¼¼°èÀÇ ÇÕ¼º°ö ½Å°æ¸Á ½ÃÀå : ½ÃÀå ±Ô¸ð, Á¡À¯À², µ¿Ç⠺м® º¸°í¼­ - Àü°³ ¹æ½Äº°, ±¸¼º¿ä¼Òº°, ¿ëµµº°, »ê¾÷º°, Áö¿ªº° Àü¸Á ¹× ¿¹Ãø(2024-2031³â)
Global Convolutional Neural Networks Market Size, Share & Trends Analysis Report By Deployment Mode (On-Premise and Cloud), By Component (Hardware, Software, and Services), By Application, By Vertical, By Regional Outlook and Forecast, 2024 - 2031
»óǰÄÚµå : 1584889
¸®¼­Ä¡»ç : KBV Research
¹ßÇàÀÏ : 2024³â 10¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 362 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 3,600 £Ü 5,085,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy & Paste °¡´ÉÇÕ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 4,320 £Ü 6,102,000
PDF (Multi User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ 10¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy & Paste °¡´ÉÇÕ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,048 £Ü 8,542,000
PDF (Corporate User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy & Paste °¡´ÉÇÕ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

ÇÕ¼º°ö ½Å°æ¸Á ½ÃÀå ±Ô¸ð´Â ¿¹Ãø ±â°£ µ¿¾È 40.2%ÀÇ CAGR·Î ¼ºÀåÇÏ¿© 2031³â±îÁö 1,317¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

KBV Cardinal Matrix - ÇÕ¼º°ö ½Å°æ¸Á ½ÃÀå °æÀï ºÐ¼®

KBV Cardinal Matrix¿¡ Á¦½ÃµÈ ºÐ¼®¿¡ µû¸£¸é, Microsoft Corporation°ú Google LLC´Â ÇÕ¼º°ö ½Å°æ¸Á ½ÃÀåÀÇ ¼±±¸ÀÚÀ̸ç, 2024³â 2¿ù Microsoft CorporationÀº À¯»ç À¯Å¬¸®µå °ø°£¿¡¼­ ´ÙÁß º¤ÅÍ Çʵ带 ó¸®ÇÒ ¼ö ÀÖ´Â »õ·Î¿î Á¾·ùÀÇ µ¿Çüº¯È¯ ½Å°æ¸Á(CS-CNN)À» ¹ßÇ¥Çß½À´Ï´Ù. Clifford-Steerable ÇÕ¼º°ö ½Å°æ¸Á(CS-CNN)Àº Clifford ±º µ¿º¯·® ³×Æ®¿öÅ©¸¦ Ȱ¿ëÇÏ¿© À¯Ã¼¿ªÇÐ ¹× »ó´ë·ÐÀû Àü±â¿ªÇÐ ¿¹Ãø¿¡ ÀÖ¾î ±âÁؼ± ¹æ½Ä°ú ºñ±³ÇÏ¿© ¿ì¼öÇÑ ¼º´ÉÀ» º¸¿´½À´Ï´Ù. Amazon Web Services, Inc., NVIDIA Corporation, Samsung Electronics Co., Ltd. µîÀÇ ±â¾÷µéÀº ÇÕ¼º°ö ½Å°æ¸Á ½ÃÀåÀÇ ÁÖ¿ä Çõ½Å°¡µé Áß ÀϺÎÀÔ´Ï´Ù. ÁÖ¿ä Çõ½Å°¡µé Áß ÀϺÎÀÔ´Ï´Ù.

½ÃÀå ¼ºÀå¿äÀÎ

¼Ò¼È ¹Ìµð¾î Ç÷§Æû¿¡¼­ E-Commerce À¥»çÀÌÆ®¿¡ À̸£±â±îÁö µðÁöÅÐ ÄÁÅÙÃ÷ÀÇ Æø¹ßÀûÀÎ Áõ°¡·Î ÀÎÇØ È¿À²ÀûÀΠó¸®¿Í ºÐ¼®ÀÌ ÇÊ¿äÇÑ ¹æ´ëÇÑ ¾çÀÇ À̹ÌÁö¿Í ºñµð¿À°¡ »ý¼ºµÇ°í ÀÖ½À´Ï´Ù. Á¶Á÷Àº ÀÌ·¯ÇÑ ÄÁÅÙÃ÷¸¦ È¿°úÀûÀ¸·Î ºÐ·ù, ÅÂ±× ÁöÁ¤ ¹× °Ë»öÇϱâ À§ÇØ °í±Þ ÀÎ½Ä ¼Ö·ç¼ÇÀ» ã°í ÀÖÀ¸¸ç, CNNÀº ½Ã°¢Àû ÀÎ½Ä ÀÛ¾÷¿¡ Ź¿ùÇÏ¿© ´ë±Ô¸ð µ¥ÀÌÅÍ ¼¼Æ®¸¦ °ü¸®Çϰí ÇØ¼®ÇÏ´Â µ¥ ¾ø¾î¼­´Â ¾È µÉ µµ±¸°¡ µÇ¾ú½À´Ï´Ù. µû¶ó¼­ °í±Þ À̹ÌÁö ¹× ºñµð¿À ÀÎ½Ä ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ½ÃÀå ¼ºÀåÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

¶ÇÇÑ, ¿þ¾î·¯ºí ±â±â´Â °Ç°­ ¸ð´ÏÅ͸µ¿¡ Á¡Á¡ ´õ ¸¹ÀÌ »ç¿ëµÇ°í ÀÖÀ¸¸ç, »ç¿ëÀÚ¿¡°Ô »ýü ½ÅÈ£, ½Åü Ȱµ¿ ¹× ¼ö¸é ÆÐÅÏ¿¡ ´ëÇÑ ½Ç½Ã°£ µ¥ÀÌÅ͸¦ Á¦°øÇϰí ÀÖ½À´Ï´Ù. º¹ÀâÇÑ °Ç°­ µ¥ÀÌÅ͸¦ ½±°Ô ºÐ¼®ÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ÀÌ ±â´ÉÀ» ÅëÇØ ¿þ¾î·¯ºí ±â±â´Â Á¤È®ÇÑ °Ç°­ Á¤º¸¸¦ Á¦°øÇÒ ¼ö Àֱ⠶§¹®¿¡ °Ç°­À» Áß½ÃÇÏ´Â ¼ÒºñÀÚµé »çÀÌ¿¡¼­ ¿þ¾î·¯ºí ±â±â°¡ Àα⸦ ²ø°í ÀÖ½À´Ï´Ù. µû¶ó¼­ È¿À²ÀûÀÎ µ¥ÀÌÅÍ ºÐ¼®ÀÌ ÇÊ¿äÇÑ ¿þ¾î·¯ºí ±â¼úÀÇ ÀαⰡ ³ô¾ÆÁö¸é¼­ ½ÃÀå ¼ºÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù.

½ÃÀå ¾ïÁ¦¿äÀÎ

±×·¯³ª °­·ÂÇϰí È¿°úÀûÀÎ CNN ¸ðµ¨À» °³¹ßÇϱâ À§Çؼ­´Â ±¤¹üÀ§ÇÑ ¿¬±¸¿Í ½ÇÇèÀÌ ÇÊ¿äÇÕ´Ï´Ù. Á¶Á÷Àº ƯÁ¤ ¾ÖÇø®ÄÉÀ̼ǿ¡¼­ ¶Ù¾î³­ ¼º´ÉÀ» ¹ßÈÖÇÏ´Â ¾Ë°í¸®ÁòÀ» ¸¸µé±â À§ÇØ ¿¬±¸°³¹ß¿¡ ¸¹Àº ÅõÀÚ¸¦ ÇØ¾ß ÇÕ´Ï´Ù. ÀÌ °úÁ¤¿¡´Â µ¥ÀÌÅÍ °úÇÐÀÚ³ª ¸Ó½Å·¯´× ¿£Áö´Ï¾î¿Í °°Àº Àü¹® ÀηÂÀ» °í¿ëÇÏ´Â °ÍÀÌ Æ÷ÇԵǴ °æ¿ì°¡ ¸¹À¸¸ç, À̵éÀÇ ±Þ¿©´Â ¸Å¿ì ³ôÀ» ¼ö ÀÖ½À´Ï´Ù. °æÀï·ÂÀ» À¯ÁöÇϱâ À§Çؼ­´Â Áö¼ÓÀûÀÎ Çõ½ÅÀÌ ÇÊ¿äÇϱ⠶§¹®¿¡ ÀÌ·¯ÇÑ ºñ¿ëÀº ´õ¿í Áõ°¡ÇÒ °ÍÀÔ´Ï´Ù. °á·ÐÀûÀ¸·Î, ³ôÀº °³¹ß ¹× À¯Áöº¸¼ö ºñ¿ëÀÌ ½ÃÀå ¼ºÀåÀ» ÀúÇØÇϰí ÀÖ½À´Ï´Ù.

½ÃÀåÀÇ ÁÖ¿ä ±â¾÷µéÀº ½ÃÀå¿¡¼­ °æÀï·ÂÀ» À¯ÁöÇϱâ À§ÇØ ´Ù¾çÇϰí Çõ½ÅÀûÀÎ Á¦Ç°À¸·Î °æÀïÇϰí ÀÖ½À´Ï´Ù. ½ÃÀåÀÇ ÁÖ¿ä ±â¾÷µéÀº ´Ù¾çÇÑ »ê¾÷ÀÇ ¼ö¿ä¸¦ ÃæÁ·½Ã۱â À§ÇØ ´Ù¾çÇÑ Àü·«À» äÅÃÇϰí ÀÖ½À´Ï´Ù. ½ÃÀåÀÇ ÁÖ¿ä °³¹ß Àü·«Àº Á¦Ç° Ãâ½Ã¿Í Á¦Ç° È®ÀåÀÔ´Ï´Ù.

Àü°³ ¸ðµå Àü¸Á

Àü°³ ¹æ½Ä¿¡ µû¶ó ÀÌ ½ÃÀåÀº ¿ÂÇÁ·¹¹Ì½º¿Í Ŭ¶ó¿ìµå·Î ³ª´¹´Ï´Ù. Ŭ¶ó¿ìµå ºÎ¹®Àº 2023³â ÇÕ¼º°ö ½Å°æ¸Á ½ÃÀå¿¡¼­ 43%ÀÇ ¸ÅÃâ Á¡À¯À²À» Â÷ÁöÇß½À´Ï´Ù. ÀÌ·¯ÇÑ ¼ºÀåÀº ÁÖ·Î CNN ¾ÖÇø®ÄÉÀÌ¼Ç ¹èÆ÷¿¡ È®Àå °¡´ÉÇÑ ¸®¼Ò½º, À¯¿¬¼º ¹× ºñ¿ë È¿À²¼ºÀ» Á¦°øÇϴ Ŭ¶ó¿ìµå ±â¹Ý ¼­ºñ½ºÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ±â¾÷µéÀº Ŭ¶ó¿ìµå ÀÎÇÁ¶ó¸¦ Ȱ¿ëÇÏ¿© CNNÀÇ ±¤¹üÀ§ÇÑ ÄÄÇ»ÆÃ ¿ä±¸ »çÇ×À» ó¸®Çϱâ À§ÇØ Á¡Á¡ ´õ ¸¹ÀÌ È°¿ëÇϰí ÀÖÀ¸¸ç, Çϵå¿þ¾î¿¡ ´ëÇÑ ´ë±Ô¸ð ¼±Çà ÅõÀÚ ¾øÀ̵µ ´ë±Ô¸ð µ¥ÀÌÅÍ ¼¼Æ®¸¦ È¿À²ÀûÀ¸·Î ó¸®ÇÒ ¼ö ÀÖ½À´Ï´Ù.

±¸¼º¿ä¼Ò Àü¸Á

ÀÌ ½ÃÀåÀº ±¸¼º¿ä¼Ò¿¡ µû¶ó Çϵå¿þ¾î, ¼ÒÇÁÆ®¿þ¾î ¹× ¼­ºñ½º·Î ³ª´µ¸ç, 2023³â ¼ÒÇÁÆ®¿þ¾î ºÎ¹®Àº ÇÕ¼º°ö ½Å°æ¸Á ½ÃÀå¿¡¼­ 34%ÀÇ ¸ÅÃâ Á¡À¯À²À» Â÷ÁöÇß½À´Ï´Ù. ÀÌ·¯ÇÑ ¿ìÀ§´Â ´Ù¾çÇÑ ¾ÖÇø®ÄÉÀ̼ǿ¡ °ÉÃÄ CNN ¸ðµ¨ÀÇ È¿À²ÀûÀÎ ¹èÆ÷ ¹× ¿î¿µÀ» ÃËÁøÇÏ´Â °í±Þ ¼ÒÇÁÆ®¿þ¾î ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼ÒÇÁÆ®¿þ¾î ¼Ö·ç¼Ç¿¡´Â CNNÀ» ¿øÈ°Çϰí È®À强 ÀÖ°Ô ÅëÇÕÇÒ ¼ö ÀÖ´Â ÇÁ·¹ÀÓ¿öÅ©, °³¹ß µµ±¸ ¹× Ç÷§ÆûÀÌ Æ÷ÇԵ˴ϴÙ.

¿ëµµ Àü¸Á

¿ëµµ¿¡ µû¶ó ÀÌ ½ÃÀåÀº À̹ÌÁö ¹× ºñµð¿À ÀνÄ, ÀÚ¿¬¾î ó¸®(NLP), ÀÇ·á À̹ÌÁö ºÐ¼®, ÀÚÀ²ÁÖÇà ÀÚµ¿Â÷, ·Îº¿ °øÇÐ ¹× Á¦Á¶, ±âŸ·Î ºÐ·ùµË´Ï´Ù. ÀÚ¿¬¾î ó¸®(NLP) ºÎ¹®Àº 2023³â ÇÕ¼º°ö ½Å°æ¸Á ½ÃÀå¿¡¼­ 19%ÀÇ ¸ÅÃâ Á¡À¯À²À» ±â·ÏÇß½À´Ï´Ù. ÀÌ´Â °í°´ ¼­ºñ½º, ÀÇ·á, ±ÝÀ¶ µî Àΰ£ ¾ð¾îÀÇ ÀÌÇØ¿Í 󸮰¡ Áß¿äÇÑ ´Ù¾çÇÑ »ê¾÷¿¡¼­ NLP ±â¼ú äÅÃÀÌ Áõ°¡Çϰí Àֱ⠶§¹®À¸·Î ºÐ¼®µË´Ï´Ù.

¾÷°è Àü¸Á

»ê¾÷¿¡ µû¶ó ÀÌ ½ÃÀåÀº ÇコÄɾî, ÀÚµ¿Â÷, ¼Ò¸Å ¹× E-Commerce, IT ¹× Åë½Å, Á¦Á¶, Ç×°ø¿ìÁÖ ¹× ¹æÀ§, ¿¡³ÊÁö ¹× À¯Æ¿¸®Æ¼, ±âŸ·Î ºÐ·ùµË´Ï´Ù. ÀÚµ¿Â÷ ºÎ¹®Àº 2023³â ÇÕ¼º°ö ½Å°æ¸Á ½ÃÀå¿¡¼­ 18%ÀÇ ¸ÅÃâ Á¡À¯À²À» Â÷ÁöÇß½À´Ï´Ù. ÀÌ·¯ÇÑ ¼ºÀåÀº ÀÚÀ²ÁÖÇà ½Ã½ºÅÛ, ÷´Ü ¿îÀüÀÚ º¸Á¶ ½Ã½ºÅÛ(ADAS), ¿¹Áöº¸Àü ºÐ¾ß¿¡¼­ CNNÀ» ±¤¹üÀ§ÇÏ°Ô Ã¤ÅÃÇÏ¿© Â÷·®ÀÌ ¹°Ã¼, º¸ÇàÀÚ, µµ·Î Ç¥ÁöÆÇÀ» ÀνÄÇÒ ¼ö ÀÖ°ÔÇÔÀ¸·Î½á ¾ÈÀü°ú ¿îÀü È¿À²À» Çâ»ó½Ãų ¼ö Àֱ⠶§¹®ÀÔ´Ï´Ù.

Áö¿ª Àü¸Á

Áö¿ªº°·Î ÀÌ ½ÃÀåÀº ºÏ¹Ì, À¯·´, ¾Æ½Ã¾ÆÅÂÆò¾ç, ¶óƾ¾Æ¸Þ¸®Ä«, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«·Î ºÐ¼®µÇ¾ú½À´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾çÀº 2023³â ÇÕ¼º°ö ½Å°æ¸Á ½ÃÀå¿¡¼­ 26%ÀÇ ¸ÅÃâ Á¡À¯À²À» ±â·ÏÇß½À´Ï´Ù. ÀÌ·¯ÇÑ ¼ºÀåÀº µðÁöÅÐ Àüȯ°ú ±â¼ú ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡, Áß±¹, ÀϺ», Àεµ µîÀÇ ±¹°¡¿¡¼­ AI ±â¼úÀÇ ±Þ¼ÓÇÑ Ã¤Åÿ¡ ÈûÀÔÀº °ÍÀ¸·Î ºÐ¼®µË´Ï´Ù. ÀÌ Áö¿ª¿¡¼­´Â ÇコÄɾî, E-Commerce, Á¦Á¶ ºÎ¹®¿¡¼­ Å« ÁøÀüÀ» º¸À̰í ÀÖÀ¸¸ç, CNNÀº À̹ÌÁö ¹× ºñµð¿À ºÐ¼®, ¿¹Ãø À¯Áöº¸¼ö, ÀÚ¿¬¾î ó¸® µîÀÇ ¿ëµµ·Î Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù.

½ÃÀå °æÀï ¹× Æ¯¼º

ÇÕ¼º°ö ½Å°æ¸Á(CNN) ½ÃÀå¿¡¼­ÀÇ °æÀïÀº Æ´»õ ¾ÖÇø®ÄÉÀ̼ǰú Çõ½Å¿¡ ÁßÁ¡À» µÐ Áß¼Ò±â¾÷, ½ºÅ¸Æ®¾÷, Çмú ±â°ü¿¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ÀÌµé ¾÷üµéÀº ÇコÄɾî, ÀÚµ¿Â÷, ·Îº¿ °øÇÐ µîÀÇ ºÐ¾ß¿¡¼­ Àü¹® ¼Ö·ç¼Ç, ºñ¿ë È¿À²¼º, ÀûÀÀ¼ºÀ» ÅëÇØ °æÀïÇϸç âÀǼº°ú ´Ù¾çÇÑ ¼ºÀåÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ½ÃÀå ¹üÀ§¿Í Á¶»ç ¹æ¹ý

Á¦2Àå ½ÃÀå ¿ä¶÷

Á¦3Àå ½ÃÀå °³¿ä

Á¦4Àå °æÀï ºÐ¼® - ¼¼°è

Á¦5Àå ¼¼°èÀÇ ÇÕ¼º°ö ½Å°æ¸Á ½ÃÀå : Àü°³ ¹æ½Äº°

Á¦6Àå ¼¼°èÀÇ ÇÕ¼º°ö ½Å°æ¸Á ½ÃÀå : ±¸¼º¿ä¼Òº°

Á¦7Àå ¼¼°èÀÇ ÇÕ¼º°ö ½Å°æ¸Á ½ÃÀå : ¿ëµµº°

Á¦8Àå ¼¼°èÀÇ ÇÕ¼º°ö ½Å°æ¸Á ½ÃÀå : ¾÷°èº°

Á¦9Àå ¼¼°èÀÇ ÇÕ¼º°ö ½Å°æ¸Á ½ÃÀå : Áö¿ªº°

Á¦10Àå ±â¾÷ °³¿ä

Á¦11Àå ÇÕ¼º°ö ½Å°æ¸Á ½ÃÀåÀÇ ¼º°ø Çʼö Á¶°Ç

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

The Global Convolutional Neural Networks Market size is expected to reach $131.7 billion by 2031, rising at a market growth of 40.2% CAGR during the forecast period.

The North America region witnessed 36% revenue share in this market in 2023. This dominance can be attributed to leading technology companies, significant investments in research and development, and a strong emphasis on adopting advanced AI technologies across various sectors. North America, particularly the United States, has been at the forefront of machine learning and artificial intelligence innovations, resulting in a high demand for CNN applications in the healthcare, automotive, finance, and entertainment industries.

The major strategies followed by the market participants are Product Launches as the key developmental strategy to keep pace with the changing demands of end users. For instance, In September, 2024, NVIDIA Corporation Deep Learning Institute and Dartmouth College unveiled the Generative AI Teaching Kit, developed by, equips educators with advanced tools and practical resources to teach generative AI and large language models. This initiative prepares students to drive innovation in AI-related fields, addressing challenges in healthcare, science, and sustainable technologies. Moreover, In September, 2024, Intel Corporation unveiled Xeon 6 with Performance-cores (P-cores) and Gaudi 3 AI accelerators, addressing the rising demand for cost-effective AI infrastructure. Justin Hotard emphasized the need for choice in hardware and software, enabling customers to enhance performance, efficiency, and security in their data center workloads.

KBV Cardinal Matrix - Convolutional Neural Networks Market Competition Analysis

Based on the Analysis presented in the KBV Cardinal matrix; Microsoft Corporation and Google LLC are the forerunners in the Convolutional Neural Networks Market. In February, 2024, Microsoft Corporation unveiled Clifford-Steerable Convolutional Neural Networks (CS-CNNs), a new class of $\mathrm{E}(p, q)$-equivariant CNNs that process multivector fields on pseudo-Euclidean spaces $\mathbb{R}^{p,q}$. CS-CNNs leverage Clifford group-equivariant networks to achieve superior performance in fluid dynamics and relativistic electrodynamics forecasting compared to baseline methods. Companies such as Amazon Web Services, Inc., NVIDIA Corporation, and Samsung Electronics Co., Ltd. are some of the key innovators in Convolutional Neural Networks Market.

Market Growth Factors

The explosion of digital content-from social media platforms to e-commerce websites-has created an overwhelming volume of images and videos that require efficient processing and analysis. Organizations seek advanced recognition solutions to categorize, tag, and retrieve this content effectively. CNNs excel in visual recognition tasks, making them essential tools for managing and interpreting large datasets. Thus, increasing demand for advanced image and video recognition solutions propels the market's growth.

Additionally, Wearable devices are increasingly utilized for health monitoring, providing users with real-time data on vital signs, physical activity, and sleep patterns. CNNs facilitate the analysis of complex health data by processing images from sensors, such as those used in heart rate monitoring or blood oxygen level detection. This capability enables wearables to deliver accurate health insights, driving their adoption among health-conscious consumers. Therefore, growing popularity of wearable technology requiring efficient data analysis is driving the growth of the market.

Market Restraining Factors

However, Developing robust and effective CNN models requires extensive research and experimentation. Organizations must invest heavily in R&D to create algorithms that perform well in specific applications. This process often involves hiring specialized personnel, such as data scientists and machine learning engineers, whose salaries can be substantial. The need for ongoing innovation to stay competitive further increases these costs. In conclusion, high development and maintenance costs hamper the market's growth.

The leading players in the market are competing with diverse innovative offerings to remain competitive in the market. The above illustration shows the percentage of revenue shared by some of the leading companies in the market. The leading players of the market are adopting various strategies in order to cater demand coming from the different industries. The key developmental strategies in the market are Product Launches and Product Expansions.

Deployment Mode Outlook

Based on deployment mode, this market is divided into on-premises and cloud. The cloud segment attained 43% revenue share in the convolutional neural networks market in 2023. This growth is primarily driven by the increasing adoption of cloud-based services, which offer scalable resources, flexibility, and cost-effectiveness for deploying CNN applications. Organizations are increasingly leveraging cloud infrastructure to handle the extensive computational requirements of CNNs, allowing them to process large datasets efficiently without significant upfront investments in hardware.

Component Outlook

Based on components, this market is divided into hardware, software, and services. In 2023, the software segment garnered 34% revenue share in the convolutional neural networks market. This dominance is driven by the increasing demand for advanced software solutions that facilitate the efficient deployment and operation of CNN models across various applications. These software solutions include frameworks, development tools, and platforms that enable CNNs to integrate seamlessly and scalable.

Application Outlook

On the basis of application, this market is segmented into image and video recognition, natural language processing (NLP), medical image analysis, autonomous vehicles, robotics and manufacturing, and others. The natural language processing (NLP) segment recorded 19% revenue share in the convolutional neural networks market in 2023. This can be attributed to the increasing adoption of NLP technologies in various industries, including customer service, healthcare, and finance, where understanding and processing human language is crucial.

Vertical Outlook

By vertical, this market is divided into healthcare, automotive, retail & e-commerce, IT & telecommunications, manufacturing, aerospace & defense, energy & utilities, and others. The automotive segment procured 18% revenue share in the convolutional neural networks market in 2023. This growth is driven by the widespread adoption of CNNs in autonomous driving systems, advanced driver-assistance systems (ADAS), and predictive maintenance. CNNs enable vehicles to recognize objects, pedestrians, and road signs, enhancing safety and driving efficiency.

Regional Outlook

Region-wise, this market is analyzed across North America, Europe, Asia Pacific, and LAMEA. The Asia Pacific region generated 26% revenue share in the convolutional neural networks market in 2023. This growth is fuelled by the rapid adoption of AI technologies in countries like China, Japan, and India, driven by increasing investments in digital transformation and technology infrastructure. The region is witnessing significant advancements in healthcare, e-commerce, and manufacturing sectors, where CNNs are utilized for applications like image and video analysis, predictive maintenance, and natural language processing.

Market Competition and Attributes

The competition in the Convolutional Neural Networks (CNN) market is driven by smaller firms, startups, and academic institutions focused on niche applications and innovations. These players compete through specialized solutions, cost-efficiency, and adaptability in sectors like healthcare, automotive, and robotics, fostering creativity and diversified growth.

Recent Strategies Deployed in the Market

List of Key Companies Profiled

Global Convolutional Neural Networks Market Report Segmentation

By Deployment Mode

By Component

By Application

By Vertical

By Geography

Table of Contents

Chapter 1. Market Scope & Methodology

Chapter 2. Market at a Glance

Chapter 3. Market Overview

Chapter 4. Competition Analysis - Global

Chapter 5. Global Convolutional Neural Networks Market by Deployment Mode

Chapter 6. Global Convolutional Neural Networks Market by Component

Chapter 7. Global Convolutional Neural Networks Market by Application

Chapter 8. Global Convolutional Neural Networks Market by Vertical

Chapter 9. Global Convolutional Neural Networks Market by Region

Chapter 10. Company Profiles

Chapter 11. Winning Imperatives for Convolutional Neural Networks Market

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â