¼¼°èÀÇ ¼­¹ö¸®½º ÄÄÇ»ÆÃ ½ÃÀå : ¼­ºñ½º À¯Çüº°, ¼­ºñ½º ¸ðµ¨º°, Àü°³ ¸ðµ¨º°, Á¶Á÷ ±Ô¸ðº°, »ê¾÷º°, Áö¿ªº° - ¿¹Ãø(-2029³â)
Serverless Computing Market by Service Model (Function as a Service, Backend as a Service), Compute (Functions, Containers), Database (Relational, Non-relational), Storage, Application Integration, Monitoring & Security - Global Forecast to 2029
»óǰÄÚµå : 1561096
¸®¼­Ä¡»ç : MarketsandMarkets
¹ßÇàÀÏ : 2024³â 09¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 283 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 4,950 £Ü 7,162,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,650 £Ü 9,621,000
PDF (5-user License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷Àå¿¡¼­ 5¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 8,150 £Ü 11,792,000
PDF (Corporate License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÀÌ¿ë Àοø¿¡ Á¦ÇÑÀº ¾øÀ¸³ª, ±¹³»¿¡ ÀÖ´Â »ç¾÷À常 ÇØ´çµÇ¸ç, ÇØ¿Ü ÁöÁ¡ µîÀº Æ÷ÇÔµÇÁö ¾Ê½À´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 10,000 £Ü 14,469,000
PDF (Global License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. (100% ÀÚȸ»ç´Â µ¿ÀÏ ±â¾÷À¸·Î °£Áֵ˴ϴÙ.) Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


¤± Add-on °¡´É: °í°´ÀÇ ¿äû¿¡ µû¶ó ÀÏÁ¤ÇÑ ¹üÀ§ ³»¿¡¼­ CustomizationÀÌ °¡´ÉÇÕ´Ï´Ù. ÀÚ¼¼ÇÑ »çÇ×Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

Çѱ۸ñÂ÷

¼­¹ö¸®½º ÄÄÇ»ÆÃ ½ÃÀå ±Ô¸ð´Â 2024³â 219¾ï ´Þ·¯¿¡¼­ 2029³â 447¾ï ´Þ·¯·Î ¼ºÀåÇØ ¿¹Ãø ±â°£ µ¿¾È 15.3%ÀÇ ¿¬Æò±Õ ¼ºÀå·ü(CAGR)À» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¼­¹ö¸®½º ÄÄÇ»ÆÃ Ç÷§Æû¿¡ ÀΰøÁö´É(AI)°ú ¸Ó½Å·¯´×ÀÌ ÅëÇյǸ鼭 ¾ÖÇø®ÄÉÀÌ¼Ç °³¹ß ¹× ¹èÆ÷ È¿À²¼ºÀÌ Çâ»óµÇ°í ÀÖÀ¸¸ç, AI ±â¹Ý ÅøÀº ¸®¼Ò½º ÇÒ´ç, ¼º´É ÃÖÀûÈ­, ¾ÖÇø®ÄÉÀÌ¼Ç ¸ð´ÏÅ͸µ µîÀ» ÀÚµ¿È­ÇÏ¿© ¼­¹ö¸®½º ȯ°æÀ» °ü¸®ÇÏ´Â µ¥ µå´Â ½Ã°£°ú ³ë·ÂÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. À̸¦ ÅëÇØ ¼­¹ö¸®½º ȯ°æÀ» °ü¸®ÇÏ´Â µ¥ ÇÊ¿äÇÑ ½Ã°£°ú ³ë·ÂÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ¸Ó½Å·¯´× ¾Ë°í¸®ÁòÀº ½Ç½Ã°£ µ¥ÀÌÅÍ Ã³¸®ÀÇ Á¤È®¼º°ú °ü·Ã¼ºÀ» ³ô¿© Á¶Á÷ÀÌ Á¤º¸¿¡ ÀÔ°¢ÇÑ ÀÇ»ç°áÁ¤À» ³»¸®°í ¾ÖÇø®ÄÉÀ̼ÇÀÇ ¼º°ú¸¦ ÃÖÀûÈ­ÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ÀÌ·¯ÇÑ ÀÚµ¿È­´Â °³¹ß ÇÁ·Î¼¼½º¸¦ °£¼ÒÈ­Çϰí, Àü·«Àû ¸ñÇ¥¿¡ ´õ¿í ºÎÇÕÇϸç, °íǰÁúÀÇ °á°ú¸¦ º¸ÀåÇÏ¿© Àüü ¼­¹ö¸®½º ÀÎÇÁ¶ó¸¦ ¼º°øÀûÀ¸·Î À̲ø ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù.

Á¶»ç ¹üÀ§
Á¶»ç ´ë»ó ¿¬µµ 2019-2029³â
±âÁØ ¿¬µµ 2023³â
¿¹Ãø ±â°£ 2024-2029³â
°ËÅä ´ÜÀ§ ´Þ·¯(10¾ï ´Þ·¯)
ºÎ¹®º° ¼­ºñ½º À¯Çüº°, ¼­ºñ½º ¸ðµ¨º°, Àü°³ ¸ðµ¨º°, Á¶Á÷ ±Ô¸ðº°, »ê¾÷º°, Áö¿ªº°
´ë»ó Áö¿ª ºÏ¹Ì, À¯·´, ¾Æ½Ã¾ÆÅÂÆò¾ç, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«, ¶óƾ¾Æ¸Þ¸®Ä«

¼­¹ö¸®½º ÄÄÇ»ÆÃ ½ÃÀå¿¡¼­ÀÇ ¾ÖÇø®ÄÉÀÌ¼Ç ÅëÇÕÀº ¼­·Î ´Ù¸¥ ½Ã½ºÅÛ ¹× ¾ÖÇø®ÄÉÀÌ¼Ç °£ÀÇ ¿øÈ°ÇÑ Åë½ÅÀ» °¡´ÉÇÏ°Ô ÇÏ´Â ´Ù¾çÇÑ ¼­ºñ½º¸¦ Æ÷ÇÔÇÕ´Ï´Ù. ¿©±â¿¡´Â ƯÁ¤ À̺¥Æ®³ª Æ®¸®°Å¿¡ ¹ÝÀÀÇÏ¿© ¿öÅ©Ç÷οìÀÇ Áï°¢ÀûÀΠó¸®¿Í ÀÚµ¿È­¸¦ °¡´ÉÇÏ°Ô ÇÏ´Â À̺¥Æ® ±â¹Ý ¼­ºñ½º, ´Ù¾çÇÑ ¾ÖÇø®ÄÉÀ̼ǰú ¼­ºñ½º °£ÀÇ ¸Þ½ÃÁö ±³È¯À» °ü¸®ÇÏ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â ºñµ¿±â Åë½ÅÀ» º¸ÀåÇÏ´Â ¸Þ½Ã¡ ¼­ºñ½º, ¾ÖÇø®ÄÉÀ̼ǰú Ÿ»ç ¼­ºñ½º °£ÀÇ »óÈ£ ÀÛ¿ëÀ» ÃËÁøÇÏ´Â APIÀÇ »ý¼º, µµÀÔ ¹× ¸ð´ÏÅ͸µÀÌ Æ÷ÇԵ˴ϴÙ. ¾ÖÇø®ÄÉÀ̼ǰú Ÿ»ç ¼­ºñ½º °£ÀÇ »óÈ£ ÀÛ¿ëÀ» ÃËÁøÇÏ´Â API¸¦ »ý¼º, ¹èÆ÷ ¹× ¸ð´ÏÅ͸µÇÒ ¼ö ÀÖ´Â µµ±¸¸¦ Á¦°øÇÏ´Â API °ü¸® µîÀÌ Æ÷ÇԵ˴ϴÙ. ÀÌ·¯ÇÑ ÅëÇÕ ¼­ºñ½º´Â È®Àå °¡´ÉÇÏ°í ¿Ïº®ÇÏ°Ô °ü¸®µÇ¸ç, º¹ÀâÇÑ ºÐ»ê ¾ÆÅ°ÅØÃ³¸¦ Áö¿øÇÏ°í »óÈ£¿¬°áµÈ ¾ÖÇø®ÄÉÀÌ¼Ç °³¹ßÀ» °£¼ÒÈ­ÇÕ´Ï´Ù. ±â¾÷Àº ÀÌ·¯ÇÑ ¼­ºñ½º¸¦ ÅëÇØ ÇÁ·Î¼¼½º¸¦ °£¼ÒÈ­Çϰí, ÀûÀÀ¼ºÀ» Çâ»ó½Ã۸ç, ¼­¹ö¸®½º ȯ°æ¿¡¼­ ´õ ³ôÀº »ý»ê¼ºÀ» ´Þ¼ºÇÒ ¼ö ÀÖ½À´Ï´Ù.

¼­¹ö¸®½º ÄÄÇ»ÆÃÀº AWS, Microsoft Azure, Google Cloud Platform°ú °°Àº Ÿ»ç Ŭ¶ó¿ìµå ¼­ºñ½º Á¦°ø¾÷ü°¡ °¨µ¶ÇÏ´Â °øµ¿ ÀÎÇÁ¶ó¸¦ Ư¡À¸·Î ÇÏ´Â ÆÛºí¸¯ Ŭ¶ó¿ìµå Àü°³ ¹æ½Ä¿¡ ÀÇÁ¸ÇÕ´Ï´Ù. ÀÌ ¸ðµ¨Àº Á¶Á÷ÀÌ ¹°¸®Àû ¼­¹ö³ª ÀÎÇÁ¶ó¸¦ ´Ù·çÁö ¾Ê°íµµ ÄÄÇ»ÆÃ ÆÄ¿ö, ½ºÅ丮Áö, ¼­ºñ½º µî ¼­¹ö¸®½º ¸®¼Ò½º¿¡ Áï½Ã ¾×¼¼½ºÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ÆÛºí¸¯ Ŭ¶ó¿ìµåÀÇ ¼­¹ö¸®½º ¼Ö·ç¼ÇÀº ¿öÅ©·Îµå ¼ö¿ä¿¡ µû¶ó ÀÚµ¿À¸·Î È®ÀåÇÒ ¼ö ÀÖ´Â ´É·Â°ú »ç¿ëÇÑ ¸¸Å­¸¸ ºñ¿ëÀ» ÁöºÒÇÏ´Â Á¾·®Á¦¸¦ ÅëÇØ ºñ¿ë È¿À²¼ºÀÌ ³ôÀº °ÍÀ¸·Î Æò°¡¹Þ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ µµÀÔ Àü·«Àº Ŭ¶ó¿ìµå °ø±ÞÀÚÀÇ °­·ÂÇÑ º¸¾È Á¶Ä¡, ÄÄÇöóÀ̾𽺠ÀÎÁõ, ´Ù¼öÀÇ ¼¼°è µ¥ÀÌÅͼ¾Å͸¦ Ȱ¿ëÇÕ´Ï´Ù. À̸¦ ÅëÇØ ±â¾÷Àº ÀÎÇÁ¶ó ¹× º¸¾È °ü¸®¸¦ Á¦°ø¾÷ü¿¡ ¸Ã±â¸é¼­ ºü¸£°í È¿À²ÀûÀ¸·Î ¾ÖÇø®ÄÉÀ̼ÇÀ» ¹èÆ÷Çϰí È®ÀåÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­´Â ¼¼°è ¼­¹ö¸®½º ÄÄÇ»ÆÃ ½ÃÀåÀ» Á¶»çÇÏ¿© ¼­ºñ½º À¯Çüº°, ¼­ºñ½º ¸ðµ¨º°, ±¸Ãà ¸ðµ¨º°, Á¶Á÷ ±Ô¸ðº°, »ê¾÷º°, Áö¿ªº° µ¿Çâ, ½ÃÀå ÁøÀÔ ±â¾÷ ÇÁ·ÎÆÄÀÏ µîÀ» Á¤¸®ÇÏ¿© ÀüÇØµå¸³´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼Ò°³

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ÁÖ¿ä ÀλçÀÌÆ®

Á¦5Àå ½ÃÀå °³¿ä¿Í ¾÷°è µ¿Çâ

Á¦6Àå ¼­¹ö¸®½º ÄÄÇ»ÆÃ ½ÃÀå, ¼­ºñ½º À¯Çüº°

Á¦7Àå ¼­¹ö¸®½º ÄÄÇ»ÆÃ ½ÃÀå, ¼­ºñ½º ¸ðµ¨º°

Á¦8Àå ¼­¹ö¸®½º ÄÄÇ»ÆÃ ½ÃÀå, Àü°³ ¸ðµ¨º°

Á¦9Àå ¼­¹ö¸®½º ÄÄÇ»ÆÃ ½ÃÀå, Á¶Á÷ ±Ô¸ðº°

Á¦10Àå ¼­¹ö¸®½º ÄÄÇ»ÆÃ ½ÃÀå, ¾÷°èº°

Á¦11Àå ¼­¹ö¸®½º ÄÄÇ»ÆÃ ½ÃÀå, Áö¿ªº°

Á¦12Àå °æÀï »óȲ

Á¦13Àå ±â¾÷ °³¿ä

Á¦14Àå ÀÎÁ¢ ½ÃÀå°ú °ü·Ã ½ÃÀå

Á¦15Àå ºÎ·Ï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

The serverless computing market is expected to grow from USD 21.9 billion in 2024 to USD 44.7 billion by 2029 at a Compound Annual Growth Rate (CAGR) of 15.3% during the forecast period. As artificial intelligence (AI) and machine learning integration rise within serverless computing platforms, this increases application development and deployment efficiency. AI-driven tools will automate resource allocation, optimize performance, and monitor applications. This reduces the time and effort needed to manage serverless environments. Machine learning algorithms increase the accuracy and relevance of real-time data processing to enable organizations to make informed decisions and optimize their application outcomes. This automation simplifies the development process, aligns it further with strategic goals, and ensures high-quality results, which drives success across the board for the entire serverless infrastructure.

Scope of the Report
Years Considered for the Study2019-2029
Base Year2023
Forecast Period2024-2029
Units ConsideredUSD (Billion)
SegmentsBy Service Type, Service Model, Deployment Mode, Organization Size, Vertical and Region
Regions coveredNorth America, Europe, Asia Pacific, Middle East & Africa, and Latin America

"As per service type, application integration will grow at the highest CAGR during the forecast period."

Application integration in the serverless computing market involves various services that aim to enable smooth communication between different systems and applications. This covers event-driven services that react to specific events or triggers, allowing for instant processing and automation of workflows; messaging services that manage message exchange between various applications or services, ensuring dependable and asynchronous communication; and API management, which offers tools for creating, deploying, and overseeing APIs that facilitate interaction between applications and third-party services. These integration services are scalable and fully managed, supporting intricate, distributed architectures and streamlining the development of interconnected applications. Companies can simplify processes, improve adaptability, and attain higher productivity within their serverless setups using these services.

"As per the deployment model segment, public cloud will hold the largest share during the forecast period."

Serverless computing relies on the public cloud deployment type, which features a communal infrastructure overseen by third-party cloud service providers like AWS, Microsoft Azure, and Google Cloud Platform. This model provides instant serverless resource access, such as computing power, storage, and services, without requiring organizations to handle physical servers or infrastructure. Public cloud serverless solutions are lauded for their ability to automatically scale according to workload needs and their cost-efficiency, billing users solely for the resources they utilize through a pay-as-you-go pricing structure. Moreover, this deployment strategy takes advantage of the cloud provider's robust security measures, compliance certifications, and numerous global data centers. This enables businesses to quickly and efficiently deploy and expand applications while trusting the provider to manage infrastructure and security.

"As per organization size, the small enterprises will grow with the highest CAGR during the forecast period."

Small businesses are turning to serverless solutions to address the issues linked to traditional infrastructure management. By using serverless computing, these firms can avoid the difficulties and expenses associated with configuring, updating, and expanding physical servers. The pay-as-you-go pricing model allows small businesses to minimize operational costs by paying only for their computing resources, thereby decreasing initial financial commitments. This adaptability allows for quick deployment of applications and will enable companies to adjust the size of their operations as their needs change. Serverless platforms also offer essential functionalities such as automatic scalability and integrated security, which are especially advantageous for small businesses with limited IT resources. These benefits enable small companies to rapidly innovate, present fresh concepts, and efficiently challenge bigger competitors in their sector without the limitations of conventional infrastructure.

The breakup of the profiles of the primary participants is below:

Note: Others include sales managers, marketing managers, and product managers

Note: The rest of the World consists of the Middle East & Africa, and Latin America

Note: Tier 1 companies have revenues of more than USD 100 million; tier 2 companies' revenue ranges from USD 10 million to USD 100 million; and tier 3 companies' revenue is less than 10 million

Source: Secondary Literature, Expert Interviews, and MarketsandMarkets Analysis

Major companies offering serverless computing solutions and services are AWS (US), Microsoft (US), Google (US), IBM (US), Oracle (US), Alibaba Cloud (China), Tencent Cloud (China), DigitalOcean (US), Twilio (US), Cloudflare (US), MongoDB (US).

Research coverage:

In this study, an in-depth analysis of the Serverless Computing market is done based on market trends, potential growth during 2019, and a forecast up to 2024-2029. Further, it gives detailed market trends, a competitive landscape, market size, forecasts, and key players' analysis of the Serverless Computing market. This market study analyzes the growth rate and penetration of Serverless Computing across all the major regions.

Reasons to buy this report:

The report will aid the market leaders/new entrants in the following: Details regarding the closest approximations of the revenue numbers for the serverless computing market and its subsegments. This study will aid the stakeholders in understanding the competitive landscape; it gives more insights to position their businesses better and plan suitable go-to-market strategies. It also helps the stakeholders understand the market pulse and provides information on key market drivers, restraints, challenges, and opportunities.

The report provides insights on the following pointers:

TABLE OF CONTENTS

1 INTRODUCTION

2 RESEARCH METHODOLOGY

3 EXECUTIVE SUMMARY

4 PREMIUM INSIGHTS

5 MARKET OVERVIEW AND INDUSTRY TRENDS

6 SERVERLESS COMPUTING MARKET, BY SERVICE TYPE

7 SERVERLESS COMPUTING MARKET, BY SERVICE MODEL

8 SERVERLESS COMPUTING MARKET, BY DEPLOYMENT MODEL

9 SERVERLESS COMPUTING MARKET, BY ORGANIZATION SIZE

10 SERVERLESS COMPUTING MARKET, BY VERTICAL

11 SERVERLESS COMPUTING MARKET, BY REGION

12 COMPETITIVE LANDSCAPE

13 COMPANY PROFILES

14 ADJACENT AND RELATED MARKETS

15 APPENDIX

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â