Ù. ¶ÇÇÑ ±â¾÷µéÀº ÇÁ¶óÀ̺ø Ŭ¶ó¿ìµå ÀÎÇÁ¶ó ¹× ÇÏÀ̺긮µå Ŭ¶ó¿ìµå ¸ðµ¨¿¡ ÅõÀÚÇÏ¿© AI ±â´ÉÀ» È®ÀåÇϰí ÀÖ½À´Ï´Ù. ƯÈ÷ Ŭ¶ó¿ìµå ±â¹Ý AIÀÇ À¯¿¬¼º°ú Çõ½ÅÀÇ ÇýÅÃÀ» ´©¸®¸é¼­µµ ±â¹Ð µ¥ÀÌÅ͸¦ º¸È£ÇϰíÀÚ ÇÕ´Ï´Ù. 2024³â 2¿ù, ½Ã½ºÄÚ¿Í ¿£ºñµð¾Æ´Â ±â¾÷ AI¿¡ ÇÊ¿äÇÑ ³ôÀº ÄÄÇ»ÆÃ ÆÄ¿ö¸¦ Á¦°øÇÏ´Â µ¿½Ã¿¡ ±¸Ãà ¹× °ü¸®¸¦ °£¼ÒÈ­Çϰí, ±âÁ¸ IT ȯ°æ°ú ÅëÇÕÇÒ ¼ö ÀÖ´Â ÀûÀÀÇü °í¼º´É AI ¸®¼Ò½º¿¡ ´ëÇÑ Á¾ÇÕÀûÀÎ Áö¿øÀ» Á¦°øÇÑ´Ù´Â ³»¿ëÀÇ ÆÄÆ®³Ê½ÊÀ» ü°áÇß½À´Ï´Ù. Ŭ¶ó¿ìµå ±â¹Ý ¹× ¿ÂÇÁ·¹¹Ì½º ±â¾÷À» À§ÇÑ À¯¿¬ÇÑ AI ÀÎÇÁ¶ó ¿É¼Ç, Ŭ¶ó¿ìµå ±â¹Ý ¹× ¿ÂÇÁ·¹¹Ì½º ±â¾÷À» À§ÇÑ À¯¿¬ÇÑ AI ÀÎÇÁ¶ó ¿É¼Ç, °­·ÂÇÑ ³×Æ®¿öÅ·, °­·ÂÇÑ AI ÀÎÇÁ¶ó, °­·ÂÇÑ AI ÀÎÇÁ¶ó, °­·ÂÇÑ AI ÀÎÇÁ¶ó, °­·ÂÇÑ AI ÀÎÇÁ¶ó, °­·ÂÇÑ AI ÀÎÇÁ¶ó, °­·ÂÇÑ AI ÀÎÇÁ¶ó, °­·ÂÇÑ AI ÀÎÇÁ¶ó, °­·ÂÇÑ AI ÀÎÇÁ¶ó, °­·ÂÇÑ AI ÀÎÇÁ¶ó, °­·ÂÇÑ AI ÀÎÇÁ¶ó, °­·ÂÇÑ AI ÀÎÇÁ¶ó, °­·ÂÇÑ AI ÀÎÇÁ¶ó, °­·ÂÇÑ AI ÀÎÇÁ¶ó, °­·ÂÇÑ AI ÀÎÇÁ¶ó, °­·ÂÇÑ AI ÀÎÇÁ¶ó, °­·ÂÇÑ AI ÀÎÇÁ¶ó, °­·ÂÇÑ AI ÀÎÇÁ¶ó, °­·ÂÇÑ AI ÀÎÇÁ¶ó, °­·ÂÇÑ AI ÀÎÇÁ¶ó¸¦ Á¦°øÇÕ´Ï´Ù. °­·ÂÇÑ ³×Æ®¿öÅ·, º¸¾È, ¿£µå-Åõ-¿£µå °¡½Ã¼º ±â´ÉÀ» Æ÷ÇÔÇÕ´Ï´Ù. ±â¾÷µéÀº AI ¼Ö·ç¼Ç ±¸ÃàÀ» À§ÇØ È®Àå °¡´ÉÇÏ°í ¾ÈÀüÇÏ¸ç °ü¸® °¡´ÉÇÑ ÀÎÇÁ¶ó¸¦ ¿ä±¸Çϰí ÀÖÀ¸¸ç, ÀÌ·¯ÇÑ ÆÄÆ®³Ê½ÊÀº ¿£ÅÍÇÁ¶óÀÌÁî AI ÀÎÇÁ¶ó ½ÃÀåÀÇ ¼ºÀåÀ» µÞ¹ÞħÇÒ °ÍÀ¸·Î ±â´ëµË´Ï´Ù.

º» º¸°í¼­¿¡¼­´Â ¼¼°è AI ÀÎÇÁ¶ó ½ÃÀå¿¡ ´ëÇØ Á¶»ç ºÐ¼®ÇßÀ¸¸ç, ÁÖ¿ä ÃËÁø¿äÀΰú ¾ïÁ¦¿äÀÎ, °æÀï ±¸µµ, ÇâÈÄ µ¿Çâ µîÀÇ Á¤º¸¸¦ Á¦°øÇÕ´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­·Ð

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ÇÁ¸®¹Ì¾ö ÀλçÀÌÆ®

Á¦5Àå ½ÃÀå °³¿ä

Á¦6Àå AI¼­¹ö »ê¾÷ »óȲ

Á¦7Àå AI ÀÎÇÁ¶ó ½ÃÀå : Á¦°øº°

Á¦8Àå AI ÀÎÇÁ¶ó ½ÃÀå : ±â´Éº°

Á¦9Àå AI ÀÎÇÁ¶ó ½ÃÀå : Àü°³ Çüź°

Á¦10Àå AI ÀÎÇÁ¶ó ½ÃÀå : ¿ëµµº°

Á¦11Àå AI ÀÎÇÁ¶ó ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

Á¦12Àå AI ÀÎÇÁ¶ó ½ÃÀå : Áö¿ªº°

Á¦13Àå °æÀï ±¸µµ

Á¦14Àå ±â¾÷ °³¿ä

Á¦15Àå ºÎ·Ï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

The AI Infrastructure market is expected to be worth USD 135.81 billion in 2024 and is estimated to reach USD 394.46 billion by 2030, growing at a CAGR of 19.4% between 2024 and 2030. The AI infrastructure market is being driven by the rapid growth in data generation due to digital transformation, IoT, social media, and e-commerce, which requires advanced computing and storage to manage vast datasets for AI and machine learning models. Additionally, the increasing need for cloud-based AI infrastructure in data centers is reshaping how companies manage complex AI workloads, with major cloud providers investing heavily in AI-ready infrastructure to meet growing global and industry-specific demands. These factors collectively serve as key drivers propelling the growth of the AI infrastructure market.

Scope of the Report
Years Considered for the Study2020-2030
Base Year2023
Forecast Period2024-2030
Units ConsideredValue (USD Billion)
SegmentsBy Offerings, Memory, Network, Function, Deployment and Region
Regions coveredNorth America, Europe, APAC, RoW

"Generative AI segment will hold highest CAGR in the forecast period."

Generative AI is expected to exhibit high growth rate due to a rise in demand for advanced AI applications across industries. Generative AI powers capabilities like content creation, language models, and image synthesis, all of which depends heavily on substantial computational power to train and run large neural networks. This demand requires high infrastructure investments, with an emphasis on high-performance GPU and DPU capabilities able to support intensive processing requirements. As more enterprises seek to capitalize on generative AI's potential, the market for AI infrastructure will rise. In November 2024, GMO Internet Group, Inc. (Japan) launched the GMO GPU Cloud, powered by NVIDIA Corporation's (US) H200 Tensor Core GPUs, Spectrum-X Ethernet, BlueField-3 DPUs, and NVIDIA AI Enterprise software, exemplifies the kind of specialized infrastructure needed to support generative AI at scale. This infrastructure, developed on Dell PowerEdge servers, is aligned to support the needs of production-grade generative AI applications, with reduced latency and high-bandwidth capability. Such innovations underline industry momentum in wide-scale deployment of infrastructure optimized for generative AI workloads. Further, this makes the local high-performance cloud solutions to be drivers for growth of this segment.

"Enterprises is projected to grow at a high CAGR of AI Infrastructure market during the forecasted timeline"

The enterprise segment is expected to record high growth in AI Infrastructure Market. Enterprises are increasingly adopting AI infrastructure as they use AI to facilitate digital transformation, enhance operational efficiency, and enhance customer experience. Manufacturing, finance, and retail enterprises are increasing their investments in AI powered predictive analysis, process automation, and customer insight tools that require robust and scalable AI infrastructure. Enterprises are also expanding their AI capabilities by investing in private cloud infrastructure and hybrid cloud models, especially as they seek to protect sensitive data while benefiting from cloud-based AI's flexibility and innovation. Companies are providing cloud and on-premises flexibility along with comprehensive support that aligns with enterprise needs for adaptable, high-performance AI resources that can integrate with existing IT environments. In February 2024, Cisco and NVIDIA announced a partnership to bring AI infrastructure solutions tailored for data centers, designed to streamline deployment and management while offering high computing power necessary for enterprise AI. Its joint offering includes flexible AI infrastructure options for cloud-based and on-premises enterprises, as well as robust networking, security, and end-to-end observability features. Such collaborations support the growth of enterprise AI infrastructure market because companies demand scalable, secure, and manageable infrastructure for the deployment of AI solutions.

"Asia Pacific is expected to hold high CAGR in during the forecast period."

AI infrastructure market in Asia Pacific will grow at a high CAGR during the forecast period. Countries like China, Japan, South Korea, and India are at the forefront of AI innovation and governments and private sectors in the region are making high investments in AI research, infrastructure, and talent development. In September 2024 Lenovo (Hong Kong) announced its mass manufacturing operations for high-performance AI servers in India, and it also unveiled a cutting-edge research & development (R&D) lab, adding to the advancement of Lenovo's Infrastructure Solutions. These are the significant efforts that Lenovo has taken towards the significant positioning of India as a hub in innovation and manufacturing, while supporting 'Make in India' and 'AI for All' vision by the Indian government. Initiatives like these will speed up region's leadership in AI technology and will lead to significant growth in AI infrastructure deployment across Asia Pacific industries. Moreover, as enterprises and governments are driving digital transformation and cloud adoption, the requirement for high-performance AI offerings is increasing, making Asia Pacific one of the fastest-growing markets for AI Infrastructure globally.

Extensive primary interviews were conducted with key industry experts in the AI Infrastructure market space to determine and verify the market size for various segments and subsegments gathered through secondary research. The break-up of primary participants for the report has been shown below: The study contains insights from various industry experts, from component suppliers to Tier 1 companies and OEMs. The break-up of the primaries is as follows:

The report profiles key players in the AI Infrastructure market with their respective market ranking analysis. Prominent players profiled in this report are NVIDIA Corporation (US), Advanced Micro Devices, Inc. (US), SK HYNIX INC. (South Korea), SAMSUNG (South Korea), Micron Technology, Inc. (US), Intel Corporation (US), Google (US), Amazon Web Services, Inc. (US), Tesla (US), Microsoft (US), Meta (US), Graphcore (UK), and Cerebras (US), among others.

Apart from this, KIOXIA Holdings Corporation (Japan), Western Digital Corporation (US), Mythic (US), Blaize (US), Groq, Inc. (US), HAILO TECHNOLOGIES LTD (Israel), SiMa Technologies, Inc. (US), Kneron, Inc. (US), Rain Neuromorphics Inc. (US), Tenstorrent (Canada), SambaNova Systems, Inc. (US), Taalas (Canada), SAPEON Inc. (US), Rebellions Inc. (South Korea), Rivos Inc. (US), and Shanghai BiRen Technology Co., Ltd. (China) are among a few emerging companies in the AI Infrastructure market.

Research Coverage: This research report categorizes the AI infrastructure market based on offerings, function, deployment, application, end user, and region. The report describes the major drivers, restraints, challenges, and opportunities pertaining to the AI infrastructure market and forecasts the same till 2030. Apart from these, the report also consists of leadership mapping and analysis of all the companies included in the AI infrastructure ecosystem.

Key Benefits of Buying the Report The report will help the market leaders/new entrants in this market with information on the closest approximations of the revenue numbers for the overall AI infrastructure market and the subsegments. This report will help stakeholders understand the competitive landscape and gain more insights to position their businesses better and plan suitable go-to-market strategies. The report also helps stakeholders understand the pulse of the market and provides them with information on key market drivers, restraints, challenges, and opportunities.

The report provides insights on the following pointers:

TABLE OF CONTENTS

1 INTRODUCTION

2 RESEARCH METHODOLOGY

3 EXECUTIVE SUMMARY

4 PREMIUM INSIGHTS

5 MARKET OVERVIEW

6 AI SERVER INDUSTRY LANDSCAPE

7 AI INFRASTRUCTURE MARKET, BY OFFERING

8 AI INFRASTRUCTURE MARKET, BY FUNCTION

9 AI INFRASTRUCTURE MARKET, BY DEPLOYMENT

10 AI INFRASTRUCTURE MARKET, BY APPLICATION

11 AI INFRASTRUCTURE MARKET, BY END USER

12 AI INFRASTRUCTURE MARKET, BY REGION

13 COMPETITIVE LANDSCAPE

14 COMPANY PROFILES

15 APPENDIX

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â