¼¼°èÀÇ ½ºÆ÷Ã÷ ºÐ¾ß ÀΰøÁö´É(AI) ½ÃÀå ±Ô¸ð, Á¡À¯À², ¾÷°è ºÐ¼® º¸°í¼­ : Á¦°øº°, ½ºÆ÷Ã÷ À¯Çüº°, ±â¼úº°, Áö¿ªº° Àü¸Á ¹× ¿¹Ãø(2025-2032³â)
Global Artificial Intelligence in Sports Market Size, Share & Industry Analysis Report By Offering, By Sports Type, By Technology, By Regional Outlook and Forecast, 2025 - 2032
»óǰÄÚµå : 1768852
¸®¼­Ä¡»ç : KBV Research
¹ßÇàÀÏ : 2025³â 06¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 314 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 3,600 £Ü 5,028,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy & Paste °¡´ÉÇÕ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 4,320 £Ü 6,034,000
PDF (Multi User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ 10¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy & Paste °¡´ÉÇÕ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,048 £Ü 8,448,000
PDF (Corporate User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy & Paste °¡´ÉÇÕ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ½ºÆ÷Ã÷ ºÐ¾ß ÀΰøÁö´É(AI) ½ÃÀå ±Ô¸ð´Â ¿¹Ãø ±â°£ µ¿¾È 20.8%ÀÇ CAGR·Î ¼ºÀåÇÏ¿© 2032³â±îÁö 344¾ï 1,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

COVID-19 ÆÒµ¥¹Í ±â°£ µ¿¾È ½ºÆ÷Ã÷ »ê¾÷Àº Àü ¼¼°èÀûÀ¸·Î ÁÖ¿ä À̺¥Æ®, Åä³Ê¸ÕÆ®, ¸®±×°¡ Ãë¼ÒµÇ°Å³ª ¿¬±âµÇ¸é¼­ ¼öÀÍÀÌ Å©°Ô °¨¼ÒÇß½À´Ï´Ù. ±× °á°ú, Ŭ·´, ´Üü, ¹æ¼Û»çµéÀº ÀçÁ¤Àû ¾Ð¹Ú¿¡ Á÷¸éÇß°í, ÀΰøÁö´É(AI)À» Æ÷ÇÔÇÑ Ã·´Ü ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ°¡ ÀϽÃÀûÀ¸·Î °¨¼ÒÇß½À´Ï´Ù. Çõ½Å, ¼º°ú ºÐ¼®, ÆÒ Âü¿© µµ±¸¿¡ »ç¿ëµÇ´ø ¿¹»êÀº Áß¿äÇÑ ¾÷¹«¿Í ÆÒµ¥¹Í ´ëÀÀÀ» À§ÇÑ ³ë·Â¿¡ ÀçºÐ¹èµÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ÀçºÐ¹è·Î ÀÎÇØ ´Ù¾çÇÑ ½ºÆ÷Ã÷ ºÐ¾ßÀÇ AI °ü·Ã ÀÌ´Ï¼ÅÆ¼ºê°¡ Áö¿¬µÇ°Å³ª ÁߴܵǾú½À´Ï´Ù. ÀÌó·³ COVID-19 ÆÒµ¥¹ÍÀº ½ÃÀå¿¡ ºÎÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù.

½ÃÀå ¼ºÀå¿äÀÎ

ÀΰøÁö´É(AI)Àº ½ºÆ÷Ã÷ »ê¾÷ÀÇ ¼º°ú ºÐ¼®¿¡ Çõ¸íÀ» ÀÏÀ¸ÄÑ ÆÀ, ÄÚÄ¡, ¼±¼öµéÀÌ ÈÆ·Ã°ú °æ±â ´çÀÏ ÀÇ»ç°áÁ¤¿¡ ÀÖ¾î Àü·Ê ¾ø´Â ¼öÁØÀÇ Á¤È®¼º°ú È¿À²¼ºÀ» ´Þ¼ºÇÒ ¼ö ÀÖ°Ô ÇØÁÖ°í ÀÖ½À´Ï´Ù. ¸ð¼Ç ¼¾¼­, ÄÄÇ»ÅÍ ºñÀü ½Ã½ºÅÛ¿¡¼­ ¼öÁýµÈ ½Ç½Ã°£ µ¥ÀÌÅÍ ÃßÀûÀ» ÅëÇØ »ýü ¿ªÇÐ, ÇÇ·Î ¼öÁØ, ½É¹Ú¼ö, ½ÉÀå ¹Úµ¿¼ö, ¿îµ¿ È¿À²À» ¸ð´ÏÅ͸µÇÏ´Â µ¥ Ȱ¿ëµË´Ï´Ù. µû¶ó¼­ AI´Â ¼º´É ÃßÀûÀ» Çõ½ÅÇϰí Áö´ÉÇü ¿¹Ãø ½Ã½ºÅÛÀ» ÅëÇØ ºÎ»ó ¿¹¹æ Àü·«À» ¸ÂÃãÈ­ÇÏ¿© ¼±¼öÀÇ ¼ö¸í°ú È¿°ú¸¦ ±Ø´ëÈ­ÇÏ´Â µ¥ ÇʼöÀûÀÎ Á¸Àç°¡ µÇ°í ÀÖ½À´Ï´Ù.

¶ÇÇÑ, AI´Â ÆÒµéÀÌ ½ºÆ÷Ã÷¿Í ¼ÒÅëÇÏ´Â ¹æ½ÄÀ» ±ØÀûÀ¸·Î º¯È­½Ã۰í, °æÇèÀ» °³ÀÎÈ­Çϸç, »óÈ£ÀÛ¿ëÀ» ´õ¿í ¸ôÀÔ°¨ ÀÖ°í ¿ªµ¿ÀûÀÌ¸ç ¸¸Á·½º·´°Ô ¸¸µå´Â µ¥ ÇÙ½ÉÀûÀÎ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ±× ÇÙ½É ¿ä¼Ò Áß Çϳª´Â ¿£ÅÍÅ×ÀÎ¸ÕÆ® Ç÷§Æû¿¡¼­ »ç¿ëµÇ´Â °Í°ú °°Àº AI ±â¹Ý Ãßõ ¿£ÁøÀÔ´Ï´Ù. ÀÌ ½Ã½ºÅÛÀº ¾Û, ¼Ò¼È ¹Ìµð¾î, ƼÄÏ ÆÇ¸Å Æ÷ÅÐ, E-Commerce Ç÷§Æû¿¡¼­ ÆÒµéÀÇ ÇൿÀ» ºÐ¼®ÇÏ¿© °¢ »ç¿ëÀÚÀÇ ÃëÇâ¿¡ ¸Â´Â ÄÁÅÙÃ÷, ±ÂÁî, °æ±â °æÇèÀ» ÃßõÇÕ´Ï´Ù. ÁÁ¾ÆÇÏ´Â ¼±¼öÀÇ ½ºÅÈÀ» °­Á¶ Ç¥½ÃÇϰí, »ó¡ÀûÀÎ ¼ø°£À» Àç»ýÇϰí, ´Ù°¡¿À´Â °æ±â¿¡ ´ëÇÑ ¾Ë¸²À» º¸³»´Â µî AI´Â ÆÒµéÀÇ ¸ðµç Á¢Á¡À» °³ÀÎÈ­ÇÕ´Ï´Ù. ÀÌó·³ AI´Â °³ÀÎÈ­µÈ ÄÁÅÙÃ÷¿Í ¸ôÀÔÇü ±â¼úÀ» ÅëÇØ ¼öµ¿ÀûÀÎ ½ÃûÀÚ¸¦ ÀÎÅÍ·¢Æ¼ºêÇÑ Âü¿©ÀÚ·Î º¯È­½ÃÅ´À¸·Î½á, ½ºÆ÷Ã÷ ÆÒÀÇ ¸ôÀÔÀ» ±íÀÌ ¿¬°áµÇ°í ¿ªµ¿ÀûÀÎ °æÇèÀ¸·Î ÀçÁ¤ÀÇÇϰí ÀÖ½À´Ï´Ù.

½ÃÀå ¾ïÁ¦¿äÀÎ

±×·¯³ª ½ºÆ÷Ã÷¿¡¼­ AIÀÇ ±¤¹üÀ§ÇÑ µµÀÔÀ» °¡·Î¸·´Â °¡Àå ½É°¢ÇÑ Á¦¾à Áß Çϳª´Â µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã¿Í ¼±¼ö ¹× ¼ÒºñÀÚ µ¥ÀÌÅÍÀÇ À±¸®Àû »ç¿ë ¹®Á¦ÀÔ´Ï´Ù. Çö´ë ½ºÆ÷Ã÷ »ýŰ迡¼­ AI ¾ÖÇø®ÄÉÀ̼ÇÀº ÈÆ·Ã Áß »ýüÀÎ½Ä µ¥ÀÌÅͺÎÅÍ ÆÒ Âü¿© Ç÷§ÆûÀ» ÅëÇØ ¼öÁýµÇ´Â Çൿ µ¥ÀÌÅÍ¿¡ À̸£±â±îÁö ½Ç½Ã°£ µ¥ÀÌÅÍ ¼öÁý¿¡ Å©°Ô ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ¿þ¾î·¯ºí ¼¾¼­, ½º¸¶Æ® ½ºÅ¸µð¿ò, ÃßÀû Ä«¸Þ¶ó´Â °³ÀÎÀÇ °Ç°­, À§Ä¡ Á¤º¸, »ç»ýȰ µî ¸Å¿ì ¹Î°¨ÇÑ Á¤º¸¸¦ ´ë·®À¸·Î »ý¼ºÇÕ´Ï´Ù. ÀÌ·¯ÇÑ µ¥ÀÌÅ͸¦ AI ½Ã½ºÅÛÀÌ ¼º´É Çâ»óÀ̳ª ¿Àµð¾ð½º Ÿ°ÙÆÃÀ» À§ÇØ ºÐ¼®ÇÒ °æ¿ì, µ¿ÀÇ, ¼ÒÀ¯±Ç, ¿À¿ëÀÇ À§Çè°ú °°Àº Áß¿äÇÑ ¹®Á¦°¡ ¹ß»ýÇÕ´Ï´Ù. °á·ÐÀûÀ¸·Î, µ¥ÀÌÅÍ °Å¹ö³Í½º ÇÁ·¹ÀÓ¿öÅ©¿Í À±¸® ±âÁØÀÌ Å©°Ô °­È­µÇÁö ¾Ê´Â ÇÑ, µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ¹× À±¸®Àû ¿À¿ë°ú °ü·ÃµÈ À§ÇèÀº ½ºÆ÷Ã÷ »ê¾÷¿¡¼­ AI µµÀÔÀÇ ¼Óµµ¿Í ¹üÀ§¸¦ °è¼Ó Á¦ÇÑÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

°¡Ä¡»ç½½ ºÐ¼®

½ºÆ÷Ã÷ ÀΰøÁö´É(AI) ½ÃÀåÀÇ °¡Ä¡»ç½½Àº Àιٿîµå ¹°·ù¿¡¼­ ½ÃÀ۵˴ϴÙ. Àιٿîµå ¹°·ù¿¡¼­´Â ¼¾¼­, Ä«¸Þ¶ó, ¿þ¾î·¯ºí ±â±â¿¡¼­ µ¥ÀÌÅ͸¦ ¼öÁýÇϰí À̸¦ ó¸®ÇÏ´Â µ¥ »ç¿ëµË´Ï´Ù. ¿î¿µ¿¡¼­´Â AI ¸ðµ¨ÀÌ ¸Ó½Å·¯´×°ú ÄÄÇ»ÅÍ ºñÀüÀ» ÅëÇØ ¼±¼öÀÇ °æ±â·Â, °ÔÀÓ Àü·«, ºÎ»ó À§ÇèÀ» ºÐ¼®ÇÕ´Ï´Ù. ¾Æ¿ô¹Ù¿îµå ¹°·ù¿¡¼­´Â ÀÌ·¯ÇÑ ºÐ¼® °á°ú¸¦ ´ë½Ãº¸µå, ¾Û, ¶óÀÌºê ¹æ¼ÛÀ» ÅëÇØ Á¦°øÇÕ´Ï´Ù. ¸¶ÄÉÆÃ ¹× ¼¼ÀÏÁî¿¡¼­´Â ÆÀ, ¸®±×, ¹æ¼Û»ç¿¡ AI¸¦ Ȱ¿ëÇÑ ¼Ö·ç¼ÇÀ» È«º¸ÇÕ´Ï´Ù. ¸¶Áö¸·À¸·Î ¼­ºñ½º¿¡¼­´Â Áö¼ÓÀûÀÎ ¸ðµ¨ Æ®·¹ÀÌ´×, ±â¼ú Áö¿ø, ¼º´É ¾÷µ¥ÀÌÆ®¸¦ ÅëÇØ ÃÖÀûÀÇ »ç¿ëÀÚ °æÇèÀ» Á¦°øÇÕ´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼®

¿ÀÆÛ¸µ Àü¸Á

½ºÆ÷Ã÷ ÀΰøÁö´É ½ÃÀåÀº ¿ÀÆÛ¸µ¿¡ µû¶ó ¼Ö·ç¼Ç°ú ¼­ºñ½º·Î ºÐ·ùµË´Ï´Ù. ¼Ö·ç¼Ç ºÎ¹®Àº 2024³â ½ºÆ÷Ã÷ ÀΰøÁö´É ½ÃÀå¿¡¼­ 59%ÀÇ ¸ÅÃâ Á¡À¯À²À» Â÷ÁöÇß½À´Ï´Ù. ÀÌ ºÎ¹®¿¡´Â ÀÇ»ç°áÁ¤, ¼º°ú ºÐ¼®, ¼±¼ö ÃßÀû, Àü·« °³¹ß, ¿¹Ãø ¸ðµ¨¸µÀ» Áö¿øÇÏ´Â AI ±â¹Ý µµ±¸ ¹× Ç÷§ÆûÀÌ Æ÷ÇԵ˴ϴÙ. ÆÀ, ¸®±×, ¹æ¼Û ÆÄÆ®³ÊµéÀÌ ÇöÀå Àü·«°ú ÆÒ Âü¿©¸¦ °­È­Çϱâ À§ÇØ AI ±â¼úÀ» µµÀÔÇÏ´Â »ç·Ê°¡ Áõ°¡Çϸ鼭 ÀÌ ºÎ¹®ÀÇ ¼ºÀå¿¡ Å« ±â¿©¸¦ Çß½À´Ï´Ù.

½ºÆ÷Ã÷Çü Àü¸Á

½ºÆ÷Ã÷ À¯Çü¿¡ µû¶ó ½ºÆ÷Ã÷ ÀΰøÁö´É ½ÃÀåÀº ÆÀ ½ºÆ÷Ã÷, e-½ºÆ÷Ã÷, °³ÀÎ ½ºÆ÷Ã÷ ºÎ¹®À¸·Î ºÐ·ùµË´Ï´Ù. °³ÀÎ ½ºÆ÷Ã÷ ºÎ¹®Àº 2024³â ½ºÆ÷Ã÷ ÀΰøÁö´É ½ÃÀå¿¡¼­ 23%ÀÇ ¸ÅÃâ Á¡À¯À²À» Â÷ÁöÇß½À´Ï´Ù. ÀÌ ºÎ¹®¿¡´Â Å״Ͻº, °ñÇÁ, À°»ó, º¹½Ì°ú °°ÀÌ ÆÀÀÌ ¾Æ´Ñ °³ÀÎÀÌ °æÀïÇÏ´Â ½ºÆ÷Ã÷°¡ Æ÷ÇԵ˴ϴÙ. ÀÌ ºÐ¾ßÀÇ AI ±â¼úÀº ÁÖ·Î °³ÀÎÈ­µÈ ÈÆ·Ã ÇÁ·Î±×·¥, ¼º´É ¸ð´ÏÅ͸µ, »ýü¿ªÇÐ ºÐ¼®, ½Ç½Ã°£ Çǵå¹é ½Ã½ºÅÛ¿¡ ÁßÁ¡À» µÎ°í ÀÖ½À´Ï´Ù.

±â¼ú Àü¸Á

±â¼úº°·Î º¸¸é ½ÃÀåÀº Á¦³Ê·¹ÀÌ¼Ç AI¿Í ±âŸ AI·Î ºÐ·ùµË´Ï´Ù. ±âŸ AI ºÎ¹®Àº 2024³â ½ºÆ÷Ã÷ ÀΰøÁö´É ½ÃÀå¿¡¼­ 47%ÀÇ ¸ÅÃâ Á¡À¯À²À» Â÷ÁöÇß½À´Ï´Ù. ÀÌ·¯ÇÑ ¼Ö·ç¼ÇÀº ½Ç½Ã°£ °æ±â ºÐ¼®, ¼±¼ö ÃßÀû, ½ºÄ«¿ìÆÃ, ÆÒ °¨Á¤ ºÐ¼®, ¿î¿µ ÃÖÀûÈ­¿¡ À̸£±â±îÁö ¿À´Ã³¯ ½ºÆ÷Ã÷¿¡¼­ »ç¿ëµÇ´Â ´ëºÎºÐÀÇ AI ¾ÖÇø®ÄÉÀ̼ÇÀÇ ±â¹ÝÀ» Çü¼ºÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µµ±¸µéÀº ÀÌ¹Ì È®¸³µÇ¾î ÀÖÀ¸¸ç, ¾Ë°í¸®ÁòÀÇ Á¤È®¼º, ó¸® ¼Óµµ, µ¥ÀÌÅÍ °¡¿ë¼º Çâ»ó°ú ÇÔ²² °è¼Ó ÁøÈ­Çϰí ÀÖ½À´Ï´Ù.

»ç¿ë »ç·Ê Á¦¸ñ ±â¹Ð

°ü°èÀÚ ±â¹Ð

¸ñÇ¥: ¸Ó½Å·¯´×, ÄÄÇ»ÅÍ ºñÀü, ¿¹Ãø ¸ðµ¨¸µ°ú °°Àº ÀüÅëÀûÀÎ AI ±â¼úÀ» »ç¿ëÇÏ¿© ¼±¼öÀÇ °æ±â·Â, ÆÀ Àü·«, ½ÉÆÇÀÇ °æ±â·ÂÀ» ÃÖÀûÈ­ÇÕ´Ï´Ù.

GenAI°¡ µîÀåÇϱâ ÀüÀÇ »óȲ°ú ¹è°æ, ½ºÆ÷Ã÷ ÆÀÀº ºÐ¼®, ºÎ»ó ¿¹¹æ, ½ÉÆÇ µî¿¡ ±âÁ¸ AI¸¦ Ȱ¿ëÇß°í, 2025³â¿¡µµ ÀÌ·¯ÇÑ AI´Â ¿©ÀüÈ÷ ÇÙ½ÉÀûÀÎ ¿ªÇÒÀ» Çϰí ÀÖÀ¸¸ç, ÁöµµÇнÀ, ½Ã¹Ä·¹À̼ÇÀ» À§ÇÑ °­È­ÇнÀ, ±×¸®°í AI¸¦ Ȱ¿ëÇÑ ¿µ»ó/¼¾¼­ ºÐ¼®ÀÌ È°¿ëµÇ°í ÀÖ½À´Ï´Ù. ºÐ¼®ÀÌ È°¿ëµÇ°í ÀÖ½À´Ï´Ù.

¼³¸í(¿¹½Ã) * »ýüÀÎ½Ä ¼¾¼­ µ¥ÀÌÅ͸¦ ÀÌ¿ëÇÑ ¿¹Ãø ¿öÅ©·Îµå ¸ðµ¨

µµÀÔµÈ ÁÖ¿ä ±â´É*±³¼öÇü ÇнÀ ¹× ºñ±³¼öÇü ÇнÀ ÆÄÀÌÇÁ¶óÀÎ

ÀåÁ¡* ÄÚĪÀÇ Á¤È®¼º ¹× ÈÆ·Ã ¼º°ú Çâ»ó

Á¤º¸¿øÀÇ ±â¹Ð¼º

Áö¿ª Àü¸Á

½ºÆ÷Ã÷ ÀΰøÁö´É ½ÃÀåÀº ºÏ¹Ì, À¯·´, ¾Æ½Ã¾ÆÅÂÆò¾ç, ¶óƾ¾Æ¸Þ¸®Ä«, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä« µî 4°³ Áö¿ªÀ¸·Î ºÐ¼®µÇ¾ú½À´Ï´Ù. ºÏ¹Ì´Â 2024³â ½ºÆ÷Ã÷ ºÐ¾ß ÀΰøÁö´É ½ÃÀå ¸ÅÃâ Á¡À¯À² 38%¸¦ Â÷ÁöÇß½À´Ï´Ù. ÀÌ Áö¿ªÀÇ ¸®´õ½ÊÀº ÷´Ü ±â¼úÀÇ Á¶±â µµÀÔ, ½ºÆ÷Ã÷ ºÐ¼®¿¡ ´ëÇÑ ¸·´ëÇÑ ÅõÀÚ, ±×¸®°í NFL, NBA, MLB, NHL°ú °°Àº ÁÖ¿ä ¸®±×ÀÇ Á¸Àç¿¡ ±âÀÎÇÕ´Ï´Ù. ¹Ì±¹°ú ij³ª´ÙÀÇ ÇÁ·ÎÆÀµéÀº ¼±¼öµéÀÇ °æ±â·Â ÃÖÀûÈ­, ÆÒ Âü¿©, ºÎ»ó ¿¹¹æ, Àü¼úÀû ÀÇ»ç°áÁ¤À» À§ÇØ AI¸¦ Á¡Á¡ ´õ ¸¹ÀÌ È°¿ëÇϰí ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ½ÃÀå ¹üÀ§¿Í Á¶»ç ¹æ¹ý

Á¦2Àå ½ÃÀå ¿ä¶÷

Á¦3Àå ½ÃÀå °³¿ä

Á¦4Àå °æÀï ºÐ¼® - ¼¼°è

Á¦5Àå ½ºÆ÷Ã÷ ºÐ¾ß ÀΰøÁö´É ½ÃÀå ¹ë·ùüÀÎ ºÐ¼®

Á¦6Àå ÁÖ¿ä °í°´ ±âÁØ - ½ºÆ÷Ã÷ ºÐ¾ß ÀΰøÁö´É ½ÃÀå

Á¦7Àå ¼¼°èÀÇ ½ºÆ÷Ã÷ ºÐ¾ß ÀΰøÁö´É ½ÃÀå : Á¦°øº°

Á¦8Àå ¼¼°èÀÇ ½ºÆ÷Ã÷ ºÐ¾ß ÀΰøÁö´É ½ÃÀå : ½ºÆ÷Ã÷ À¯Çüº°

Á¦9Àå ¼¼°èÀÇ ½ºÆ÷Ã÷ ºÐ¾ß ÀΰøÁö´É ½ÃÀå : ±â¼úº°

Á¦10Àå ¼¼°èÀÇ ½ºÆ÷Ã÷ ºÐ¾ß ÀΰøÁö´É ½ÃÀå : Áö¿ªº°

Á¦11Àå ±â¾÷ °³¿ä

Á¦12Àå ½ºÆ÷Ã÷ ºÐ¾ß ÀΰøÁö´É ½ÃÀå ¼º°ø Çʼö Á¶°Ç

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

The Global Artificial Intelligence in Sports Market size is expected to reach $34.41 billion by 2032, rising at a market growth of 20.8% CAGR during the forecast period.

The adoption of AI-powered video analytics, wearables, and predictive modeling tools has significantly improved team coordination and tactical decision-making, making team sports a primary area of investment and innovation in the AI sports market. Thus, the team sports segment acquired the 46% revenue share in the artificial intelligence in sports market in 2024. This dominance reflects the widespread application of AI technologies across various team-based sports such as football, basketball, baseball, and cricket. AI is being utilized for player performance tracking, game strategy optimization, injury prevention, and fan experience enhancement.

COVID 19 Impact Analysis

During the COVID-19 pandemic, the sports industry experienced a significant decline in revenue due to the cancellation or postponement of major events, tournaments, and league matches worldwide. As a consequence, clubs, organizations, and broadcasters faced financial strain, leading to a temporary reduction in investments in advanced technologies, including artificial intelligence. Budgets earmarked for innovation, performance analytics, and fan engagement tools were reallocated to critical operations and pandemic response efforts. This reallocation caused delays or cancellations in AI-related initiatives across various sports domains. Thus, the COVID-19 pandemic had a negative impact on the market.

Market Growth Factors

Artificial Intelligence has revolutionized performance analytics in the sports industry, enabling teams, coaches, and athletes to achieve unprecedented levels of precision and efficiency in training and game-day decision-making. One of the most powerful applications of AI lies in real-time data tracking-gathered from wearables, motion sensors, and computer vision systems-used to monitor biomechanics, fatigue levels, heart rate variability, and movement efficiency. Therefore, by transforming performance tracking and tailoring injury-preventive strategies through intelligent, predictive systems, AI has become an indispensable ally in maximizing athlete longevity and effectiveness.

Additionally, AI is at the heart of a dramatic shift in how fans engage with sports, personalizing experiences and making interactions more immersive, dynamic, and satisfying. One of the key enablers here is recommendation engines powered by AI, like those used in entertainment platforms. These systems analyze fans' behavior across apps, social media, ticketing portals, and e-commerce platforms to recommend content, merchandise, and match experiences uniquely suited to each user's preferences. Whether it's highlighting a favorite player's stats, replaying iconic moments, or sending notifications about upcoming matches, AI personalizes every touchpoint in the fan journey. Thus, by turning passive viewers into interactive participants through personalized content and immersive technologies, AI is redefining fan engagement in sports as a deeply connected, dynamic experience.

Market Restraining Factors

However, one of the most critical restraints hampering the widespread adoption of AI in sports is the issue of data privacy and ethical use of athlete and consumer data. In modern sports ecosystems, AI applications heavily depend on real-time data collection - from biometric data during training, to behavioral data collected through fan engagement platforms. Wearable sensors, smart stadiums, and tracking cameras generate volumes of highly sensitive information, much of which pertains to individuals' health, location, and private routines. When such data is analyzed by AI systems for performance enhancement or audience targeting, it raises important questions about consent, ownership, and risk of misuse. In conclusion, unless data governance frameworks and ethical standards are significantly strengthened, the risks associated with data privacy and ethical misuse will continue to restrict the pace and scope of AI adoption in the sports industry.

Value Chain Analysis

The value chain of the Artificial Intelligence in Sports Market starts with Inbound Logistics, where data from sensors, cameras, and wearables is collected and sourced for processing. In Operations, AI models analyze player performance, game strategies, and injury risks using machine learning and computer vision. Outbound Logistics involves delivering these insights through dashboards, apps, or live broadcasts. Marketing & Sales promote AI-powered solutions to teams, leagues, and broadcasters. Finally, Service includes continuous model training, tech support, and performance updates for optimal user experience.

Market Share Analysis

Offering Outlook

Based on offering, the artificial intelligence in sports market is characterized into solution and services. The solution segment garnered 59% revenue share in the artificial intelligence in sports market in 2024. This segment includes AI-driven tools and platforms that assist in decision-making, performance analysis, player tracking, strategy development, and predictive modeling. The growing adoption of AI technologies by teams, leagues, and broadcasting partners to enhance on-field strategies and fan engagement contributed heavily to the prominence of this segment.

Sports Type Outlook

On the basis of sports type, the artificial intelligence in sports market is classified into team sports, esports, and individual. The individual segment held 23% revenue share in the artificial intelligence in sports market in 2024. This segment encompasses sports such as tennis, golf, athletics, boxing, and others where athletes compete individually rather than as part of a team. AI technologies in this space are primarily focused on personalized training programs, performance monitoring, biomechanics analysis, and real-time feedback systems.

Technology Outlook

By technology, the market is divided into gen AI and other AI. The other AI segment garnered 47% revenue share in the artificial intelligence in the sports market in 2024. These solutions form the foundation of most AI applications in sports today ranging from real-time game analysis, player tracking, and scouting to fan sentiment analysis and operational optimization. These tools are well-established and continue to evolve with advancements in algorithmic accuracy, processing speed, and data availability.

Use Case Title Confidential

Entities Involved Confidential

Objective To optimize player performance, team strategy, and officiating using traditional AI technologies such as machine learning, computer vision, and predictive modeling.

Context and Background Before GenAI, sports teams relied on traditional AI for analytics, injury prevention, and officiating. In 2025, these remain core, using supervised learning, reinforcement learning for simulations, and AI-enhanced video/sensor analytics.

Description (Examples) * Predictive workload models using biometric sensor data

Key Capabilities Deployed * Supervised and unsupervised learning pipelines

Benefits * Improved coaching precision and training outcomes

Source Confidential

Regional Outlook

Region-wise, the artificial intelligence in the sports market is analyzed across North America, Europe, Asia Pacific, and LAMEA. The North America segment recorded 38% revenue share in the artificial intelligence in the sports market in 2024. The region's leadership can be attributed to early adoption of advanced technologies, high investments in sports analytics, and the presence of major leagues such as the NFL, NBA, MLB, and NHL. Professional teams across the U.S. and Canada are increasingly utilizing AI for player performance optimization, fan engagement, injury prevention, and tactical decision-making.

Recent Strategies Deployed in the Market

List of Key Companies Profiled

Global Artificial Intelligence in Sports Market Report Segmentation

By Offering

By Sports Type

By Technology

By Geography

Table of Contents

Chapter 1. Market Scope & Methodology

Chapter 2. Market at a Glance

Chapter 3. Market Overview

Chapter 4. Competition Analysis - Global

Chapter 5. Value Chain Analysis of Artificial Intelligence in Sports Market

Chapter 6. Key Costumer Criteria - Artificial Intelligence in Sports Market

Chapter 7. Global Artificial Intelligence in Sports Market by Offering

Chapter 8. Global Artificial Intelligence in Sports Market by Sports Type

Chapter 9. Global Artificial Intelligence in Sports Market by Technology

Chapter 10. Global Artificial Intelligence in Sports Market by Region

Chapter 11. Company Profiles

Chapter 12. Winning Imperatives of Artificial Intelligence in Sports Market

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â