¼¼°èÀÇ ´ë±Ô¸ð ¾ð¾î ¸ðµ¨(LLM) ½ÃÀå
Large Language Model
»óǰÄÚµå : 1787055
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 234 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,204,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,612,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ´ë±Ô¸ð ¾ð¾î ¸ðµ¨ ½ÃÀåÀº 2030³â±îÁö 435¾ï ´Þ·¯¿¡ À̸¦ Àü¸Á

2024³â¿¡ 61¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ´ë±Ô¸ð ¾ð¾î ¸ðµ¨ ¼¼°è ½ÃÀåÀº 2024-2030³â°£ CAGR 38.8%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 435¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀΠŬ¶ó¿ìµå µµÀÔÀº CAGR 41.7%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 335¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. On-Premise µµÀÔ ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£Áß CAGR 31.6%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 16¾ï ´Þ·¯, Áß±¹Àº CAGR 36.7%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹Ãø

¹Ì±¹ÀÇ ´ë±Ô¸ð ¾ð¾î ¸ðµ¨(LLM) ½ÃÀåÀº 2024³â¿¡ 16¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 64¾ï ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 36.7%·Î ÃßÁ¤µË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 35.9%¿Í 33.4%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 26.8%¸¦ ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù.

¼¼°èÀÇ ´ë±Ô¸ð ¾ð¾î ¸ðµ¨(LLM) ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

±â¼úÀÇ ¹ßÀüÀº ´ë±Ô¸ð ¾ð¾î ¸ðµ¨À» ¾î¶»°Ô º¯È­½Ãų °ÍÀΰ¡?

´ë±Ô¸ð ¾ð¾î ¸ðµ¨(LLM) ½ÃÀåÀº ÀΰøÁö´É, µö·¯´×, ÀÚ¿¬¾î ó¸®ÀÇ È¹±âÀûÀÎ ¹ßÀüÀ¸·Î ÀÎÇØ ºü¸£°Ô ÁøÈ­Çϰí ÀÖ½À´Ï´Ù. GPT³ª BERT¿Í °°Àº º¯È¯±â ±â¹Ý ¾ÆÅ°ÅØÃ³ÀÇ µîÀåÀ¸·Î ¾ð¾î ¸ðµ¨Àº Àΰ£°ú °°Àº ÅØ½ºÆ®¸¦ ÀÌÇØÇÏ°í »ý¼ºÇÏ´Â ´É·ÂÀÌ Å©°Ô Çâ»óµÇ¾ú½À´Ï´Ù. ÅØ½ºÆ®, À̹ÌÁö, À½¼ºÀ» ÅëÇÕ ¸ðµ¨·Î ÅëÇÕÇÏ´Â ¸ÖƼ¸ð´Þ AI·ÎÀÇ ÀüȯÀº LLMÀÇ ´É·ÂÀ» ´õ¿í Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. Àΰ£ Çǵå¹éÀ» ÅëÇÑ °­È­ÇнÀ(RLHF)°ú °°Àº ±â¼úÀº ¸ðµ¨ÀÇ Ãâ·ÂÀ» ´õ¿í Á¤±³ÇÏ°Ô ¸¸µé°í, Àΰ£ÀÇ ÃëÇâ°ú À±¸®Àû ±âÁØ¿¡ ºÎÇÕÇÏ´Â ¸ðµ¨À» ¸¸µé¾î³À´Ï´Ù. ¶ÇÇÑ, ¸ðµ¨ ¾ÐÃà ¹× È¿À²ÀûÀÎ ¹Ì¼¼ Á¶Á¤ÀÇ ¹ßÀüÀ¸·Î ³ôÀº °è»ê ¿ä±¸ »çÇ×ÀÇ ¹®Á¦¸¦ ÇØ°áÇÏ°í ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼­ ´õ ³Î¸® äÅõǰí ÀÖ½À´Ï´Ù. ¾çÀÚ ÄÄÇ»ÆÃ°ú ¿¬ÇÕ ÇнÀÀÇ ÅëÇÕÀº ´õ ³ôÀº È¿À²¼º°ú ´õ ³ªÀº µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã¸¦ Á¦°øÇÔÀ¸·Î½á ´õ Å« µ¹ÆÄ±¸¸¦ ¸¶·ÃÇÒ ¼ö ÀÖ´Â ÀáÀç·ÂÀ» °¡Áö°í ÀÖ½À´Ï´Ù. LLM »ýŰ谡 °è¼Ó ÁøÈ­ÇÏ´Â °¡¿îµ¥, ÀÌ·¯ÇÑ Çõ½ÅÀº ¾ð¾î ÀÌÇØ·Â °­È­, »óȲ ÀÎ½Ä Çâ»ó, °í°´ Áö¿ø¿¡¼­ °úÇÐ ¿¬±¸¿¡ À̸£±â±îÁö ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ º¸´Ù Á¤±³ÇÑ ¿ëµµ¸¦ À§ÇÑ ±æÀ» ¿­¾î°¡°í ÀÖ½À´Ï´Ù.

»ê¾÷À» ¸··ÐÇÏ°í ´ë±Ô¸ð ¾ð¾î ¸ðµ¨¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ´Â ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

¾÷°è Àü¹Ý¿¡ °ÉÃÄ LLM µµÀÔÀÌ Áõ°¡ÇÏ´Â ¹è°æ¿¡´Â ÀÚµ¿È­, »ý»ê¼º Çâ»ó, °³ÀÎÈ­µÈ »ç¿ëÀÚ °æÇè¿¡ ´ëÇÑ ¿ä±¸°¡ ÀÖ½À´Ï´Ù. ±â¾÷µéÀº ÀÌ·¯ÇÑ ¸ðµ¨À» °í°´ Áö¿ø 꺿, °¡»ó ºñ¼­, ÄÁÅÙÃ÷ »ý¼º¿¡ Ȱ¿ëÇÏ¿© ¼­ºñ½º ǰÁúÀ» Çâ»ó½ÃŰ¸é¼­ ¿î¿µ ºñ¿ëÀ» Àý°¨Çϰí ÀÖ½À´Ï´Ù. ÇコÄÉ¾î ºÐ¾ß¿¡¼­´Â ÀÇ·á Áø´Ü, Á¶»ç, ȯÀÚ¿ÍÀÇ Ä¿¹Â´ÏÄÉÀ̼ǿ¡ LLMÀ» Ȱ¿ëÇÏ¿© º¸´Ù È¿À²ÀûÀ̰í Á¤È®ÇÑ °á°ú¸¦ µµÃâÇϰí ÀÖ½À´Ï´Ù. ±ÝÀ¶ ºÐ¾ß¿¡¼­ ¾ð¾î ¸ðµ¨Àº ¸®½ºÅ© Æò°¡, »ç±â °¨Áö, ¾Ë°í¸®Áò Æ®·¹À̵ù¸¦ Çõ½ÅÇÏ°í µ¥ÀÌÅÍ ±â¹Ý ÀÇ»ç°áÁ¤À» ÅëÇØ ´õ ±íÀº ÅëÂû·ÂÀ» Á¦°øÇÕ´Ï´Ù. ±³À° Ç÷§ÆûÀº °³ÀÎÀÇ ÇнÀ ½ºÅ¸ÀÏ¿¡ ¸ÂÃß¾î AI ±â¹Ý °³Àκ° ¸ÂÃã ÇнÀ ½Ã½ºÅÛÀ» ±¸ÃàÇÏ¿© Áö½ÄÀÇ Á¤Âø°ú ¸ôÀÔµµ¸¦ ³ôÀ̰í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¹ý¹« ¹× ÄÄÇöóÀ̾𽺠¾÷°è¿¡¼­´Â °è¾à ºÐ¼®, ¹ý·ü Á¶»ç, ¹®¼­ ÀÛ¼ºÀÇ ÀÚµ¿È­¿¡ LLMÀ» Ȱ¿ëÇÏ¿© Àΰ£ Àü¹®°¡ÀÇ ºÎ´ãÀ» ÁÙÀ̰í ÀÖ½À´Ï´Ù. ¹æ´ëÇÑ ¾çÀÇ ÅØ½ºÆ® ±â¹Ý µ¥ÀÌÅ͸¦ ó¸®ÇÏ°í ºÐ¼®ÇÒ ¼ö ÀÖ´Â ´ë±Ô¸ð ¾ð¾î ¸ðµ¨Àº °ÅÀÇ ¸ðµç ºÐ¾ß¿¡¼­ ÇʼöÀûÀÎ µµ±¸°¡ µÇ¾î È¿À²¼º, Çõ½Å, °æÀï ¿ìÀ§¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

¾÷°è ±â¾÷µéÀº LLM µµÀÔ¿¡ ÀÖ¾î À±¸®Àû, ¿î¿µÀû À̽´¸¦ ¾î¶»°Ô ÇØ°áÇϰí Àִ°¡?

ÀÌ·¯ÇÑ Å« ÀáÀç·Â¿¡µµ ºÒ±¸Çϰí, ´ë±Ô¸ð ¾ð¾î ¸ðµ¨¿¡´Â ¸î °¡Áö À±¸®Àû, ¿î¿µ»óÀÇ ¹®Á¦Á¡ÀÌ Á¸ÀçÇϸç, ¾÷°è´Â À̸¦ ÇØ°áÇϱâ À§ÇØ Àû±ØÀûÀ¸·Î ³ë·ÂÇϰí ÀÖ½À´Ï´Ù. °¡Àå ½Ã±ÞÇÑ ¹®Á¦ Áß Çϳª´Â AI°¡ »ý¼ºÇÏ´Â °á°ú¹°ÀÇ Æí°ßÀ¸·Î, ÇØ·Î¿î °íÁ¤°ü³ä°ú À߸øµÈ Á¤º¸¸¦ ¿µ¼ÓÈ­ÇÒ ¼ö ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. À̸¦ ¿ÏÈ­Çϱâ À§ÇØ °³¹ßÀÚµéÀº ¾ö°ÝÇÑ µ¥ÀÌÅÍ Å¥·¹ÀÌ¼Ç ±â¹ý, °øÁ¤¼ºÀ» °í·ÁÇÑ ±³À° Á¢±Ù¹ý, ±³À° ÈÄ ÁßÀç ±â¼úÀ» µµÀÔÇϰí ÀÖ½À´Ï´Ù. ´ë±Ô¸ð ¸ðµ¨ ÈÆ·ÃÀ¸·Î ÀÎÇÑ È¯°æ ¿µÇâµµ Áß¿äÇÑ °úÁ¦À̸ç, ³ôÀº ¿¡³ÊÁö ¼Òºñ°¡ ¿©ÀüÈ÷ ¿ì·ÁµÇ°í ÀÖ½À´Ï´Ù. ±â¾÷µéÀº ÀÌ»êȭź¼Ò ¹èÃâ·®À» ÁÙÀ̱â À§ÇØ ½ºÆÄ½º ¸ðµ¨¸µ, ÀúÀü·Â Çϵå¿þ¾î °¡¼Ó µî ¿¡³ÊÁö È¿À²ÀÌ ³ôÀº AI ÇнÀ ¹æ¹ýÀ» ¸ð»öÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ±ÔÁ¦ Áؼö ¹× µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ¹®Á¦´Â °­·ÂÇÑ ¼Ö·ç¼ÇÀ» ÇÊ¿ä·Î Çϸç, ±â¾÷µéÀº Â÷µî ÇÁ¶óÀ̹ö½Ã ±â¼ú ¹× ¾ÈÀüÇÑ Çù¾÷ ÇнÀ ÇÁ·ÎÅäÄÝÀ» äÅÃÇϰí ÀÖ½À´Ï´Ù. AI ÀÇ»ç°áÁ¤ÀÇ Åõ¸í¼º ¶ÇÇÑ Áß¿äÇϸç, ÇØ¼® °¡´É¼ºÀ» ³ôÀÌ´Â ¼³¸í °¡´ÉÇÑ AI(XAI) ÇÁ·¹ÀÓ¿öÅ©ÀÇ °³¹ß·Î À̾îÁý´Ï´Ù. ½ÃÀåÀÌ ¼º¼÷ÇØÁü¿¡ µû¶ó ÀÌ·¯ÇÑ ¹®Á¦¸¦ ÇØ°áÇÏ´Â °ÍÀº Ã¥ÀÓ°¨ ÀÖ´Â AI °³¹ßÀ» ÃËÁøÇϰí LLM ¿ëµµ¿¡ ´ëÇÑ ±¤¹üÀ§ÇÑ ½Å·Ú¸¦ È®º¸ÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÒ °ÍÀÔ´Ï´Ù.

´ë±Ô¸ð ¾ð¾î ¸ðµ¨(LLM) ½ÃÀå È®´ëÀÇ ¿øµ¿·ÂÀº?

´ë±Ô¸ð ¾ð¾î ¸ðµ¨(LLM) ½ÃÀåÀÇ ¼ºÀåÀº AI ÅõÀÚ Áõ°¡, ÀÚµ¿È­ ¼ö¿ä Áõ°¡, µ¥ÀÌÅÍ ±â¹Ý ÀÇ»ç°áÁ¤ÀÇ È®»ê µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. ÇÏÀÌÅ×Å© ´ë±â¾÷°ú º¥Ã³Ä³ÇÇÅзκÎÅÍÀÇ ÀÚ±Ý Á¶´ÞÀÌ ±ÞÁõÇϸ鼭 LLMÀÇ ¿¬±¸°³¹ßÀ» °¡¼ÓÈ­Çϰí, º¸´Ù °­·ÂÇϰí È¿À²ÀûÀÎ ¸ðµ¨À» °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù. Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ°ú AIaaS(AI-as-a-service) ¼Ö·ç¼ÇÀÇ µµÀÔ È®´ë´Â ¸ðµç ±Ô¸ðÀÇ ±â¾÷¿¡¼­ LLM µµÀÔÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ±â¾÷µéÀÌ AI ±â¹Ý ÀλçÀÌÆ®ÀÇ °¡Ä¡¸¦ ÀνÄÇÔ¿¡ µû¶ó, ¿öÅ©Ç÷ο츦 °£¼ÒÈ­ÇÏ°í °í°´ Âü¿©¸¦ °­È­ÇÏ´Â ÀÚ¿¬¾î ÀÌÇØ(NLU) ¹× »ý¼ºÇü AI ¿ëµµ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Á¤ºÎ¿Í ±ÔÁ¦±â°üµµ AI °Å¹ö³Í½º ÇÁ·¹ÀÓ¿öÅ©¿Í AI ±â¹Ý °ø°ø ºÎ¹® ¿ëµµ¿¡ ÅõÀÚÇÔÀ¸·Î½á ½ÃÀå È®´ë¸¦ ÃËÁøÇÏ´Â ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, LLM°ú IoT, ºí·ÏüÀÎ, Áõ°­Çö½Ç°ú °°Àº ´Ù¸¥ ½Å±â¼ú°úÀÇ ÅëÇÕÀº »õ·Î¿î ÀÌ¿ë »ç·Ê¿Í ¼öÀÍ È帧À» âÃâÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀÌ ½ÃÀå Àü¸Á¸¦ Çü¼ºÇϰí Àֱ⠶§¹®¿¡ ´ë±Ô¸ð ¾ð¾î ¸ðµ¨ »ê¾÷Àº Áö¼ÓÀûÀÎ ¼ºÀåÀ» ÀÌ·ê Áغñ°¡ µÇ¾î ÀÖÀ¸¸ç, Á¶Á÷ÀÌ µ¥ÀÌÅÍ¿Í »óÈ£ ÀÛ¿ëÇϰí, ÇÁ·Î¼¼½º¸¦ ÀÚµ¿È­Çϰí, Çõ½ÅÀ» ÃËÁøÇÏ´Â ¹æ½ÄÀ» º¯È­½Ã۰í ÀÖ½À´Ï´Ù.

ºÎ¹®

Àü°³(Ŭ¶ó¿ìµå Àü°³, On-Premise Àü°³);¿ëµµ(°í°´ ¼­ºñ½º ¿ëµµ, ÄÁÅÙÃ÷ »ý¼º ¿ëµµ, °¨Á¤ ºÐ¼® ¿ëµµ, ÄÚµå »ý¼º ¿ëµµ, 꺿 ¹× °¡»ó ºñ¼­ ¿ëµµ, ¾ð¾î ¹ø¿ª ¿ëµµ);¾÷°èº°(ÇコÄÉ¾î ¾÷°èº°, ±ÝÀ¶ ¾÷°èº°, ¼Ò¸Å£¦E-Commerce ¾÷°èº°, ¹Ìµð¾î ¹× ¿£ÅÍÅ×ÀÎ¸ÕÆ® ¾÷°èº°, ±âŸ ¾÷°èº°)

Á¶»ç ´ë»ó ±â¾÷ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ¼­, ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°èº° SLM Äõ¸®¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ´ë·® ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Large Language Model Market to Reach US$43.5 Billion by 2030

The global market for Large Language Model estimated at US$6.1 Billion in the year 2024, is expected to reach US$43.5 Billion by 2030, growing at a CAGR of 38.8% over the analysis period 2024-2030. Cloud Deployment, one of the segments analyzed in the report, is expected to record a 41.7% CAGR and reach US$33.5 Billion by the end of the analysis period. Growth in the On-Premise Deployment segment is estimated at 31.6% CAGR over the analysis period.

The U.S. Market is Estimated at US$1.6 Billion While China is Forecast to Grow at 36.7% CAGR

The Large Language Model market in the U.S. is estimated at US$1.6 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$6.4 Billion by the year 2030 trailing a CAGR of 36.7% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 35.9% and 33.4% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 26.8% CAGR.

Global Large Language Model Market - Key Trends & Drivers Summarized

How Are Technological Advancements Transforming Large Language Models?

The large language model (LLM) market is experiencing rapid evolution, driven by groundbreaking advancements in artificial intelligence, deep learning, and natural language processing. With the emergence of transformer-based architectures such as GPT and BERT, language models have significantly improved in understanding and generating human-like text. The shift towards multimodal AI, which integrates text, images, and audio into unified models, is further enhancing the capabilities of LLMs. Techniques such as reinforcement learning with human feedback (RLHF) are refining model outputs, making them more aligned with human preferences and ethical standards. Additionally, advancements in model compression and efficient fine-tuning are addressing the challenge of high computational requirements, enabling wider adoption across various industries. The integration of quantum computing and federated learning holds potential for further breakthroughs, offering higher efficiency and better data privacy. As the LLM ecosystem continues to advance, these innovations are paving the way for enhanced language understanding, improved contextual awareness, and more sophisticated applications in fields ranging from customer support to scientific research.

Why Is Demand for Large Language Models Growing Across Industries?

The increasing adoption of LLMs across industries is driven by the need for automation, enhanced productivity, and personalized user experiences. Businesses are leveraging these models for customer support chatbots, virtual assistants, and content generation, reducing operational costs while improving service quality. The healthcare sector is utilizing LLMs for medical diagnosis, research, and patient communication, enabling more efficient and accurate outcomes. In finance, language models are transforming risk assessment, fraud detection, and algorithmic trading, providing deeper insights through data-driven decision-making. Educational platforms are incorporating AI-driven tutoring systems that adapt to individual learning styles, improving knowledge retention and engagement. Furthermore, legal and compliance industries are utilizing LLMs for contract analysis, legal research, and documentation automation, reducing the burden on human professionals. With their ability to process and analyze vast amounts of text-based data, large language models are becoming indispensable tools in virtually every sector, driving efficiency, innovation, and competitive advantage.

How Are Industry Players Addressing Ethical and Operational Challenges in LLM Deployment?

Despite their immense potential, large language models pose several ethical and operational challenges that industry players are actively working to address. One of the most pressing concerns is bias in AI-generated outputs, which can perpetuate harmful stereotypes and misinformation. To mitigate this, developers are implementing rigorous data curation methods, fairness-aware training approaches, and post-training moderation techniques. The environmental impact of training large-scale models is another key challenge, as high energy consumption remains a concern. Companies are exploring energy-efficient AI training methods, including sparse modeling and low-power hardware acceleration, to reduce carbon footprints. Additionally, regulatory compliance and data privacy issues require robust solutions, prompting organizations to adopt differential privacy techniques and secure federated learning protocols. Transparency in AI decision-making is also critical, leading to the development of explainable AI (XAI) frameworks that enhance interpretability. As the market matures, addressing these challenges will be pivotal in fostering responsible AI development and ensuring widespread trust in LLM applications.

What Is Driving the Expansion of the Large Language Model Market?

The growth in the large language model market is driven by several factors, including increasing AI investments, rising demand for automation, and the proliferation of data-driven decision-making. The surge in funding from tech giants and venture capital firms is accelerating research and development in LLMs, enabling more powerful and efficient models. The growing adoption of cloud computing and AI-as-a-service (AIaaS) solutions is further facilitating the deployment of LLMs across businesses of all sizes. As enterprises recognize the value of AI-powered insights, there is a heightened demand for natural language understanding (NLU) and generative AI applications that streamline workflows and enhance customer engagement. Governments and regulatory bodies are also playing a role in driving market expansion by investing in AI governance frameworks and AI-driven public sector applications. Additionally, the integration of LLMs with other emerging technologies such as IoT, blockchain, and augmented reality is unlocking new use cases and revenue streams. With these factors shaping the future of the market, the large language model industry is poised for sustained growth, transforming the way organizations interact with data, automate processes, and drive innovation.

SCOPE OF STUDY:

The report analyzes the Large Language Model market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Deployment (Cloud Deployment, On-Premise Deployment); Application (Customer Service Application, Content Generation Application, Sentiment Analysis Application, Code Generation Application, Chatbots & Virtual Assistant Application, Language Translation Application); Vertical (Healthcare Vertical, Finance Vertical, Retail & E-Commerce Vertical, Media & Entertainment Vertical, Other Verticals)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 39 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â