¼¼°èÀÇ AI ¼­¹ö ½ÃÀå ±Ô¸ð, Á¡À¯À², ¾÷°è ºÐ¼® º¸°í¼­ : ÇÁ·Î¼¼¼­ À¯Çüº°, ³Ã°¢ ±â¼úº°, ÆûÆÑÅͺ°, ÃÖÁ¾ ¿ëµµº°, Áö¿ªº° Àü¸Á ¹× ¿¹Ãø(2025-2032³â)
Global AI Server Market Size, Share & Industry Analysis Report By Processor Type, By Cooling Technology, By Form Factor, By End Use, By Regional Outlook and Forecast, 2025 - 2032
»óǰÄÚµå : 1768846
¸®¼­Ä¡»ç : KBV Research
¹ßÇàÀÏ : 2025³â 06¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 553 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 3,600 £Ü 5,021,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy & Paste °¡´ÉÇÕ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 4,320 £Ü 6,025,000
PDF (Multi User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ 10¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy & Paste °¡´ÉÇÕ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,048 £Ü 8,436,000
PDF (Corporate User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy & Paste °¡´ÉÇÕ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

AI ¼­¹ö ½ÃÀå ±Ô¸ð´Â ¿¹Ãø ±â°£ µ¿¾È 37.5%ÀÇ CAGR·Î ¼ºÀåÇÏ¿© 2032³â±îÁö 1Á¶ 6,000¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ·¯ÇÑ ¼ºÀåÀº ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ÀÇ AI È®»ê°ú ¹Ì±¹ ¿¡³ÊÁöºÎÀÇ AI ÀÎÇÁ¶ó ±â±Ý°ú °°Àº Á¤ºÎ ÅõÀÚ¿¡ ÈûÀÔ¾î Dell, HPE, Lenovo¿Í °°Àº ÁÖ¿ä ±â¾÷µéÀÌ Ã·´Ü ³Ã°¢ ±â¼ú°ú È®Àå °¡´ÉÇÑ ¼³°è¸¦ °®Ãá AI¿¡ ÃÖÀûÈ­µÈ ¼­¹ö¸¦ Ãâ½ÃÇϰí ÀÖ½À´Ï´Ù.

ÁÖ¿ä ÇÏÀ̶óÀÌÆ®:

AI ¼­¹öÀÇ µµÀÔÀº ¾÷°è¿¡ ¸Å¿ì Áß¿äÇÑ ÀüȯÀ» °¡Á®¿ÔÀ¸¸ç, NVIDIA¿Í °°Àº ±â¾÷Àº AI ÀÛ¾÷¿¡ ÇÊ¿äÇÑ Ã³¸® ´É·ÂÀ» Å©°Ô Çâ»ó½ÃŰ´Â GPU¸¦ Á¦°øÇÔÀ¸·Î½á Áß¿äÇÑ ¿ªÇÒÀ» ¼öÇàÇß½À´Ï´Ù. µ¿½Ã¿¡ Amazon Web Services, Microsoft Azure, Google Cloud¿Í °°Àº Ŭ¶ó¿ìµå ¼­ºñ½º Á¦°ø¾÷ü(CSP)°¡ AI¿¡ ƯȭµÈ ÀÎÇÁ¶ó¸¦ Á¦°øÇϱ⠽ÃÀÛÇϸ鼭 ¸ðµç ±Ô¸ðÀÇ ±â¾÷ÀÌ AI¸¦ º¸´Ù ½±°Ô ÀÌ¿ëÇÒ ¼ö Àִ ȯ°æÀ» Á¶¼ºÇß½À´Ï´Ù.

ÇコÄɾî, ±ÝÀ¶, ÀÚµ¿Â÷, Á¦Á¶ µî ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ AI ¾ÖÇø®ÄÉÀ̼ÇÀÌ È®»êµÇ¸é¼­ AI ¼­¹ö¿¡ ´ëÇÑ ¼ö¿ä´Â ´õ¿í Áõ°¡Çß½À´Ï´Ù. ÀÌ·¯ÇÑ ¼­¹ö´Â ÀÚ¿¬¾î ó¸®, À̹ÌÁö ÀνÄ, ¿¹Ãø ºÐ¼®, ÀÚÀ²ÁÖÇà¿¡ À̸£±â±îÁö ´Ù¾çÇÑ ¾÷¹«¿¡ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ¾Ò½À´Ï´Ù.

Á¤ºÎÀÇ ³ë·Âµµ ½ÃÀå ¼ºÀå¿¡ ±â¿©Çß½À´Ï´Ù. ¿¹¸¦ µé¾î, ¹Ì±¹ ¿¡³ÊÁöºÎ´Â ±¹°¡ ¾Èº¸¿Í °æÁ¦ °æÀï·Â¿¡¼­ AIÀÇ Àü·«Àû Á߿伺À» ÀνÄÇϰí AI ¿¬±¸¿Í ÀÎÇÁ¶ó¿¡ ÅõÀÚÇß½À´Ï´Ù. ¸¶Âù°¡Áö·Î Áß±¹, ¿µ±¹ µîÀÇ ±¹°¡µéµµ ±¹°¡ AI Àü·«À» ¼ö¸³ÇÏ°í ¼­¹ö¸¦ Æ÷ÇÔÇÑ AI ÀÎÇÁ¶ó °³¹ß¿¡ ÁßÁ¡À» µÎ°í ÀÖ½À´Ï´Ù.

OEM(Original Equipment Manufacturers)Àº AI¿¡ ƯȭµÈ ¼­¹ö ¼Ö·ç¼ÇÀ» °³¹ßÇÏ¿© ÀÌ·¯ÇÑ ¼ö¿ä Áõ°¡¿¡ ´ëÀÀÇϰí ÀÖÀ¸¸ç, Dell Technologies, Hewlett Packard Enterprise(HPE), Dell Technologies, Hewlett Packard Enterprise, Lenovo µîÀÇ ±â¾÷µéÀº °í±Þ ³Ã°¢ ½Ã½ºÅÛ, °í¼Ó ÀÎÅÍÄ¿³ØÆ®, È®Àå °¡´ÉÇÑ ¾ÆÅ°ÅØÃ³¸¦ °®Ãá AI ¿öÅ©·Îµå¿¡ ÃÖÀûÈ­µÈ ¼­¹ö¸¦ Ãâ½ÃÇß½À´Ï´Ù.

Microsoft, Google, Amazon°ú °°Àº ÁÖ¿ä Ŭ¶ó¿ìµå ¼­ºñ½º Á¦°ø¾÷üµéÀº AI ¿öÅ©·Îµå¸¦ ÃÖÀûÈ­Çϱâ À§ÇØ ÀÚü ÁÖ¹®Çü AI Ĩ °³¹ß ¹× µµÀÔ¿¡ ÅõÀÚÇϰí ÀÖÀ¸¸ç, ÀÚü ÁÖ¹®Çü ÁÖ¹®Çü ÁýÀûȸ·Î(ASIC) ¼³°è¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¿§Áö ÄÄÇ»ÆÃ ȯ°æ¿¡ AI ¼­¹öÀÇ ÅëÇÕÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ¿§Áö AI ¼­¹ö´Â µ¥ÀÌÅÍ ¼Ò½º¿Í °¡±î¿î °÷¿¡¼­ ½Ç½Ã°£ µ¥ÀÌÅÍ Ã³¸®¸¦ °¡´ÉÇÏ°Ô ÇÏ¿© Áö¿¬½Ã°£°ú ´ë¿ªÆø »ç¿ë·®À» ÁÙ¿©ÁÝ´Ï´Ù.

KBV Cardinal Matrix - AI ¼­¹ö ½ÃÀå °æÀï ºÐ¼®

KBV Cardinal MatrixÀÇ ºÐ¼®¿¡ µû¸£¸é, AI ¼­¹ö ½ÃÀåÀº Microsoft Corporation°ú NVIDIA CorporationÀÌ ¼±±¸ÀÚÀ̸ç, 2025³â 5¿ù, NVIDIA¿Í HUMAINÀÌ Á¦ÈÞÇÏ¿© »ç¿ìµð¾Æ¶óºñ¾Æ¿¡ NVIDIAÀÇ GPU¿Í ½´ÆÛÄÄÇ»Å͸¦ žÀçÇÑ AI ÆÑÅ丮¸¦ °Ç¼³Çß½À´Ï´Ù. ÀÌ °øÀåÀº ÁÖ±Ç AI ¸ðµ¨ ÈÆ·Ã°ú ¿È´Ï¹ö½º(Omniverse)¸¦ ÀÌ¿ëÇÑ µðÁöÅÐ Æ®À©À» ±¸ÃàÇÏ¿© »ç¿ìµð¾Æ¶óºñ¾Æ¸¦ AI ¹× µ¥ÀÌÅÍ ÀÎÇÁ¶ó ºÐ¾ßÀÇ ¼¼°è ¸®´õ·Î ÀÚ¸®¸Å±èÇϰí ÀÖÀ¸¸ç, Cisco Systems, Inc.¿Í Salesforce, Inc.¿Í °°Àº ±â¾÷µéÀº AI ¼­¹ö ½ÃÀåÀÇ ÁÖ¿ä Çõ½Å°¡µéÀÔ´Ï´Ù.

½ÃÀå ÅëÇÕ ºÐ¼®:

ÀΰøÁö´É(AI)ÀÇ Àü·Ê ¾ø´Â ¹ßÀüÀº Àü ¼¼°è ÄÄÇ»ÆÃ ȯ°æÀ» ±Ùº»ÀûÀ¸·Î ÀçÁ¤ÀÇÇϰí, AI ¼­¹ö¸¦ Çö´ë µðÁöÅÐ ÀÎÇÁ¶óÀÇ ÇÙ½ÉÀ¸·Î ÀÚ¸® Àâ°Ô Çß½À´Ï´Ù. ±â¾÷ ¹× Á¤ºÎ ±â°üÀÌ ´ë±Ô¸ð ¾ð¾î ¸ðµ¨¿¡¼­ ÀÚÀ² ½Ã½ºÅÛ¿¡ À̸£±â±îÁö AI ±â¹Ý ¾ÖÇø®ÄÉÀ̼ÇÀÇ µµÀÔÀ» ´Ã¸®¸é¼­ °í¼º´É, È®Àå °¡´ÉÇÑ ¼­¹ö ¾ÆÅ°ÅØÃ³¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù.

ÀÌ Àå¿¡¼­´Â AI ¼­¹ö ºÎ¹®ÀÇ ½ÃÀå ÅëÇÕ ¿ªÇп¡ ´ëÇØ ÀÚ¼¼È÷ ºÐ¼®ÇÕ´Ï´Ù. °æÀïÀÇ Ä¡¿­ÇÔ, Çõ½Å À庮, º¥´õÀÇ ¿ìÀ§¸¦ Çü¼ºÇÏ´Â ±¸Á¶Àû ¹× Àü·«Àû ¸Å°³º¯¼ö¸¦ Æò°¡ÇÕ´Ï´Ù. Á¤ºÎ °£Ç๰, OEM °ø°³ Á¤º¸, ºñÁî´Ï½º ±â¼ú °ü·Ã Áö½Ä µî °ø°³µÈ Á¤º¸ ¼Ò½º¸¦ ±â¹ÝÀ¸·Î ±â¼ú Çõ½Å, ±ÔÁ¦ ȯ°æ, ÁöÁ¤ÇÐÀû ¿µÇâ, °ø±Þ¸Á ÀÇÁ¸µµ, ÁøÀÔ À庮°ú °°Àº ÁÖ¿ä ÁöÇ¥¸¦ »ç¿ëÇÏ¿© ÅëÇÕ ¼öÁØÀ» Á¤·®È­ÇÕ´Ï´Ù.

Çõ½ÅÀº ¼öÁ÷ÀûÀ¸·Î ÅëÇÕµÈ »ýŰ迡 °¤Çô Àֱ⠶§¹®¿¡ ¼Ò±Ô¸ð ±â¾÷Àº ±Ô¸ð, R&D ºñ¿ë, ±³À° µ¥ÀÌÅÍ¿¡ ´ëÇÑ Á¢±Ù¼º¿¡¼­ °æÀï»ç¿Í °æÀïÇÒ ¼ö ÀÖ´Â ±â¾÷À» ã±â°¡ ½±Áö ¾Ê½À´Ï´Ù. ÀÌ·¯ÇÑ ºÒ±ÕÇüÀÌ ÅëÇÕ Á¡¼ö¸¦ ÃÖ´ë·Î ²ø¾î¿Ã¸®°í ÀÖ½À´Ï´Ù.

Á¦Ç° ¼ö¸íÁֱ⠺м®:

AI ¼­¹ö ½ÃÀåÀº ºü¸¥ Á¦Ç° Çõ½Å, ±¤¹üÀ§ÇÑ µµÀÔ, ±â¼ú ´ë±â¾÷°ú Á¤ºÎ ±â°üÀÇ ´ë±Ô¸ð ÅõÀÚ¿¡ ÈûÀÔ¾î ²ÙÁØÈ÷ ¼ºÀåÇϰí ÀÖÀ¸¸ç, NVIDIA, AMD, Intel, Google, AWS, Microsoft¿Í °°Àº ÁÖ¿ä ±â¾÷ÀÌ ½ÃÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ÇâÈÄ 10³â°£ ¼º¼÷±â¸¦ ¸ÂÀÌÇÒ °ÍÀ¸·Î ¿¹»óµÇÁö¸¸, ¼èÅðÀÇ Á¶ÁüÀº º¸ÀÌÁö ¾Ê½À´Ï´Ù. ÇâÈÄ °æÀï·ÂÀº ĨÀÇ Àü¹®È­, ³Ã°¢ È¿À², AI ½ºÅà ÅëÇÕÀÇ Áøº¸¿¡ ´Þ·Á ÀÖ½À´Ï´Ù.

AI ¼­¹ö ½ÃÀåÀº ÇöÀç ¼ºÀå±â¿¡ ÀÖÀ¸¸ç, »ý¼ºÇü AI, ´ë±Ô¸ð ¾ð¾î ¸ðµ¨(LLM), ¼­ºñ½ºÇü AI(AI-as-a-Service)ÀÇ ºÎ»óÀ¸·Î ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. Á¤ºÎ ±â°ü°ú ±â¾÷µéÀº AI Àü¿ë ÀÎÇÁ¶ó¸¦ ±¸ÃàÇϰí ÀÖÀ¸¸ç, Çõ½ÅÀº Ÿ´ç¼º °ËÁõ¿¡¼­ ¼º´É ÃÖÀûÈ­·Î ¿Å°Ü°¡°í ÀÖ½À´Ï´Ù.

½ÃÀå ¼ºÀå¿äÀÎ

ÀΰøÁö´É(AI)ÀÌ ´Ù¾çÇÑ ºÐ¾ß¿¡ ºü¸£°Ô ÅëÇյǰí ÀÖ´Â °ÍÀÌ AI ¼­¹ö ¼ö¿ä ±ÞÁõÀÇ ÁÖ¿ä ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ÇコÄɾî, ±ÝÀ¶, ÀÚµ¿Â÷, ¼Ò¸Å, Á¦Á¶ µîÀÇ »ê¾÷¿¡¼­ ¾÷¹« È¿À²¼º, ÀÇ»ç°áÁ¤, °í°´ °æÇè Çâ»óÀ» À§ÇØ AI¸¦ µµÀÔÇϰí ÀÖ½À´Ï´Ù. ÇコÄÉ¾î ºÐ¾ß¿¡¼­´Â AI ¼­¹ö°¡ ¹æ´ëÇÑ ÀÇ·á µ¥ÀÌÅ͸¦ ó¸®ÇÏ¿© °íµµÈ­µÈ Áø´Ü, ¿¹Ãø ºÐ¼®, °³ÀÎÈ­µÈ Ä¡·á °èȹ ¼ö¸³À» µ½°í ÀÖ½À´Ï´Ù. ±ÝÀ¶±â°üÀº »ç±â ŽÁö, À§Çè Æò°¡, ¾Ë°í¸®Áò °Å·¡¿¡ AI¸¦ Ȱ¿ëÇϰí ÀÖÀ¸¸ç, º¹ÀâÇÑ °è»ê 󸮸¦ ó¸®ÇÒ ¼ö ÀÖ´Â °­·ÂÇÑ ¼­¹ö ÀÎÇÁ¶ó¸¦ ÇÊ¿ä·Î ÇÕ´Ï´Ù. ÀÌ¿¡ µû¶ó ÁÖ¿ä »ê¾÷¿¡¼­ AI¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁö¸é¼­ °í¼º´É AI ¼­¹ö¿¡ ´ëÇÑ ¼ö¿ä°¡ Å©°Ô Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¶ÇÇÑ, AI Àü¿ë Çϵå¿þ¾î ±¸¼º¿ä¼ÒÀÇ ±â¼ú Çõ½ÅÀº AI ¼­¹öÀÇ ¼º´É°ú È¿À²¼ºÀ» Å©°Ô Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ±×·¡ÇÈ Ã³¸® ÀåÄ¡(GPU), ÅÙ¼­ ó¸® ÀåÄ¡(TPU), ÁÖ¹®Çü ÁýÀûȸ·Î(ASIC), Çʵå ÇÁ·Î±×·¡¸Óºí °ÔÀÌÆ® ¾î·¹ÀÌ(FPGA)ÀÇ ¹ßÀüÀº AI ¼­¹öÀÇ ±â´ÉÀ» Çõ½ÅÀûÀ¸·Î º¯È­½ÃÄ×À¸¸ç, GPU¿Í TPU´Â º´·Ä 󸮸¦ À§ÇØ ¼³°èµÇ¾î º¹ÀâÇÑ AI ¸ðµ¨ ÈÆ·Ã°ú ´ë±Ô¸ð µ¥ÀÌÅͼ¼Æ® 󸮿¡ ÀûÇÕÇÕ´Ï´Ù. ¼³°èµÇ¾î º¹ÀâÇÑ AI ¸ðµ¨ ÇнÀ ¹× ´ë±Ô¸ð µ¥ÀÌÅͼ¼Æ® 󸮿¡ ÀûÇÕÇÕ´Ï´Ù. ¿ä¾àÇϸé, AI Àü¿ë Çϵå¿þ¾îÀÇ ¹ßÀüÀº Àü·Ê ¾ø´Â ¼º´É, È¿À²¼º, Á¢±Ù¼ºÀ» Á¦°øÇϸç AI ¼­¹ö ½ÃÀåÀÇ ºü¸¥ ¼ºÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù.

½ÃÀå ¾ïÁ¦¿äÀÎ

AI ¾ÖÇø®ÄÉÀ̼ÇÀÇ ±Þ¼ÓÇÑ È®ÀåÀº µ¥ÀÌÅͼ¾ÅÍÀÇ ¿¡³ÊÁö ¼Òºñ¸¦ Å©°Ô Áõ°¡½Ã۰í ÀÖÀ¸¸ç, AI ¼­¹ö, ƯÈ÷ ´ë±Ô¸ð ¸ðµ¨ ÈÆ·Ã¿¡ »ç¿ëµÇ´Â ¼­¹ö´Â »ó´çÇÑ °è»ê ´É·ÂÀ» ÇÊ¿ä·Î Çϱ⠶§¹®¿¡ Àü·Â »ç¿ë·®ÀÌ Áõ°¡ÇÕ´Ï´Ù. ¿¹¸¦ µé¾î, ÇÑ ¹øÀÇ Äõ¸®´Â ¾à 2.9 ¿ÍÆ®½ÃÀÇ Àü·ÂÀ» ¼ÒºñÇÏÁö¸¸, Ç¥ÁØ Google °Ë»öÀº 0.3 ¿ÍÆ®½ÃÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ¿¡³ÊÁö ¼ö¿äÀÇ ±ÞÁõÀº ¿î¿µ ºñ¿ëÀ» »ó½Â½Ãų »Ó¸¸ ¾Æ´Ï¶ó ÀÌ»êȭź¼Ò ¹èÃâ·® Áõ°¡¿¡µµ ±â¿©Çϰí ÀÖ½À´Ï´Ù. À¯¿£ º¸°í¼­´Â Amazon, Microsoft, Alphabet, Meta µî ÁÖ¿ä ±â¼ú ±â¾÷ÀÇ °£Á¢ ź¼Ò ¹èÃâ·®ÀÌ 2020-2023³â »çÀÌ Æò±Õ 150% Áõ°¡ÇßÀ¸¸ç, ÀÌ´Â ÁÖ·Î ¿¡³ÊÁö Áý¾àÀûÀÎ AI µ¥ÀÌÅͼ¾ÅÍ·Î ÀÎÇØ ¹ß»ýÇß´Ù°í °­Á¶Çß½À´Ï´Ù. ÀÌ·¯ÇÑ ¹®Á¦¸¦ °í·ÁÇÒ ¶§, AI ±â¼úÀÇ Ã¥ÀÓ ÀÖ´Â ¼ºÀåÀ» º¸ÀåÇϱâ À§Çؼ­´Â ¿¡³ÊÁö È¿À²ÀûÀÎ Çõ½Å°ú Áö¼Ó°¡´ÉÇÑ °üÇàÀ» ¿ì¼±½ÃÇÏ´Â °ÍÀÌ ÇʼöÀûÀÔ´Ï´Ù.

°¡Ä¡»ç½½ ºÐ¼®

AI ¼­¹ö ½ÃÀåÀÇ °¡Ä¡»ç½½Àº Çϵå¿þ¾î¿Í ¼ÒÇÁÆ®¿þ¾î ±â´ÉÀÇ Çõ½ÅÀ» ÃßÁøÇϱâ À§ÇÑ ¿¬±¸°³¹ß(R&D)¿¡¼­ ½ÃÀ۵˴ϴÙ. ´ÙÀ½À¸·Î ºÎǰ Á¶´Þ ¹× Á¦Á¶°¡ ÁøÇàµÇ¾î ÇÁ·Î¼¼¼­, GPU, ¸Þ¸ð¸® ¸ðµâ µî ¼­¹ö¿¡ ÇʼöÀûÀÎ ºÎǰÀÌ Á¶´Þ ¹× Á¦Á¶µË´Ï´Ù. ½Ã½ºÅÛ ÅëÇÕ ¹× Á¶¸³À» ÅëÇØ ÀÌ·¯ÇÑ ±¸¼º¿ä¼Ò°¡ ÅëÇÕµÇ¾î ¿ÏÀüÇÑ ±â´ÉÀ» °®Ãá AI ¼­¹ö°¡ ¿Ï¼ºµË´Ï´Ù. ¼ÒÇÁÆ®¿þ¾î »ýŰè¿Í ÃÖÀûÈ­ °èÃþÀº ¸ÂÃãÇü ¼ÒÇÁÆ®¿þ¾î¸¦ ÅëÇØ AI ¿öÅ©·Îµå¸¦ °­È­ÇÕ´Ï´Ù. ±× ´ÙÀ½ ´Ü°è´Â ¼º´É Ç¥ÁØÀ» º¸ÀåÇϱâ À§ÇÑ Å×½ºÆ® ¹× ǰÁú º¸Áõ, ±×¸®°í ÃÖÁ¾»ç¿ëÀÚ¿¡ ´ëÇÑ ¸¶ÄÉÆÃ ¹× ¹èÆ÷°¡ Æ÷ÇԵ˴ϴÙ. µµÀÔ ÈÄ¿¡´Â °í°´ ȯ°æ ÅëÇÕ, ¾ÖÇÁÅ͸¶ÄÏ ¼­ºñ½º ¹× Áö¿ø, ±×¸®°í Áö¼ÓÀûÀÎ °í°´ Çǵå¹éÀ» ÅëÇØ R&D ÇÁ·Î¼¼½º¿¡ Çǵå¹éÇÏ¿© Á¦Ç° °³¼±°ú Çõ½ÅÀ» ÃËÁøÇÏ´Â ´Ü°è°¡ Æ÷ÇԵ˴ϴÙ.

Áö¿ª Àü¸Á

Áö¿ªº°·Î´Â ºÏ¹Ì, À¯·´, ¾Æ½Ã¾ÆÅÂÆò¾ç, ¶óƾ¾Æ¸Þ¸®Ä«, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«·Î ±¸ºÐµË´Ï´Ù. ºÏ¹Ì´Â AIÀÇ Á¶±â µµÀÔ, °­·ÂÇÑ Å¬¶ó¿ìµå ÀÎÇÁ¶ó, AI Àü¿ë ¼­¹ö ÆÊ¿¡ ´ëÇÑ ´ë±Ô¸ð ÅõÀÚ¿¡ ÈûÀÔ¾î 2024³â 37.20%ÀÇ Á¡À¯À²·Î 1À§¸¦ Â÷ÁöÇß½À´Ï´Ù. ¹Ì±¹Àº ÁÖ¿ä ±â¼ú ±â¾÷, ÇÏÀÌÆÛ½ºÄÉÀÏ·¯, AI Ĩ Á¦Á¶¾÷üÀÇ Á¸Àç·Î ÀÎÇØ °è¼ÓÇØ¼­ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

½ÃÀå °æÀï°ú Ư¼º

AI ¼­¹ö ½ÃÀåÀº Áö¿ª Á¦Á¶¾÷ü, ½ºÅ¸Æ®¾÷, Æ´»õ ±â¼ú Á¦°ø¾÷üµéÀÇ ÁøÀÔÀ¸·Î ¿©ÀüÈ÷ Ä¡¿­ÇÑ °æÀïÀÌ °è¼ÓµÇ°í ÀÖ½À´Ï´Ù. ÀÌµé ¾÷üµéÀº Ư¼öÇÑ AI ¿öÅ©·Îµå, ¿¡³ÊÁö È¿À²ÀûÀÎ ¼³°è, ÇÕ¸®ÀûÀÎ °¡°ÝÀÇ ¼Ö·ç¼Ç¿¡ ÃÊÁ¡À» ¸ÂÃß°í ÀÖ½À´Ï´Ù. Áö¹èÀûÀÎ ºê·£µåÀÇ ºÎÀç´Â Çõ½Å°ú ½ÃÀå ÁøÀÔÀÇ ±âȸ¸¦ Á¦°øÇÏÁö¸¸, Á¦ÇÑµÈ ¸®¼Ò½º¿Í È®À强 ¹®Á¦·Î ÀÎÇØ ¼Ò±Ô¸ð ±â¾÷ÀÌ Å« ½ÃÀå Á¡À¯À²À» È®º¸ÇÏ´Â °ÍÀº ½±Áö ¾Ê½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ½ÃÀå ¹üÀ§¿Í Á¶»ç ¹æ¹ý

Á¦2Àå ½ÃÀå ¿ä¶÷

Á¦3Àå ½ÃÀå °³¿ä

Á¦4Àå ½ÃÀå µ¿Çâ : AI ¼­¹ö ½ÃÀå

Á¦5Àå °æÀï ÇöȲ : AI ¼­¹ö ½ÃÀå

Á¦6Àå AI ¼­¹ö ½ÃÀå : ÅëÇÕ ºÐ¼®

Á¦7Àå Á¦Ç°¼ö¸íÁֱ⠺м® : AI ¼­¹ö ½ÃÀå

Á¦8Àå °æÀï ºÐ¼® : ¼¼°è

Á¦9Àå AI ¼­¹ö ½ÃÀå ¹ë·ùüÀÎ ºÐ¼®

Á¦10Àå ÁÖ¿ä °í°´ ±âÁØ : AI ¼­¹ö ½ÃÀå

Á¦11Àå ¼¼°è ½ÃÀå : ÇÁ·Î¼¼¼­ À¯Çüº°

Á¦12Àå ¼¼°è ½ÃÀå : ³Ã°¢ ±â¼úº°

Á¦13Àå ¼¼°è ½ÃÀå : ÆûÆÑÅͺ°

Á¦14Àå ¼¼°è ½ÃÀå : ÃÖÁ¾ ¿ëµµº°

Á¦15Àå ¼¼°è ½ÃÀå : Áö¿ªº°

Á¦16Àå ±â¾÷ °³¿ä

Á¦17Àå AI ¼­¹ö ½ÃÀå ¼º°ø Çʼö Á¶°Ç

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

The Global AI Server Market size is expected to reach $1.6 trillion by 2032, rising at a market growth of 37.5% CAGR during the forecast period. Growth is driven by widespread AI adoption across sectors and government investments like the U.S. Department of Energy's AI infrastructure funding. Leading firms such as Dell, HPE, and Lenovo are launching AI-optimized servers with advanced cooling and scalable designs.

Key Highlights:

The introduction of AI servers marked a pivotal shift in the industry. Companies like NVIDIA played a crucial role by providing GPUs that significantly enhanced the processing capabilities required for AI tasks. Simultaneously, cloud service providers (CSPs) such as Amazon Web Services, Microsoft Azure, and Google Cloud began offering AI-specific infrastructure, making AI more accessible to businesses of all sizes.

The proliferation of AI applications across various sectors-including healthcare, finance, automotive, and manufacturing-further fueled the demand for AI servers. These servers became essential for tasks ranging from natural language processing and image recognition to predictive analytics and autonomous driving.

Government initiatives also contributed to the market's growth. For instance, the U.S. Department of Energy invested in AI research and infrastructure, recognizing the strategic importance of AI in national security and economic competitiveness. Similarly, countries like China and the United Kingdom launched national AI strategies, emphasizing the development of AI infrastructure, including servers.

Original Equipment Manufacturers (OEMs) responded to this growing demand by developing AI-specific server solutions. Companies like Dell Technologies, Hewlett Packard Enterprise (HPE), and Lenovo introduced servers optimized for AI workloads, featuring advanced cooling systems, high-speed interconnects, and scalable architectures.

There is a significant shift towards the development and adoption of custom AI chips. Major cloud service providers like Microsoft, Google, and Amazon are investing in designing their own application-specific integrated circuits (ASICs) to optimize AI workloads. Secondly, the integration of AI servers into edge computing environments is gaining momentum. Edge AI servers enable real-time data processing closer to the data source, reducing latency and bandwidth usage.

The major strategies followed by the market participants are Partnerships as the key developmental strategy to keep pace with the changing demands of end users. For instance, In May, 2025, Cisco joined the AI Infrastructure Partnership with BlackRock, Microsoft, NVIDIA, and others to accelerate innovation and scale secure, efficient AI data center infrastructure, enhancing AI servers and supporting technologies to meet the growing demands of AI workloads. Moreover, In May, 2025, Cisco partnered with Saudi Arabia's HUMAIN AI enterprise to build scalable, secure AI infrastructure, supporting the Kingdom's Vision 2030 goals. This collaboration aims to advance digital innovation by deploying cloud-based AI servers and technologies for large-scale AI development.

KBV Cardinal Matrix - AI Server Market Competition Analysis

Based on the Analysis presented in the KBV Cardinal matrix; Microsoft Corporation and NVIDIA Corporation are the forerunners in the AI Server Market. In May, 2025, NVIDIA and HUMAIN partnered to build AI factories in Saudi Arabia powered by NVIDIA GPUs and supercomputers, aiming to train sovereign AI models and deploy digital twins using Omniverse, positioning the Kingdom as a global leader in AI and data infrastructure. Companies such as Cisco Systems, Inc. and Salesforce, Inc. are the key innovators in AI Server Market.

Market Consolidation Analysis:

The unprecedented rise of artificial intelligence has fundamentally redefined the global computing landscape, placing AI servers at the heart of modern digital infrastructure. As enterprises and governments increasingly deploy AI-driven applications-from large language models to autonomous systems-the demand for high-performance, scalable server architectures has surged.

This chapter presents a detailed analysis of market consolidation dynamics within the global AI server sector. It evaluates the structural and strategic parameters shaping competitive intensity, innovation barriers, and vendor dominance. Drawing from publicly accessible sources such as government publications, OEM disclosures, and business technology insights, the analysis quantifies consolidation levels across key indicators-ranging from technological innovation, regulatory environments, and geopolitical influence, to supply chain dependencies and entry barriers.

Because the innovation is locked within vertically integrated ecosystems, smaller firms struggle to match the scale, R&D spend, and access to training data. This imbalance pushes the consolidation score to its maximum.

Product Life Cycle Analysis:

The AI Server Market is firmly in the growth stage, marked by rapid product innovation, widespread deployment, and major investment from both tech giants and governments. With key players such as NVIDIA, AMD, Intel, Google, AWS, and Microsoft leading the charge, the market is poised to enter maturity in the coming decade-but shows no signs of decline. Future competitiveness will rely on advancements in chip specialization, cooling efficiency, and AI stack integration.

The AI server market is currently in the growth phase, experiencing exponential demand due to the rise of generative AI, large language models (LLMs), and AI-as-a-Service offerings. Governments and corporations alike are building dedicated AI infrastructure, and innovation is shifting from feasibility to performance optimization.

Market Growth Factors

The rapid integration of artificial intelligence (AI) across various sectors is a primary catalyst for the burgeoning demand for AI servers. Industries such as healthcare, finance, automotive, retail, and manufacturing are increasingly adopting AI to enhance operational efficiency, decision-making, and customer experiences. In healthcare, AI servers facilitate advanced diagnostics, predictive analytics, and personalized treatment plans by processing vast amounts of medical data. Financial institutions leverage AI for fraud detection, risk assessment, and algorithmic trading, necessitating robust server infrastructures to handle complex computations. Consequently, the rising reliance on AI across key industries is set to significantly propel the demand for high-performance AI servers.

Additionally, Technological innovations in AI-specific hardware components are significantly enhancing the performance and efficiency of AI servers. Developments in Graphics Processing Units (GPUs), Tensor Processing Units (TPUs), Application-Specific Integrated Circuits (ASICs), and Field-Programmable Gate Arrays (FPGAs) have revolutionized the capabilities of AI servers. GPUs and TPUs are designed for parallel processing, making them ideal for training complex AI models and handling large datasets. In summary, advancements in AI-specific hardware are driving unprecedented performance, efficiency, and accessibility, fueling the rapid growth of the AI server market.

Market Restraining Factors

The rapid expansion of AI applications has led to a significant increase in energy consumption by data centers. AI servers, particularly those used for training large models, require substantial computational power, resulting in higher electricity usage. For instance, a single query consumes approximately 2.9 watt-hours of electricity, compared to 0.3 watt-hours for a standard Google search. This surge in energy demand not only raises operational costs but also contributes to increased carbon emissions. A United Nations report highlighted that indirect carbon emissions from major tech companies like Amazon, Microsoft, Alphabet, and Meta rose by an average of 150% between 2020 and 2023, largely due to energy-intensive AI data centers. In light of these challenges, prioritizing energy-efficient innovations and sustainable practices is essential to ensure the responsible growth of AI technologies.

Value Chain Analysis

The value chain of the AI Server Market begins with research and development (R&D) to drive innovation in hardware and software capabilities. This is followed by component sourcing and fabrication, where essential server parts such as processors, GPUs, and memory modules are procured and manufactured. System integration and assembly combines these components into fully functional AI servers. The software ecosystem and optimization layer enhances AI workloads through tailored software. Subsequent stages include testing and quality assurance to ensure performance standards, and marketing and distribution to reach end-users. Post-deployment involves integration in customer environments, aftermarket services and support, and continuous customer feedback, which feeds back into the R&D process, fostering product improvement and innovation.

Regional Outlook

Based on the Region, the market is segmented into North America, Europe, Asia Pacific, and LAMEA. North America leads with a 37.20% share in 2024, propelled by early AI adoption, robust cloud infrastructure, and heavy investment in AI-specific server farms. The U.S. remains the largest contributor due to the presence of major technology firms, hyperscalers, and AI chip manufacturers.

Market Competition and Attributes

The AI Server Market remains Highly competitive, driven by regional manufacturers, startups, and niche technology providers. These companies focus on specialized AI workloads, energy-efficient designs, and affordable solutions. The absence of dominant brands creates opportunities for innovation and market entry, though limited resources and scalability challenges constrain the ability of smaller firms to capture significant market share.

Recent Strategies Deployed in the Market

List of Key Companies Profiled

Global AI Server Market Report Segmentation

By Processor Type

By Cooling Technology

By Form Factor

By End Use

By Geography

Table of Contents

Chapter 1. Market Scope & Methodology

Chapter 2. Market at a Glance

Chapter 3. Market Overview

Chapter 4. Market Trends: AI Server Market

Chapter 5. State of Competition - AI Server Market

Chapter 6. AI Server Market - Consolidation Analysis

Chapter 7. Product Life Cycle Analysis: AI Server Market

Chapter 8. Competition Analysis - Global

Chapter 9. Value Chain Analysis of AI Server Market

Chapter 10. Key Customer Criteria: AI Server Market

Chapter 11. Global AI Server Market by Processor Type

Chapter 12. Global AI Server Market by Cooling Technology

Chapter 13. Global AI Server Market by Form Factor

Chapter 14. Global AI Server Market by End Use

Chapter 15. Global AI Server Market by Region

Chapter 16. Company Profiles

Chapter 17. Winning Imperatives of AI Server Market

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â