대규모 언어 모델(LLM) 시장 규모, 점유율 및 동향 분석 보고서 : 배포, 업종, 용도, 지역별, 전망 및 예측(2023-2030년)
Global Large Language Model Market Size, Share & Trends Analysis Report By Deployment, By Vertical (Retail & E-commerce, Media & Entertainment, Finance, Healthcare, and Others), By Application, By Regional Outlook and Forecast, 2023 - 2030
상품코드 : 1431383
리서치사 : KBV Research
발행일 : 2024년 02월
페이지 정보 : 영문 252 Pages
 라이선스 & 가격 (부가세 별도)
US $ 3,600 ₩ 5,341,000
PDF (Single User License) help
PDF 보고서를 1명만 이용할 수 있는 라이선스입니다. 텍스트의 Copy & Paste 가능합니다. 인쇄 가능하며 인쇄물의 이용 범위는 PDF 이용 범위와 동일합니다.
US $ 4,320 ₩ 6,409,000
PDF (Multi User License) help
PDF 보고서를 동일 기업의 10명까지 이용할 수 있는 라이선스입니다. 텍스트의 Copy & Paste 가능합니다. 인쇄 가능하며 인쇄물의 이용 범위는 PDF 이용 범위와 동일합니다.
US $ 6,048 ₩ 8,973,000
PDF (Corporate User License) help
PDF 보고서를 동일 기업의 모든 분이 이용할 수 있는 라이선스입니다. 텍스트의 Copy & Paste 가능합니다. 인쇄 가능하며 인쇄물의 이용 범위는 PDF 이용 범위와 동일합니다.


한글목차

대규모 언어 모델(LLM) 시장 규모는 2030년까지 331억 달러에 달할 것으로 예상되며, 예측 기간 동안 연평균 34.3%의 시장 성장률을 나타낼 전망입니다.

그러나 대규모 언어 모델(LLM) 학습에는 의도하지 않은 정보 유출의 위험이 있습니다. 모델은 학습 데이터에 존재하는 기밀 정보를 부주의하게 기억하거나 과도하게 적합화할 수 있으며, 이는 잠재적인 프라이버시 침해로 이어질 수 있습니다. 훈련된 모델은 가중치에 입력 데이터의 흔적을 남길 수 있고, 이러한 가중치에서 기밀 정보를 추출할 수 있기 때문에 프라이버시 문제가 발생할 수 있습니다. 추론 단계에서 모델이 사용자의 쿼리나 입력을 처리할 때, 모델이 그러한 데이터를 안전하게 처리하도록 설계되지 않은 경우, 의도치 않게 기밀 정보를 공개할 위험이 있습니다. 차등 프라이버시와 같은 기술은 학습 프로세스에 제어된 노이즈를 주입하여 개별 데이터 포인트를 보호하고 특정 사례를 기억하지 못하도록 하는 것을 목표로 합니다. 따라서 이러한 요인들은 시장 성장을 저해하는 요인으로 작용할 수 있습니다.

목차

제1장 시장 범위와 조사 방법

제2장 시장 요약

제3장 시장 개요

제4장 대규모 언어 모델(LLM) 시장에서 전개되는 전략

제5장 세계 시장 : 전개 형태별

제6장 세계 시장 : 업종별

제7장 세계 시장 : 용도별

제8장 세계 시장 : 지역별

제9장 기업 개요

제10장 대규모 언어 모델(LLM) 시장을 위한 성공 필수 조건

LSH
영문 목차

영문목차

The Global Large Language Model Market size is expected to reach $33.1 billion by 2030, rising at a market growth of 34.3% CAGR during the forecast period.

Businesses across various sectors are increasingly deploying chatbots and virtual assistants to automate customer service interactions. Thus, the chatbots and virtual assistant segment acquired $1,045.4 million in 2022. These AI-driven systems can handle routine queries, provide information, and guide users through processes, freeing up human agents for more complex tasks. Thus, these aspects will boost the demand in the segment.

Prominent language models, boosted by deep learning methodologies, have exhibited an exceptional capacity to comprehend and produce text that closely resembles that of humans. Their extensive training on diverse datasets enables them to grasp nuances, context, and subtleties in language, allowing for more sophisticated language understanding. In addition, large language models are a fundamental component of chatbots and virtual assistants. These applications benefit from the models' capacity to comprehend user input, generate contextually relevant responses, and provide more interactive and human-like conversations. As businesses increasingly adopt chatbots for customer support, information retrieval, and engagement, the demand for advanced language models grows. Additionally, it can generate content quickly and efficiently. This is particularly beneficial for businesses looking to produce a large volume of content within a short time frame, such as articles, blog posts, or marketing materials. Businesses can leverage large language models to scale up their content creation efforts. These models can consistently produce content with a similar tone, style, and quality, maintaining a cohesive brand identity across various pieces of content. This adaptability ensures the generated content aligns with different industries' specific requirements and conventions. Hence, these aspects will lead to enhanced growth in the market.

However, there is a risk of unintended information leakage during the training of large language models. The models may inadvertently memorize or overfit sensitive information present in the training data, leading to potential privacy breaches. Trained models might retain traces of the input data in their weights, and there's a possibility of extracting sensitive details from these weights, raising privacy concerns. During the inference phase, when models process user queries or inputs, there's a risk of unintentionally disclosing sensitive information if the models are not designed to handle such data securely. Techniques like differential privacy aim to protect individual data points by injecting controlled noise into the training process, helping to prevent the memorization of specific examples. Thus, these factors will reduce growth in the market.

By Deployment Analysis

Based on deployment, the market is divided into cloud and on-premise. The on-premise segment recorded the maximum revenue share in the market in 2022. Sectors that handle confidential data, including healthcare, finance, and legal, frequently give precedence to on-premises solutions to maintain direct oversight of their information. On-premises deployment ensures that sensitive language data remains within the organization's infrastructure, addressing data security and privacy compliance concerns. Therefore, these factors will assist in the growth of the segment.

By Vertical Analysis

On the basis of vertical, the market is divided into healthcare, finance, retail & e-commerce, media & entertainment, and others. In 2022, the media and entertainment segment witnessed a substantial revenue share in the market. It facilitate translation on a broader scale, enabling media and entertainment content to reach global audiences. This is especially valuable for streaming platforms, news outlets, and content providers seeking to expand their reach and cater to diverse linguistic demographics. Thus, these factors will help expand the segment.

By Application Analysis

Based on application, the market is segmented into customer service, content generation, sentiment analysis, code generation, chatbots & virtual assistant, and language translation. The content generation segment procured a promising growth rate in the market in 2022. The demand for content spans multiple industries, including marketing, advertising, e-commerce, journalism, and more. Large language models offer versatility in generating content for different purposes, making them valuable across various applications. Owing to these aspects, the segment will witness enhanced growth in the coming years.

By Regional Analysis

By region, the market is segmented into North America, Europe, Asia Pacific, and LAMEA. The North America segment procured the highest revenue share in the market in 2022. The region is a hub for cutting-edge research and development in AI and natural language processing. Advances in large language models, including innovations in model architectures, training techniques, and applications, often originate from research institutions and companies in North America. Hence, these factors will lead to enhanced growth in the segment.

Recent Strategies Deployed in the Market

List of Key Companies Profiled

Global Large Language Model Market Report Segmentation

By Deployment

By Vertical

By Application

By Geography

Table of Contents

Chapter 1. Market Scope & Methodology

Chapter 2. Market at a Glance

Chapter 3. Market Overview

Chapter 4. Strategies Deployed in Large Language Model Market

Chapter 5. Global Large Language Model Market by Deployment

Chapter 6. Global Large Language Model Market by Vertical

Chapter 7. Global Large Language Model Market by Application

Chapter 8. Global Large Language Model Market by Region

Chapter 9. Company Profiles

Chapter 10. Winning imperatives of Large Language Model Market

(주)글로벌인포메이션 02-2025-2992 kr-info@giikorea.co.kr
ⓒ Copyright Global Information, Inc. All rights reserved.
PC버전 보기